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Abstract: Due to the increasing application of Functionally Graded Materials (FGM) 
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DYNA software is used in the simulation method. In analytical solution, vibration of 
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technique is used to develop the analytical solution of composite shell. The solution for 
the shell under the giving loading condition can be found using the convolution integral. 
Material properties are assumed to be graded in the thickness direction according to 
Reddy function. A FGM cylindrical shell is made up of a mixture of ceramic and metal. 
Results show that the effect of explosion is such that it has the greatest effect on the 
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Keywords: Cylindrical Shell, Dynamic Loading, Explosion, FGM Shell  

Biographical notes: Reza Azarafza received his Ph.D. in Mechanical Engineering 
from K. N. Toosi University of Technology (KNTU), Tehran, in 2005. His current 
research focuses on composite structures and Vibrations analysis. Pooya Pirali received 
his Ph.D. in Mechanical Engineering from Tarbiat Modares University in 2010. His 
current research focuses on plates and shell analysis. Ali Javadi received his M.Sc. in 
Mechanical Engineering from Malek Ashtar University of Technology in 2017, Tehran, 
Iran. His current research focuses on composite structures. 

https://creativecommons.org/licenses/by/4.0/
mailto:azarmut@mut.ac.ir


 Int.  J.   Advanced Design and Manufacturing Technology             66 

  

 

1 INTRODUCTION 

Functionally Graded Material (FGM) was first used as 

a thermal insulation in 1984 in a spacecraft project. Of 

course, before FGM, multilayer composites were used, 

but thermal stresses in these materials caused the 

delamination while this problem has been solved in 

FGM. FGMs are composite materials which are 

nonhomogeneous in microstructures, that mechanical 

properties change smoothly and continuously from one 

surface to another of the body. The most common type 

is a continuous combination of ceramic and metal. 

These materials are obtained by mixing metal and 

ceramic powder. The change of metal and ceramic 

from one surface to another is quite continuous, so that 

one surface is made of pure ceramic and the other 

surface is made of pure metal. Between the two levels 

is a continuous combination of both. In fact, the 

hardness of the metal and the high thermal resistance of 

the ceramic make it a widely used composite. One of 

the most widely used types of FGM is cylindrical 

shells. These shells, reinforced with beam-type 

elements, are widely used in mechanical structures such 

as missiles, submarines, rotary dryers, and aircraft fuel 

tanks. In most of these cases, the shell is under the 

dynamics and impact load due to the explosion, so it is 

necessary to study the behaviour of these structures 

under the explosion load [1].  

Many works have been on the vibration and behaviour 

of cylindrical shells under dynamic and explosion load. 

Nosier performed a nonlinear analysis of a composite 

cylindrical shell. He used von Carmen nonlinear 

relations for strain-displacement relations and obtained 

the equilibrium Equations with the principle of 

minimum potential energy and first-order theory. jafari 

et al. [2] investigated the dynamic response of a 

composite cylindrical shell under radial impulse 

loading. They used two methods of numerical 

simulation and theoretical analysis. In this analysis, the 

first-order shear theory is used for equilibrium 

Equations and then, the Equations have been solved by 

Galerkin method. Dashtian et al. [3] investigated the 

fracture of grooved cylinders due to explosive loading 

caused by the explosion of the charge of HE. They 

numerically simulated the fracture time, fracture radius, 

fragmentation velocity, etc. using the explicit and 

nonlinear LS-Dina code. Azarafza et al. [4] 

investigated the response of a layered composite 

cylindrical shell under axial loading and lateral 

transient loading and obtained the effect of fiber angle, 

amount of load applied, internal pressure and some 

geometric parameters effecting on the shell response. 

Shukla et al. [5] performed their experiments on 

functional core composites. In this study, two types of 

cores with the same densities have been subjected to 

shock wave loading. Finally, the shock wave energy 

and the deformation energy of the sample were 

obtained based on the shock wave pressure profile and 

high-velocity deflection images. Haus et al. [6] 

investigated the explosion of functional material plates 

consisting of a metal-ceramic phase with a simple two-

end support. In this research, the classical theory of 

plates is considered by considering the dynamic effects, 

damping effect and heat effects, and finally a dynamic 

and a static analysis based on the methods of Glerkin 

and Rang Kota have been presented. Aksoylar [7] 

performed nonlinear analysis of FGM and FML plates 

under explosive loading. In this research, the effect of 

volume fraction, load value and impulse function on 

the time response of the plate has been investigated.  

