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Abstract: The growing development of nanobiotechnology and its applicability 

resulted in a wider range of use of Microcantilevers (MCs) in liquid. Considering 

the applications of piezoelectric MCs in the microelectromechanical systems and 

Atomic Force Microscope (AFM), as well as the high performance of these beams, 

this article investigates the vibrating behavior of multilayer piezoelectric MCs with 

geometric discontinuity in liquid environment. Due to the extreme complexity of 

hydrodynamic forces introduced to MCs, this force may reduce their accuracy. As a 

result, the MC was considered to be semi-submerged in the liquid medium to reduce 

the effect of hydrodynamic force. In addition, to reduce the effect of hydrodynamic 

force on vibrating behavior of the MC, sensitivity analysis was performed on its 

geometric dimensions to obtain the optimal dimensions, aiming at minimizing the 

effect of this force. The differential equation of motion was derived using the Euler–

Bernoulli theory and the Lagrange method. The hydrodynamic force was exerted on 

the MC through the sphere string model. The Simulation results indicated that due 

to reducing resonance frequency variations in the third vibrating mode, the effect of 

hydrodynamic force on vibrating motion is minimized in this mode and considered 

as the optimal vibrating mode among the first three modes. The sensitivity analysis 

results showed that the MC length and piezoelectric layer were geometric parameters 

with the greatest effect on frequency sensitivity of MC, which should be considered 

in semi-submerged piezoelectric MC design. 

Keywords: Hydrodynamic Force, Piezoelectric Microcantilever, Semi-Submerged, 
Sensitivity Analysis  

How to cite this paper: Mohamadreza Khosravi, Reza Ghaderi, “Vibration 
Analysis and Sensitivity Analysis of Semi-Submerged Multilayer Piezoelectric 
Microcantileverˮ , Int J of Advanced Design and Manufacturing Technology, Vol. 
14/No. 4, 2021, pp. 11-18. DOI: 10.30495/admt.2021.1923900.1254 

Biographical notes: Mohamadreza Khosravi received his MSc in Mechanical 

Engineering from Islamic Azad University, Shahrekord Branch, Shahrekor, Iran in  

2017. His current research interest includes piezoelectric microcantilever in liquid 

environment and dynamic modelling. Reza Ghaderi is Assistant Professor of 

Mechanical Engineering at the University of Islamic Azad University, Shahrekord 

Branch, Iran, where he has been involved in teaching and research activities in the 

area of vibration for the last 15 years. He received his PhD in Mechanical 

Engineering from Islamic Azad University, Science and Research Branch, Tehran, 

Iran in 2013. His current research focuses on nonlinear vibration of piezoelectric 

MCs, atomic force microscope and microelectromechanical systems.  

 

mailto:Reza.ghaderi@ymail.com


12                                       Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 4/ December – 2021 

 

© 2021 IAU, Majlesi Branch 
 

1 INTRODUCTION 

Today, MCs are widely used due to the growing 

application of nanobiotechnology and the necessity of 

measuring bio specimens in liquid mediums. As 

compared to the air and vacuum mediums, there are 

fewer studies into the vibrating motion of MCs in liquid 

mediums; however, the conduction of further studies 

into this medium seems essential due to the increased 

use of MCs in liquid mediums. In contrast to the vacuum 

and air mediums, the vibration of MCs in liquid 

mediums is affected by hydrodynamic forces. These 

forces not only affect the vibrating motion parameters 

(amplitude and resonant frequency), but also cause 

major complication in vibrating motion of MCs [1]. The 

hydrodynamic forces are generated by fluid density and 

viscosity. The fluid viscosity not only increases the 

system damping, but also changes the resonance 

frequency. Many mathematical models have been 

developed to model this force [2-8]. Eysden and Sader 

proposed other equations for resonance frequency 

variations of MC in liquid medium [9]. 

