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console beam was obtained. The results of this study prove that the Courant’s maximum–minimum 
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Keywords: Blade, Damping Wire, Fundamental Frequency, Intermediate Elastic Support, Rotating 
Beam, Stiffness  

How to cite this paper: Mehdi Asgarikia, Farshad Kakavand and Hasan Seidi “Increasing the 
Fundamental Frequency of the Cantilever Rotating Beam by Placing the Intermediate Elastic 
Support with Minimum Stiffness at the Optimum Point Based on the Courant’s Maximum–
Minimum Theorem using Finite-Element Analysis Softwareˮ , Int J of Advanced Design and 
Manufacturing Technology, Vol. 14/No. 3, 2021, pp. 65–73.  
DOI: 10.30495/admt.2021.1917477.1232 
 

Biographical notes: Mehdi Asgarikia received his MSc in mechanical engineering from Iran 

University of science and technology, in 2005. He is lecturer of mechanical engineering in Islamic 

Azad University, Asadabad branch and he is currently PhD student at the Department of 

Mechanical Engineering of Islamic Azad University, Takestan Branch, Iran. Farshad Kakavand 

received his PhD in Mechanical engineering from Sharif University of Technology in 2011. He is 

Associate Professor of Mechanical Engineering at Islamic Azad University, Takestan Branch, Iran. 

His current research focuses on mechanical vibration, non-linear dynamics and optimization. 

Designing and manufacturing mixers, pressure vessels and vibrating feeders is his practical 

expertise. Hassan Seidi received his PhD in Nanotechnology from National Academy of Science 

of Belarus in the State Scientific-Practical Materials Research Centre in 2014. He is Assistant 

Professor of Mechanical Engineering at Islamic Azad University, Takestan Branch, Iran. His 

current research focuses on mechanical properties characterization of composite and Nano 

composites. 

mailto:md.asgarikia@gmail.com
mailto:F.kakavand@gmail.com


66                                  Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 3/ September – 2021 
  

© 2021 IAU, Majlesi Branch 
 

 

1 INTRODUCTION 

The most important factor in the failure of the rotating 

industrial structures is fatigue due to structure vibrations. 

Different factors, such as forced harmonics, stimulating 

the dynamics of the rotating structure, cause vibrations 

with different oscillation ranges, which can cause a 

resonance phenomenon and, consequently, a failure and 

blunt damage. Therefore, it is necessary to improve and 

increase the fundamental frequency of the rotating 

structure to ensure that it is as far away from the 

resonance amplitude as possible. Since the most 

important factor in the studying vibration of a structure 

is its destruction due to the resonance phenomenon, 

maximizing the fundamental frequencies of the structure 

is a vital part of mechanical design. Since many 

industrial rotating elements can be considered as a 

rotating cantilever beam, increasing the fundamental 

frequency of a rotating cantilever beam through the 

elastic intermediate support can be an engineering 

solution to avoid the resonance phenomenon. However, 

optimal position and minimum stiffness of the 

intermediate support is very important for designers. 

Figure 1 shows a cantilever beam with intermediate 

elastic support.  

 

 
Fig. 1 Cantilever beam with intermediate elastic support. 

 
Since many engineering structures are simulated by a 

beam with specific support conditions, useful studies 

have been performed to improve the dynamic behaviour 

of a beam with different boundary conditions and 

support conditions. Rayleigh [1] showed that adding 

elastic stiffness and/or kinetic constraints to the system 

(without changing the mass) does not reduce any of its 

fundamental frequencies. By extending Rayleigh's work, 

Courant [2] showed that the addition of n kinematical 

constraints to the system affects the Eigen frequencies of 

the system, as shown in the following inequality: 

 

ωi+n ≤ μi ≤ ωi+n+1 (1)  

 

Where, 𝜇𝑖 is the eigenfrequency for ith mode of the 

restrained system and ω 𝑖 is the eigenfrequencies of 

mode i of the unrestrained system. Akesson and Olhoff 

[3] showed that to maximize the fundamental frequency 

of a cantilever beam, there is a certain minimum stiffness 

for the support added to the beam. In fact, increasing the 

stiffness of the intermediate support has no effect on the 

maximum fundamental frequency. Rao [4] developed 

the frequency equation of a beam with an intermediate 

support by continuous conditions at the support point. 