Kashani et al. [8] performed numerical analysis of the 

effect of the explosion of a cylindrical charge on armor 

made of functional material. In this research, Autodyne 

hydro code is used to simulate the explosion. Also, 

Kashani et al. [9] investigated the behaviour of the 

sic/steel functionally graded plate under the effect of 

the explosion of a cylindrical charge. In this study, 

Autodyne hydro code was used to simulate the 

explosion process and generate an explosion and shock 

wave. In order to achieve maximum efficiency based 

on the homogeneous bounded discrete layers method 

[10], they have made the plate consisting of eight 

separate layers, the initial and final layers of which are 

made of different material and the middle six layers are 

a combination of the two materials with different 

proportions. Darani et al. [11] simulated the explosion 

in cylindrical tanks using the JWL Equation. In order to 

model the behaviour of the cylinder material, they used 

the Johnson-Cook plasticity and fracture model. Also, 

the effect of explosive type, material and thickness of 

the cylinder on the fragmentation process of the 

cylinder and the velocity of the resulting fragments 

have been investigated and the simulation results have 

been compared with the experimental results.  

In the past studies, little research has been done on the 

transient dynamic response of cylindrical shells of 

functionally graded materials based on the theory of 

first-order shear deformation under explosive impulse 

load inside the cylinder. So in this paper, the dynamic 

response of functionally graded materials cylindrical 

shells under explosive load have been done by 

analytical (based on the first-order deformation shell 

theory) and simulation method and the effect of 

different parameters on the dynamic response is 

investigated. The Boundary condition is simply 

supported (SS). Displacement components are the 

product of function of position and time. The function 

of position components of displacement was obtained 

in the form double Fourier series including of a modal 

beam functions in the axial direction and trigonometric 

functions in the tangential direction. In the analysis of 

transient dynamic response, the impulse load in the 
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form of  triangular pulse was used to apply the dynamic 

charge of the explosion and the Jones-Wilkins-Lee 
(JWL) relationship was used to calculate the maximum 

pressure. The dynamic load of the explosion is applied 

as a function of time at the inner surface of the shell 

and function of time is obtained using the results of free 

vibration analysis and convolution integral. Then, the 

time response of the displacement components is 

derived using mode superposition method. To solve the 

governing Equations, a code was written using 

MATLAB software. Also, a simulation of shell with 

LS-DYNA software has been done. Since the FGM 

material model has not been defined in many explosion 

simulation software, the discrete layer theory was used 

in some part of the simulation. According to the results 

of this research and other studies, this assumption is 

acceptable and has enough accuracy and is currently 

one of the most reliable methods for simulating FGM 

materials. For the validation, the results of the 

analytical method (present) are compared with the 

simulation results and the reference results. Finally, the 

time response of displacements, stresses and dynamic 

velocities is derived. The effect of volume fractions, 

geometric parameters (such as thickness, radius, and 

length) on the radial displacement of the middle layer is 

investigated. Results show that the effect of  explosion 

is such that it has the greatest effect on the inner layer 

and with increasing thickness to the outside of the shell 

this effect decreases and when the maximum deflection 

occurs, the dynamic velocity is zero. Also it was 

observed that with increasing length, the radial 

deflection increases due to increasing the distance from 

the support to the center of the shell. 

2 GOVERNING EQUATIONS 

Figure 1 shows a cylindrical shell with mean radius R, 

length L and thickness h. 

 

 
Fig. 1 Cylindrical shell and reference coordinates [2]. 

 

u, v and w are the displacement components in the 

axial (x), tangential ( ) and radial (z) direction 

respectively, and x ,the slopes in the plane are   

 x z and x z , respectively. According to the first-

order shear deformation theory, equilibrium Equations 

are [2], [4]: 
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In the above relations,
1I , 

2I  and 
3I  are defined as 

follows: 
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 is density for each layer. The constitutive 

Equations of the FGM shells based on classical 

laminate theory are as follows: 
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Where A, B, D and H are the extensional, coupling, 

bending and thickness shear stiffness matrices, 

respectively, and are as follows: 
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Where, 𝑘0 is the shear correction factor introduced by 

k
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Mindlin and is equal to 
2

12


 [4]. 

ijQ  is the transformed 

reduced stiffness matrix [4]. The components of the 

strain field are defined as the first linear functions of 

the thickness coordinate according to the first 

approximation Love’s theory] as follows [4]: 
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Where, x  and   are the strains in the axial and 

tangential directions, respectively, and x , xz  and 

z are the shear strains in the distance z from the 
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0

x , 
0

 , 
0

x , 
0

xz  and 
0

z  are 

the middle surface strains and 
0

xk , 
0k  and 

0

xk   are the 

curvatures and twist of the middle surface which are 

defined as follows: 
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3 SOLUTION METHOD  