Typically, the vibrating motion of MCs is actuated 

through the base. Since MC stimulation from the base 

causes turbulence in liquid mediums and affects the MC 

performance, this method cannot be used in such 

mediums. The magnetic stimulation [10], acoustic 

stimulation [11], and piezoelectric stimulation [12-15] 

are among the commonly used methods in such 

mediums as they not cause turbulence in liquid 

mediums. Although the MC mass increases with 

increasing the number of layers in piezoelectric MCs, 

these layers can eliminate actuating and sensor elements 

in AFM. In multilayer MCs, a layer is used as the 

vibrating motion actuator. This layer is called the 

actuating layer. It is fabricated from piezoelectric 

materials, that the using of an alternative voltage to both 

sides of it causes a vibrating motion in the layer and 

subsequently in the MC. In addition to the actuating 

layer, another piezoelectric layer can also be used to 

measure the MC bending and resonance frequency [16-

18]. The use of sensor layer is highly important in liquid 

mediums. This is because it can solve the laser beam 

refraction issues when leaving the liquid medium. In 

addition to the actuating and sensor layers, the 

multilayer MCs include inactive and passive layers. 

These layers are used to modify geometric and cantilever 

properties, such as the stiffness, and to prevent actuating 

layer deformation [19-20]. Layers with unequal lengths 

are also used in the piezoelectric MCs [21-22]. Layer 

length inequality results in geometric discontinuity of 

the cantilever and generates a unique resonance 

frequency relative to the single-layer MC [23-24]. 

Considering the superior frequency properties of 

multilayer MCs with geometric discontinuity, as 

compared to the conventional MCs, higher functional 

capabilities can be obtained. The multilayer 

piezoelectric sensors with geometric discontinuity can 

be used in high longitudinal-bending vibration modes, 

due to their accuracy at femtogram level [25-26]. 

Considering the use of multilayer piezoelectric MCs in 

fabrication of MEMS equipment, as well as Atomic 

Force Microscope (AFM), this article is the first to 

investigate the vibrating behavior of a semi-submerged 

multilayer piezoelectric MC in a liquid medium. In 

contrast to other mentioned research which investigated 

the vibration motion of full-submerged MC, in this study 

the dynamic behavior of semi-submerged MC is 

considered. The two piezoelectric layers with actuating 

and sensing functions are located at both sides of the 

base layer. The vibrating analysis was conducted using 

the Euler–Bernoulli theory, due to the geometric 

discontinuity of the MC. The beam was considered 

semi-submerged in the liquid medium, and the effect of 

hydrodynamic force on beam vibration was considered 

by the sphere string model. Since the MC resonance 

frequency has a significant role in the application of 

MEMS and AFM, this article investigated how the 

hydrodynamic force affects MC frequency changes.   

2   DYNAMIC MODELING OF SEMI-SUBMERGED MC 

As seen in “Fig. 1ˮ , the MC was considered with two 

piezoelectric layers. One layer functioned as the actuator 

of vibrating motion, which causes the vibration of 

piezoelectric layer and subsequently that of the MC by 

applying electric potential difference P(t) to its ends. 

When the MC starts vibrating, the other piezoelectric 

layer can be used to measure deformation. Each 

piezoelectric layer is surrounded by two electrodes. 

 

 
 

Fig. 1 Schematic of piezoelectric MC. 

 

The Hamilton theory and Lagrange method can be used 

to derive the differential equation governing the 

vibrating motion of the MC. The differential equation 

governing the vibrating motion of MC in an air medium 

is as follows, based on the Euler–Bernoulli theory [6]:  
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Where, t is time and u(x,t) is displacement of each point 

of the MC. k(x), mo and c0 are the stiffness, mass per unit 

length, and is the damping per unit length, respectively. 

The coefficient of the differential equation of motion for 

a MC with two piezoelectric layers on the both sides of 

the main layer (“Fig. 1ˮ ) can be expressed as follows: 
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Where, Ei and ρi are the elasticity module and density of 

each layer, respectively; d31 and H are the piezoelectric 

constant and Heaviside function, respectively; and f(x,t) 

is the external force applied to the MC per unit length. 

f(x,t) for a vibrating MC in a liquid medium is the same 

as the fluid hydrodynamic force exerted on the MC 

surface. Typically, the precise calculation of fluid 

hydrodynamic force on vibrating MC is difficult. 