Albarracı´n et al. [5] calculated the influence of 

intermediate support when the end of the beam has 

elastic constraints. Wang et al. [6] obtained a new 

approach to the frequency analysis of a beam according 

to the position of simple support (or point support) using 

the discretization method. Additionally, they proposed a 

method to determine the optimal position of elastic 

supports based on frequency. 

Rotary beams have a wide range of practical applications 

in industry, especially in the turbomachine and 

aerospace industries. Generally, a rotating beam is a 

beam rotating with a certain angular velocity about an 

axis perpendicular to its longitudinal axis. Modelling 

and analysis of dynamic and vibration behaviour of 

rotating elastic beams play an important role in the 

design and engineering applications such as turbine 

blades, compressor blades, helicopter blades, etc. Due to 

wide applications of rotating beams, vibration analysis 

of these beams is of great importance. Figure 2 Shows 

the schematic form of a rotating beam. 
 

 
Fig. 2 Schematic form of a rotating beam. 

 
In 2001, Lin et al. [7] examined the transverse and axial 

vibration of Timoshenko’s beam. They considered the 

effect of the Carioles force to obtain the natural 

frequency of the system. They also derived the 

governing equations of motion using the D’alambert 

principle and virtual work and used power series to solve 

the equations. In 2013, Stoykov et al. [8] studied the 

nonlinear vibrations of a rectangular beam in three 

dimensions. They modelled the beam in the transverse 

vibration using Timoshenko’s theory and in the 

rotational direction using the theory of St. and Nantes 

and extracted the equations of motion using the principle 

of virtual work. They also used the finite element 

method to solve the equations by considering impact and 

external harmonic forces. In 2006, Cheng et al. [9] 
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studied the transverse and longitudinal vibrations of a 

rotating beam. They extracted the governing equations 

using the Hamilton principle and then solved those using 

hypothetical modes. They showed that with an increase 

in rotational speed of the rotating beam, the natural 

bending frequency increases and its natural longitudinal 

frequency decreases. In 2006, Salarieh and Ghorashi 

[10] examined the transverse and torsional vibration of 

a rotating beam with a concentrated mass at its free end. 

In their study, they considered beam as Timoshenko and 

used Hamilton principle to derive equations, solved 

equations numerically, and finally compared the 

resulting answers with Euler-Bernoulli beam. In 2011, 

Ansari et al. [11] studied the transverse and torsional 

vibration of a rotating beam with a concentrated mass at 

its free end. They assumed the rotating beam as a 

Bernoulli-Euler beam and derived the governing 

equations from the Hamilton principle by taking into 

account the coupling effect and solved the governing 

equations using the hypothetical modes. In 2013, 

Bambill et al. [12] investigated the transverse vibration 

of non-uniform rotating beams. They derived the 

equations of motion of the rotating beam using Hamilton 

principle and hypothetical assumption of Timoshenko 

beam and then solved them using the finite-element 

method. In 2015, Tang et al. [13] studied the transverse 

vibration of a rotating beam. They considered an Euler-

Bernoulli beam with a conical cross-section and used 

integral equations to calculate natural frequencies. In 

2017, Chen et al. [14] examined the free transverse 

vibration of a Timoshenko rotating beam with a conical 

cross-section. In 2020, Ajinkya Baxy and Abhjit Sarkar 

[15] introduced the natural frequencies of a curved 

rotating cantilever beam based on a perturbation-based 

method. In fact, using both the Riley-Ritz method and 

the perturbation method, they formulated a new 

formulation for determining the natural frequencies of a 

curved rotating cantilever beam. 