3.1. Boundary Conditions 

The boundary conditions for the cylindrical shell which 

is simply supported along its curve edges at x = 0 and x 

= L are considered as: 
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3.2. Free Vibration   
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Equilibrium Equations )1(, the relations are 

summarized as follows: 
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ijL are differential operators and are shown in 

Appendix A. In order to satisfy the boundary 

conditions, u, v, w, x  and   are defined as the 

following double Fourier series: 
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, , ,mn mn mn mnA B C D  and  mnE are constant coefficients 

of the natural mode associated with the free vibration 

problems, m is the axial half wav number and n is the 

circumferential wave number and ( )mnT t is the time 

function of displacement and slop. To solve the free 

vibration analysis, function of time is treated as 

( ) mni t

mnT t e


 , where mn  is the natural frequency.  

By substituting the relations of the displacement 

components 10 in relation 9 and by sorting, the 

following relation is obtained: 
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That components of ijC  are shown in the appendix B. 

By setting determinant of coefficients equal to zero, the 

characteristic frequency Equation is obtained. 
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Where, i  are constant coefficients. By solving this 

Equation )12(, the natural frequencies are obtained and 

by substituting these frequencies in Equation )11(, the 

constant coefficients of mode shape of the modes are 

obtained. 

3.3. Dynamic Response Analysis Under Impulse 

Load  

The applied load is assumed to be only in the radial 

direction and there is no external excitation in the other 

directions. For the simple support, results are obtained 

as follows [12]: 
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result: 
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Which the maximum explosion pressure obtained from 

the JWL Equation [13] is in the above relation is. 
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Where, P is the pressure, A, B, 1R , 2R , and   are 

constants of the explosive, 0 , is the density of the 

explosive,   is the density of the explosive products 

and mE , internal energy is an explosive per unit mas 

given in the “Table 1”. 

 
Table 1 Constants of JWL Equation [13] 
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By substituting the assumed displacement of Equation 

(10) in Equilibrium Equations (1) and using the results 

of free vibrations, the following Equations are 

obtained: 
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After summation of two sides of the above Equations 

and simplifying a second-order differential Equation in 

terms of time, the result is as follows: 

 

(17) 2( ) ( ) ( )mn mn mn mnT t w T t G t   

 

Where, ( )mnG t  is the generalized force and is: 
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The 
mnJ  is the normalized mass and is obtained as 

follows: 
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By substituting Equations (18) and (13) in Equation 

(17) and some simplification, the following relation is 

obtained: 

 

(20) 2 ( ) ( ) ( )
( ) ( ) mn mn

mn mn mn

mn
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T t T t
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Where, mnN  is equal to: 

 

(21) 
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Using the Laplace transform, the solution of Equation 

20 for the zero initial conditions is as follows: 
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Finally, the time response of the FGM cylindrical shell 

with simply supported boundary conditions under the 

impulse of the blast load based on mode superposition 

theory is obtained as follows: 
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It should to be noted that the mode shape coefficients (

, , ,mn mn mn mnA B C D  and 
mnE ) are calculated by the 

use of Equation (14) together with the property of 

mode shape orthogonality with response to mass 

matrix. As shown in Equations (23), the shell 

displacement response consists of function of position 

and time. The position function of the response is the 

mode shape (derived from free vibrations) and its time 

function is the convolution integral, which must be 

calculated according to the type of pulse. The triangular 

pulse shown in “Fig. 2”. The convolutional integral for 

this pulse is calculated as follows: 

 

 
Fig. 2 Triangular pulse diagram used as an explosive 

pulse [2]. 
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The above relationship 0f  is the maximum pressure 

that is applied. Now, with determined time function, 

mnP shapes and normalized mode mn  ، mnJ  ،

dynamic displacements 
mnE  and , , ,mn mn mn mnA B C D

can be obtained and strains can be found through them 

and then, stresses can be obtained through strains. To 

obtain the numerical result, a computer code was 

written.   

4 RESULTS AND DISSCUSIONS 

In order to ensure the accuracy of the obtained results, 

the time response (maximum radial displacement) of 

the present method was compared with Ref. [2] in “Fig. 

3”. “Table 2” shows the geometric properties of 

composite. It can be seen that good agreement is 

obtained between the results. 

 

 
Fig. 3 Comparison of the central deflection of simply 

supported composite cylindrical shell with Ref.[2]. 