Several studies have been conducted on simulation of 

hydrodynamic force exerting on the beams [2-4]. These 

studies aimed at developing a simplified model for 

modeling the hydrodynamic force exerted on beams. 

Among the proposed models, the sphere string model 

proved high efficiency in modeling hydrodynamic 

forces exerted on beams with geometric discontinuity  

[6], [27]. In this model, the hydrodynamic model is 

estimated by simulating the MC as a series of spheres. 

The hydrodynamic force exerted on a submerged sphere 

in a viscous fluid is as follows:  
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Where, R is the sphere radius, ƞ  is viscosity, ρliq is fluid 

density, and u is the displacement of sphere in the fluid; 

in addition, δ is the penetration depth of acoustic wave, 

as follows:  
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Based on the sphere string model, the hydrodynamic 

force exerted on the MC per unit length is equal to the 

total force applied to the sphere per unit length. In this 

way, the hydrodynamic force exerted on the MC can be 

expressed as follows: 
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Where, ω is the frequency of vibrating motion of MC. 

Based on this equation, the added mass and damping 

caused by the presence of a fluid can be expressed as: 
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Where, Cliq is the hydrodynamic damping coefficient 

and and Ls is the extent of MC submergence in a liquid 

medium. With substituting Equations (8-10) in the 

differential equation of motion, we have: 
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The modal analysis was used to solve the differential 

equation of motion of semi-submerged piezoelectric MC 

in a liquid medium. The MC deformation can be 

presented within the place and time domains as follows, 

using the Galerkin method: 
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Where, Φn(x) is comparison function of nth-order 

vibrating mode and qn(t) is the general coordination 

equation based on time. Since the MC has geometric 

discontinuity, because of the presence of a piezoelectric 

layer, and only a part of it was submerged in the liquid 

medium, it was divided into three homogeneous beams.  

Then, Φn(x) can be expressed as in "Eq. (13)". 
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 are unknown 

coefficients determined by the boundary conditions of 

MC, continuous conditions, and normalization by mass.  

By substituting “Eq. (12) in Eq. (1)ˮ , using the 

Lagrange method, the differential equation of motion 

turns into “Eq. (14)ˮ : 
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The ordinary differential equation of motion “Eq. (14)ˮ  

for k modes can be written as: 
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Where, C, M, and K are the mass, damping, and stiffness 

matrices, and F is the force vector. “Eq. (18)ˮ  can be 

presented in reduced order form as follows: 
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To calculate q by means of “Eq. (22)ˮ , the Runge–Kutta 

method was used in MATLAB.  

3 SIMULATION AND DISCUSSION 

To investigate the vibrating behavior of semi-submerged 

piezoelectric MC in a liquid medium, a MC was 

considered with two piezoelectric layers on sides of the 

main layer (“Fig. 1ˮ ). The MC and piezoelectric layers 

were made of silicon and ZnO. The piezoelectric layers 

were completely surrounded by two electrodes Ti/Au at 

both sides. The geometric and mechanical properties of 

the simulated piezoelectric MC are presented in “Table 

1ˮ . 

 
Table 1. Geometric and mechanical specifications of 

simulated piezoelectric MC [24] 

ρ 

)3kg/m( 

E 

)2N/m( 

h 

(μm) 

w 

(μm) 

L 

(μm) 
 

6390 180 4 130 300 
Piezoelectric 

Layer 

19300 78 0.25 130 330 
Electrode 

Layers 

2330 104 4 250 375 Base Layer 

 