In the current paper, the minimum stiffness and the 

optimal position of the intermediate support were 

investigated to improve the vibration response of a 

rotating beam. The vibration analysis of rotating 

cantilever beams has been carried out by a large number 

of researchers. However, this is the first time that the 

maximum frequency increase of a rotating beam located 

on the intermediate elastic support at the optimal point 

has been investigated using the Courant’s maximum–

minimum theorem. The fundamental frequency of the 

rotating cantilever beam on intermediate elastic support 

is studied using the finite-element method by ABAQUS 

software. For this purpose, the first three fundamental 

frequencies of a non-rotating cantilever beam are 

computed using finite-element analysis software, and 

their results are compared with the finite-element 

analytical solution. Then, based on Courant’s 

maximum–minimum theorem, the optimal position of 

intermediate elastic support is selected, the amount of 

increase in fundamental frequency is computed, the 

minimum stiffness of intermediate elastic support is 

determined. In order to verify the results obtained from 

software analysis, they are compared with the analytical 

results of studies conducted by Akesson and Olhoff [3] 

and Wang et al. [6]. Afterwards, the optimal position is 

chosen based on Courant’s maximum–minimum 

theorem and minimum stiffness, and the increase in the 

fundamental frequency of a rotating beam is calculated 

by the finite-element analysis software. At the end, the 

minimum diameter of damping wire of the turbine blade 

is given as a practical example of a minimum stiffness 

of intermediate elastic support.  

2 SOFTWARE SIMULATION AND COMPARISON 

OF RESULTS WITH FINITE-ELEMENT ANALYSIS 

SOLUTION 

In this research, the geometric modelling is performed in 

ABAQUS software, which is one of the well-known 

software in the finite-element analysis. Since rotating 

beams are mostly applied in modelling rotating blades 

and slenderness ratio of these blades is not significantly 

high, Timoshenko theory is expected to be the proper 

theory to be applied in analysing these beams. In 

software analysis, for calculation of the fundamental 

frequency, a 1-meter length cantilever beam with a 

circular section and a slenderness ratio of L/R=20 is 

considered. Due to the uniformity of cross-section and 

constant physical properties along the beam, the beam 

element is used for problem analysis using the finite-

element method. The type of loading used in the 

mechanical category is of rotational body force type so 

that it exerts the effects of centrifugal force on the 

geometric model. This is a great possibility in ABAQUS 

software that you can create the load of the rotating body 

force to define the loads caused by the rotation of the 

model. You can set the angular velocity or rotational 

acceleration. In any case, the load definition must 

include an axis of rotation, which is defined as follows: 

-If you work in 3D space, you specify the location 

and direction of the axis by entering the global 

coordinates of the two points. 

-If you work in 2D space, you specify the location of 

the axis by entering the coordinates of a point on the 

screen. The axis direction is always off-page. 

-If you work in symmetrical axis space, the axis is 

always in the position and direction of the global 

positive Z axis. 

-The beam materials are selected as structural steel 

and assumed completely uniform. In this analysis, 

temperature effects are assumed negligible. Physical 

properties of the beam under investigation are listed 

in “Table 1ˮ .   
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Table 1 Physical properties of the beam under investigation 

E 207 Gpa 

G 70 Gpa 

A 0.0314 m2 

Iz 0.000078 m4 

ρ 7800 Kg/m3 

Ω 3000 rpm 

δ 1 

2.1. Optimum Position of Rigid Intermediate 

Support in Non-Rotating Cantilever Beam 

According to Courant’s maximum–minimum theorem 

[2], adding one extra rigid support at a distance: 

 

x=b.L 

 

From fixed support of cantilever beam (0<b<1) can 

increase structural frequency ωi  by an amount between 

ith and (i+1)th natural frequency. Schematic form of this 

statement can be observed in “Fig. 1ˮ . Akesson and 

Olhoff [3] showed that the fundamental frequency of the 

cantilever beam increases to the second natural 

frequency of the no-support beam by placing additional 

support at the second modal node of the beam. The 

results of their studies for the optimal position of 

intermediate support are shown in “Fig. 3ˮ .  

 

 
Fig. 3 The first three natural frequencies of the non-

rotating cantilever beam [3]. 

 
According to the studies carried out by Akesson and 

Olhoff [3], if additional rigid support is placed at 

x=0.7834L which is the second modal node of the no-

support beam, its natural frequency will be equal to the 

second natural frequency of the no-support beam 

(ω 1 = ω2
0). Also, if two additional rigid supports are 

placed at x=0.5035L and x=0.8677L (locations of the 

third modal node of the no-support beam), first natural 

frequency of the beam will be equal to the third natural 

frequency of the no-support beam(ω 1 = ω3
0).  