 
Table 2 Geometrical properties of composite 

n m 
Thickness 

(cm) 
Length (cm) 

Radius 

(cm) 

35 27 0.12 20 20 
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The percentage error of the two methods is shown in 

“Table 3”. As can be seen, the maximum deflection 

occurs at about the same time and the percentage error 

is about 1.11%. 

 
Table 3 Maximum deflection and its occurrence time for the 

present study and Ref. [2] 

Max. Deflection 

time ( )s  
Max. Deflection 

(cm) 
 

707 0.0718 Ref. [2] 

694 0.071 Present Study 

1.11 Error (%) 

 

So to confirm the results, a simulation with LS-DYNA 

software was performed and then the results were compared 

for an FGM cylindrical shell. “Tables 4 and 5” show the 

geometric and mechanical properties of FGM cylindrical 

shell, respectively. 

 

Table 4 Dimensions of the shell 

Radius (cm)  Length (cm) Thickness (cm) 

40 80 1  

 
Table 5 Mechanical Properties of FGM shell [9]. 

Al Sic Material rpoperties 

2.78 3.16 Density 
3( / )gr cm  

0.731 4.23 Young’s Modulus (Mbar) 

1.83 0.28 Tangential Shear Modulus (Mbar) 

0.31 0.16 Poisson’s Ratio 

Figure 4 shows the time response of analytical method 

and simulation with LS-DYNA. These results have 

good agreements with LS-DYNA.  

 

 
Fig. 4 Time response of the middle surface of the 

simulation and analytical method. 

 

Figure 5 shows the deflection of middle surface in the 

longitudinal direction. As can be seen, the maximum 

radial rise occurs in the middle of the shell (x = 40) and 

the zero at the supports (x = 0, x = 80). The maximum 

values for analysis and simulation are given in “Table 

6”. “Table 6” shows that the maximum radial 

deflection and the time of its occurrence in both 

methods have good agreement and have a difference of 

8.2%. Finally, according to the longitudinal diagram 

and also the comparisons between two methods, the 

accuracy of the results can be ensured. 

 

 
Fig. 5 Time response of shell length for the middle layer. 

 

Table 6 Maximum radial deflection and time of its 

occurrence 

Numerical 

Method 

Analytical 

Method 
Solving Method 

0.9684 0.8892 Deflection (w) )cm( 

201.953 199.574 Time (s) 

8.2 Discrepancy (%) 

4.1. Displacements 

In the following, all diagrams are drawn for the 

geometric properties of “Table 4” and the mechanical 

properties of “Table 5”. In all cases, the volume 

fraction of zero indicates a complete ceramic and a 

volume fraction of 1 complete metal. The explosive is 

TNT with a mass of 4 kilograms, which is placed right 

in the center of the shell. Analysis time is 700 s . 

Figure 6 shows the effect of volume fraction on the 

time response of displacement and slop for center point 

of FGM cylindrical shell over time. Results show that 

the displacement of the circumferential and 

Longitudinal, 𝛽𝑥 and 𝛽𝑦 increased with decreasing of 

volume fraction. So that the minimum deflection and 

slope occurs at the highest volume fraction. Thus, with 

two, three and five times the volume fraction, the 

deflection of circumferential, Longitudinal, slop of 𝛽𝑥 

and 𝛽𝑦  decrease to 4.41%, 8.6% and 16%, 

respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 6 Time response of center point of FGM cylindrical 

shell under different volume fraction: (a): tangential 

displacement, (b): longitudinal displacement, (c): slop 𝛽𝑥, and 

(d): slop 𝛽𝑦. 

 

Figure 7 shows the effect of volume fraction on the 

displacement of the circumferential and longitudinal, 

𝛽𝑥 and 𝛽𝑦 along with the length of shell for center point 

of FGM cylindrical shell. As can be seen, displacement 

and slope decreased with increasing of volume fraction. 

In “Figs. 7a and 7c”, in the middle of the length of the 

cylinder (x=40), the displacement and slop are zero and 

the maximum displacement and slop occurs at both 

ends of the shell. Also, in “Figs. 7b and 7d”, in the 

middle of the length of the shell (x=40), the 

displacement and slop are maximum and at both ends 

of the shell are zero.    

 

 
(a) 



73                                  Reza Azarafza et al. 

  

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Effect of volume fraction on the center point of 

FGM cylindrical shell: (a): tangential displacement, (b): 

longitudinal displacement, (c): slop 𝛽𝑥, and (d): slop 𝛽𝑦. 