To simulate the vibrating motion of the semi-submerged 

MC in a liquid medium, it was vertically located, part of 

which inside the liquid medium. A piezoelectric layer, 

as an actuator, was under an alternative potential 

difference. The other piezoelectric layer was used as 

sensor. A water-glycerin solution was used with 

different concentrations to investigate the effect of liquid 

medium on vibrating behavior of MC. Figure 2 presents 

the effect of fluid density on resonance frequency drop 

of MC in the first three modes. The extent of MC 

submergence in the liquid medium was considered to be 

50μm. Δω indicates changes in resonance frequency of 

MC in the liquid medium relative to the air medium, and 

ω is the resonance frequency in an air medium. The 

hydrodynamic force exertion on the MC increases with 

increasing the fluid density of the MC. Based on the 

sphere string model, the hydrodynamic force is 

comprised of velocity and acceleration terms. As a 

result, the beam is subjected to greater damping and 

added mass with increasing fluid density and 

hydrodynamic force, resulting in a greater resonant 

frequency drop. The results of “Fig. 2ˮ  indicate an 

increase in frequency variations with increasing fluid 

density in the first three vibrating modes.  
 

 
Fig. 2 Effect of liquid density on resonance frequency 

drop in MC. 
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In addition to the fluid density, the extent of MC 

submergence in a liquid medium increases fluid 

hydrodynamic force and subsequently results in 

resonance frequency drop of MC. Figure 3 shows the 

effect of MC submergence in a fluid on frequency drop. 

According to this figure, the frequency drops increase 

with increasing the MC submergence in the liquid 

medium (water); however, the rate of frequency changes 

reduces with greater increase in submergence.  

 

 
Fig. 3 Effect of the extend of MC submergence in liquid 

medium. 

 

According to “Figs. 1 and 2ˮ , frequency changes of the 

third vibrating mode are lower than that of the first and 

second modes. Low frequency changes indicate lower 

effect of fluid hydrodynamic force on vibrating motion 

of MC. Since the precise calculation of this force is 

difficult, the MC measurement results would be more 

accurate when the effect of this force on vibrating 

behavior of MC is lower. Therefore, it can be concluded 

that the third vibrating mode is more appropriate one 

considering the semi-submerged MC performance in the 

fluid, due to the low effect of hydrodynamic force on 

MC vibration.  

3.1. Effect of Geometric Dimensions of MC On 

Frequency Drop 

As mentioned earlier, reduction in hydrodynamic force 

acting on the MC not only reduces its effect on vibrating 

motion, but also increases MC readings, which is due to 

the difficulty of hydrodynamic force calculation. 

Reduction in hydrodynamic force acting on MC reduces 

resonance frequency changes while the MC is 

submerging in the liquid medium. As a result, lower 

frequency drop improves MC performance. 

Undoubtedly, the geometric dimension of the MC is a 

factor affecting hydrodynamic force. The selection of 

appropriate geometric dimensions for MC is effective in 

improving its performance in a liquid medium. To 

investigate the effect of geometric dimensions of MC on 

its frequency drop, the sensitivity analysis was used. The 

eFAST-based sensitivity analysis can be used to 

investigate the effect of some parameters on the main 

variable at the same time [28]. Figure 4 shows the effect 

MC layer thickness on frequency changes.  

 
 (a) 

 

    
(b) 

 

 
(c) 

 

Fig. 4 Effect of layer thickness on frequency sensitivity 

of: (a): Electrode layer, (b): Piezoelectric layer, and (c): main 

layer. 

 

The extent of MC submergence in liquid medium 

(water) was considered to be 50μm. Figure 4a shows the 

effect of electrode thickness on frequency sensitivity of 

MC submerged in the fluid. According to this figure, due 

to the low thickness of these electrodes, they have low 

effects on frequency sensitivity of the MC.  
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According to “Fig. 4bˮ , the frequency sensitivity varies 

with the thickness of actuating piezoelectric layer. 

Simulation results show that in the first three vibrating 

modes, the frequency sensitivity is maximized at the 

thickness of 3.3μm. According to “Fig. 4cˮ , the 

frequency sensitivity in the first three vibrating modes is 

minimum at the thickness of 3μm. As a result, the effect 

of liquid medium in MC is minimal at this thickness. 