The mode shapes obtained from finite-element analysis 

software for first, second, and third modes of the non-

rotating cantilever beam are shown in “Figs. 4a, 4b, and 

4cˮ .  

 

 
(a): Mode 1 

 
(b): Mode 2  

 
(c): Mode 3 

 

Fig. 4 Software analysis of the first three natural 

frequencies of the non-rotating cantilever beam [3]. 

 
Moreover, the results of this analysis are given in “Table 

2ˮ . Comparison of results of software analysis with 

results of the analysis conducted by Akesson and Olhoff 

[3] confirms the correctness of software analysis. 
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Table 2 Comparison of results of software analysis with 

results of the analysis for natural frequency 

Fundamental 

frequency 

This study result 

(Hz) 

Ref.[3] 

result (Hz) 

Error 

% 

𝜔1
0 146.3 143.5 1.95 

𝜔2
0 908.1 900.3 0.86 

𝜔3
0 2538.3 2521.2 0.67 

2.2. Minimum Stiffness of Intermediate Elastic 

Support in The Non-Rotating Cantilever Beam 

Akesson and Olhoff [3] showed that the intermediate 

support added to the system should not necessarily be 

rigid. For this additional support, there is a non-

dimensional minimum stiffness of  K0, and for 

maximization of the fundamental frequency, the support 

stiffness should not be less than  K0. They represented 

the result of their research in the following equation: 
 

K0 = KsL3/EI (2) 
 

Where, Ks denotes the minimum stiffness of the support. 

They argued that a non-dimensional beam stiffness of 

K0=266.9 leads to minimum stiffness of support which 

can increase the first natural frequency of the restrained 

system to second natural frequency of the no-support 

system. Eq. (2) is entirely the same as the relation 

proposed by Wang et al. [6] in which minimum non-

dimensional stiffness of the cantilever beam is given as 

K0=266.87. Fig. 5 shows the software model of added 

support to the beam at the optimum point. By increasing 

the stiffness of elastic support from 0.001, a minimum 

stiffness of Ks=4.305e9 (N/m) is obtained at which 

fundamental frequency becomes maximum. By 

substituting into Eq. (2), a minimum non-dimensional 

stiffness of K0=266.76 is achieved, which is close to the 

results of references [3] and [6].  

 

 
Fig. 5 The software model of added support to the beam. 

3 MINIMUM STIFFNESS OF INTERMEDIATE 

ELASTIC SUPPORT FOR ROTATING CANTILEVER 

BEAM 

As stated in the geometric simulation segment in the 

introduction and section 2, rotating beams are mostly 

applied in modelling the rotating blades. These blades 

are usually used in turbomachines, and their operating 

rotational speed is approximately Ω=3000 (rpm). We 

consider a rotating beam, as indicated in “Fig. 2”, which 

rotates with a rotational speed of Ω=3000 (rpm) about 

the axis passing through support perpendicular to the 

longitudinal axis of the beam. According to beam 

properties shown in “Table 1ˮ  and applying an angular 

speed of Ω=314.15 (rad/s) =3000(rpm), first, finite-

element modal analysis software is performed, and 

ω1
0=154.01 (Hz) and ω2

0 =795.82(Hz) are obtained for 

the first and second mode forms and natural frequencies 

of the beam with no intermediate support. Figs. 6a and 

6b show the first and second mode shapes of rotating 

beam with no intermediate elastic support.  

 

 
(a): Mode 1 

 
(b): Mode 2 

Fig. 6 The first and second modal shapes of rotating 

beam. 

 

As mentioned before, in this study, Courant’s 

maximum–minimum theorem is used and based on the 

results obtained from section 2-2, we place the elastic 

support at point x=0.7834L on the rotating beam. Then, 

elastic support stiffness is gradually increased from zero, 

and natural frequency corresponding to each 

dimensionless stiffness K0 is derived. This is done until 

an increase in stiffness does not raise the fundamental 

frequency of the rotating beam. As a result, a non-

dimensional stiffness of K0=240.31 is achieved for 

rotating beam. The results of the influence of changing 

the stiffness of intermediate elastic support on an 
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increase in the fundamental frequency of the rotating 

beam are shown in "Fig. 7”.  

 

 
Fig. 7 Variation curve of the fundamental frequency with 

respect to the increase in stiffness of middle support. 

 
As is evident in “Fig. 7”, by increasing the non-

dimensional stiffness of intermediate support from 

K0=240.31, the natural frequency of the beam does not 

exceed ω1=793.24 (Hz), and K0=240.31 is introduced as 

minimum support stiffness for obtaining the maximum 

fundamental frequency of the rotating beam.  

 

 
(a): Mode 1 

 

 
(b): Mode 2 

Fig. 8 The first and second mode shapes of rotating beam 

with intermediate elastic support. 

By applying the geometric properties of the beam as in 

Table 1 and angular velocity of Ω=314.15 (rad/s) =3000 

(rpm) and K0=240.31 for minimum non-dimensional 

stiffness, frequency analysis is carried out by software 

and ω1=793.24 (Hz) and ω2=1904.9 (Hz) are achieved 

for the first and second natural frequencies of the 

rotating beam with elastic support. “Figs. 8a and 8bˮ  

represent first and second mode shapes of rotating beam 

with intermediate elastic support. 

The results in “Table 3ˮ  show that ω 1 = ω2
0 that proves 

the Courant’s maximum–minimum theorem using 

finite-element software analysis. In this table, parameter 

b determines the optimum point for placing intermediate 

elastic support which by placing the support at that 

location, the unrestrained beam frequency ω0 increases 

by ω. In fact, by adding elastic support with minimum 

stiffness at the optimum position based on Courant’s 

maximum–minimum theorem, the fundamental 

frequency of rotating beam can be increased 

significantly. 

 
Table 3 Frequency improvement by optimum location of 

intermediate support 

Vibratio

n mode 
ω0 b ω 

Frequency 

increasing 

mode st1 154.01 0.78 793.24 415.0% 

mode nd2 
795.82 0.49 1904.9 139.4% 

795.82 0.86 1904.9 139.4% 

4 A PRACTICAL EXAMPLE, THE MINIMUM 

DIAMETER OF DAMPING WIRE IN TURBINE 

BLADES 

One of the main reasons of failure in turbomachine 

blades, especially in low-pressure regions, dynamic 

fatigue is due to applied vibrational stresses in a way that 

values of these stresses, particularly in resonance 

condition which occurs during operation and turning off 

the turbine, are significantly higher than static stresses. 

Thus, it is attempted to take fundamental frequencies of 

blades far away from frequencies of different excitation 

sources in turbomachines. Since using blades with large 

geometric properties can increase productions costs as 

well as raising the inertia, one of the ways for improving 

fundamental frequencies is using a damping wire 

passing through a certain point in all blades. Figure 9 

shows the damping wire in blades of the low-pressure 

zone of a steam power plant.  

The use of a damping wire, as an engineering method, is 

recommended to improve the vibrational behaviour of 

the rotating blades in turbines. Damping wire is a mostly 

high-strength metal wire that passes through the blades 

of a turbine and connects the two adjacent blades at a 

certain point. 
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Fig. 9 Damping wire in blades. 

 
Researchers have made a significant effort in modal 

analysis of turbine blade to estimate the critical 

operation conditions of turbine blades and prevent them 

from failure. In most attempts made in this field, blades 

are modelled as a beam, and only blade’s vibrational 

frequencies are obtained in free mode.  

 

 

(a) 

 
(b) 

Fig. 10 Simplified form of the blades and damping wires 

passing through them. 

 

If we consider damping wire between each pair of blades 

as a spring, we can assume that a row of the blades and 

damping wires passing through them have a simplified 

form shown in “Fig 10aˮ . If we consider one of the 

blades individually, as depicted in “Fig. 10bˮ , in the 

vibrational analysis of this blade, we are dealing with a 

rotating beam with intermediate elastic support. 