Since the aim in designing these MCs is to reduce the 

effect of hydrodynamic forces on MCs, 3μm is the 

optimal thickness for the main layer.   

Figure 5 shows the effect of the piezoelectric MC layer 

width on MC frequency sensitivity in the first three 

vibrating modes. Figure 5a presents the effect of 

piezoelectric layer width on frequency sensitivity. 

According to this figure, the maximum frequency 

sensitivity occurred at the width of 21.8μm in the first 

and second modes and at the width of 20.3μm in the third 

mode. Figure 5b shows that the minimum frequency 

sensitivity occurred at the main layer width of 26.1μm.   

 

 
(a) 

 

 
(b) 

 
Fig. 5 Effect of layer width on frequency sensitivity of: 

(a): piezoelectric layer width, and (b): main layer width. 

 

Figure 6 shows how the lengths of main and 

piezoelectric layers affect frequency sensitivity in the 

first three vibrating modes. Since the lengths of 

electrode and piezoelectric layers are assumed equal, 

“Fig. 6aˮ  shows the effect of this layer's length on 

frequency sensitivity of MC. According to this figure, 

the frequency sensitivity is maximized in the first to the 

third modes at the lengths of 86.1, 87.2, and 89 μm, 

respectively. Figure 6b presents the effect of the main 

layer length of MC on frequency sensitivity. According 

to this figure, the frequency sensitivity reduces with 

increasing the length of the main layer. As a result, 

acting fluid hydrodynamic force reduces and MC 

performance improves with MC length.  

 

 
(a) 

 

 
(b) 

 

Fig. 6 Effect of layer length on frequency sensitivity of: 

(a): piezoelectric layer length, and (b): main layer length. 

 

The degree of each geometric parameter of MC affects 

the frequency sensitivity has an effective role in the 

optimal design and selection of MCs. Undoubtedly, the 

geometric parameters with a greater effect on frequency 

sensitivity of the MC can be regarded as the main 

parameters in designing the beams.  
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Figure 7 shows the effect of each geometric parameter 

of piezoelectric MC on frequency sensitivity. Results 

were obtained based on the Sobol’s sensitivity analysis 

and statistical data. According to this figure, the MC 

length and piezoelectric layer are geometric parameters 

with the greatest effect on frequency sensitivity of MC, 

which should be considered in design. 

 

 

Fig. 7 Effect of geometric dimensions of piezoelectric MC 

on frequency sensitivity. 

4 CONCLUSION 

The semi-submerged MC in a liquid medium was 

investigated with two piezoelectric layers on both sides 

of it. In this MC, a layer functions as an actuator and the 

other as a sensor. The hydrodynamic force exerted from 

the liquid medium on the MC was obtained using the 

sphere string model. In addition, the differential 

equation governing the vibrating motion of the MC was 

derived using the Euler–Bernoulli theory and Lagrange 

method. To investigate the effect of geometric 

dimensions of MC on the resonance frequency variation 

in a semi-submerged state, the Sobol’s sensitivity 

analysis was used. This equation can be used to 

investigate the effect of all geometric parameters on the 

frequency drop of MC at the same time. The simulation 

of vibrating motion of semi-submerged MC with two 

piezoelectric layers in a liquid medium produced 

following results: 

1- Since resonance frequency variations reduce in the 

third vibrating mode, the effect of hydrodynamic 

force on vibrating motion is minimized in this mode 

and considered as the optimal vibrating mode out of 

the first three modes. 

2- According to this figure, due to the low thickness of 

these electrodes, they have low effect on frequency 

sensitivity of the MC. 

3- Simulation results show that in the first three vibrating 

modes, the frequency sensitivity is maximized at 

piezoelectric layer thickness of 3.3μm. In addition, it 

is minimized at piezoelectric layer thickness of 

3.3μm for the main layer.  

4- The frequency sensitivity is maximized at 

piezoelectric layer lengths of 81.1, 87.2, and 89μm 

for the first, second, and third modes, respectively.  
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