In this blade, the optimum point for passing damping 

wire is the optimal position for placing intermediate 

support which is obtained by Courant’s maximum–

minimum theorem, and the minimum damping wire 

diameter is derived from minimum stiffness of 

intermediate elastic support using following relations: 

 

keq = 2k = Kw (3) 

 

Kw = K0

EI

L3
 (4) 

 

k =
EwA

Lw

=
Ew (

πds
2

4
)

Lw

 
(5) 

 

ds = √
2KwLw

πEw

 (6) 

 

For instance, if the studied beam with properties given 

in “Table 1ˮ  is considered as a rotating blade of a 

turbomachine, by assuming damping wire length of 

Lw=5 (cm), the minimum damping wire diameter is 

extracted from Equation (5) which is equal to ds=24.4 

(mm). 

5 RESULTS AND DISCUSSION 

As stated in Section 2.1 and the results presented in 

“Table 2ˮ , the determination of the optimal position of 

the intermediate support of the non-rotating beam, by 

finite element software analysis, confirms the Courant’s 

maximum–minimum theorem and is fully consistent 

with the results of the analysis presented by Akesson and 

Olhoff [3]. 

This study shows that the results obtained from the finite 

element software analysis, regarding the minimum 

dimensionless stiffness K0  of the intermediate elastic 

support for the non-rotating beam, are very close to the 

results obtained from the analytical solution performed 

by Akesson and Olhoff [3] and Wang et al. [6]. The 

results of this comparison are given in “Table 4ˮ . The 

correctness of software analysis results is verified by 

comparing the software analysis results with results 

proposed by Akesson and Olhoff [3] and Wang et al. [6].  
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Table 4 Comparison of results of studies on Dimensionless 

minimum stiffness 

Dimensionless 

minimum 

stiffness 

This study 

result  

Ref.[3] 

result  

Ref.[6] 

result 

𝐾0 266.76 266.9 266.87 

 

The results show that the differences between non-

dimensionless minimum stiffness 𝐾0 obtained from 

software analysis and one suggested by Akesson and 

Olhoff [3] and Wang et al. [6] are 0.05% and 0.04%, 

respectively.  

The results obtained from finite element software 

analysis, regarding the optimal position of the 

intermediate support show that the Courant theory is 

quite valid for a rotating beam. The results of this study 

also show that, as Akesson and Olhoff [3] have 

previously stated, there is a certain value for minimum 

dimensionless stiffness 𝐾0 of the intermediate elastic 

support of the rotating beam that can lead to the 

maximum fundamental frequency.  

Determining the minimum diameter of the damping wire 

of rotating blade can be a very good practical example 

of using an elastic intermediate support mounted on a 

rotating beam. The optimal position of the intermediate 

elastic support actually determines the optimal position 

of the damping wire on the blade, which increases the 

fundamental frequency of the blade and reduces the risk 

of resonance. Also, the minimum stiffness of the 

intermediate elastic support can lead to determining the 

minimum diameter of the damping wire, which is a good 

criterion for machine design and pave the way for further 

studies in this field. 

6 CONCLUSION 

In the present study, for the first time, Courant’s 

maximum–minimum theorem has been used as a proven 

theory to increase the fundamental frequency of a non-

rotating beam to improve the fundamental frequency of 

a rotating console beam. In this paper, the fundamental 

frequency increase of a rotating beam is investigated by 

placing an intermediate elastic abutment with the 

minimum stiffness in the desired position based on the 

Courant’s maximum–minimum theorem using finite 

element analysis. The main conclusions of this study are 

presented as follows:   

- The results of finite element software analysis, 

regarding the optimal position of the intermediate 

support are fully consistent with the results of the 

analytical solution for non-rotating beams. 

- The minimum dimensionless stiffness obtained 

through finite element software analysis for non-rotating 

beam is very close to the results of the analytical 

solution. 

- This research concludes that the Courant’s maximum–

minimum theorem for rotating beams is also quite valid. 

- According to the results of this study, the use of 

Courant’s maximum–minimum theorem to improve the 

fundamental frequency of a rotating beam with the 

approach of Timoshenko beam (slenderness ratio 

L/R=20) is valid. 

- The method followed in this research can be a suitable 

model for designing and calculating the minimum 

diameter and optimal position of the damping wire of 

rotating blades in turbomachines. 
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