4.2. Strains 

Figure 8 shows the variation of time response of center 

point of cylindrical shell with volume fraction. It is 

observed that in all cases, the lowest strain occurs at the 

highest volume fraction. As the volume fraction 

increases, the shell strength increases, so less deflection 

occurs and consequently less strain occurs. 

 

 
 

(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 8 Variation of time response of center point of 

cylindrical shell with volume fraction: (a): 𝜀𝑥, (b): 𝜀𝑦, 

(c): 𝛾𝑥𝑧, and (d): 𝛾𝑦𝑧. 

 

4.3. Dynamic Velocity in Radial Direction 
Figure 9 shows the effect of volume fraction on the 

dynamic velocity in radial directions for center point of 

FGM cylindrical shell.  
 

 
(a) 

 
(b) 

Fig. 9 Effect of volume fraction on the dynamic velocity 

in radial directions for center point of FGM cylindrical shell. 

 

It can be seen that with decreasing volume fraction, the 

maximum dynamic velocity increases. According to the 

“Fig. 9b”, maximum dynamic velocity occurs in the 

middle of the shell, because the middle of the shell is 

the farthest distance from the supports. 

4.4. The Effect of Geometric Parameters and Mass 

of The Explosive on The Radial Displacement of 

The Middle Layer 
“Table 7” shows the effect of increasing the shell 

thickness on the maximum deflection. 

 
Table 7 Effect of increasing the t/R of the shell on the 

deflection of the shell 

Longitudinal 

direction (cm) 

Time 

(s) 

Max. 

Radial 

Deflection 

(cm) 

t/R 

40 199.574 1.771 0.0125 

40 199.574 0.8893 0.025 

40 199.574 0.5934 0.0375 

40 199.574 0.4385 0.05 

40 199.574 0.3795 0.0625 

40 199.574 0.3011 0.0725 

40 199.574 0.2560 0.0875 

40 199.574 0.2273 0.1 

 

Results show that with increasing t/R, the maximum 

radial deflection decreases, so that by increasing the 

shell thickness as twice, it deflection is about halved. 

“Table 8” shows the effect of increasing the L/R on 

radial deflection. 

 
Table 8 Maximum radial deflection for different shell lengths 

Max. Radial Deflection 

(cm) 
L/R  Shell Length (cm) 

0.8893 2 80 

1.773 4 160 

 

As can be seen, with increasing the L/R, the radial 

deflection increases so that by doubling, this ratio has 

almost doubled. “Table 9” shows the effect of 

increasing the mass of explosives on radial deflection. 
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Table 9 Maximum radial deflection for different TNT masses 

7 6 5 4 3 2 1 TNT 

mass 

(kg) 

2.3

2 

1.8

1 

1.3

2 

0.8

9 

0.53 0.2

6 

0.0

7 

Max. 

Radial 

Deflecti

on (cm) 

 

The results show that with increasing mass of 

explosives, the radial deflection increases. By 

multiplying the mass of the explosive by 7 times, the 

maximum deflection increases by 33 times. 

5 CONCLUSIONS 

In the present study, the transient dynamic response of 

FGM cylindrical shells under explosive load has been 

investigated based on the first-order shear deformation 

theory. The Boundary condition is simply supported 

(SS). Displacement components are the product of 

function of position and time. The function of position 

components of displacement was obtained in the form 

of double Fourier series including a modal beam 

functions in the axial direction and trigonometric 

functions in the tangential direction. In the analysis of 

transient dynamic response, the impulse load in the 

form of  triangular pulse was used to apply the dynamic 

charge of the explosion and the Jones-Wilkins-Lee 

(JWL) relationship was used to calculate the maximum 

pressure. Also, a simulation of shell with LS-DYNA 

software has been done. Finally, the effect of volume 

fractions on the time response of displacements and 

dynamic velocities is derived and the following results 

have been obtained: 

1- The effect of explosion on different volumetric 

fractions of the shell is such that it has the greatest 

effect on the inner layer and with increasing thickness 

to the outside of the shell (increasing the volume 

fraction of metal), this effect decreases. So that in most 

of the volumetric fractions studied, a very small 

difference can be observed between two consecutive 

volume fractions. These results include displacements, 

stresses, and strains. 

2. The dynamic velocity diagram of the middle layer 

has a sinusoidal shape. When the maximum deflection 

occurs, the dynamic velocity is zero, and at the turning 

points of the chart, the dynamic velocity reaches its 

maximum value. 

3- To observe the effect of shell thickness on its 

response, the shell was examined in eight different 

thicknesses. Comparisons show that with increasing 

thickness, the amount of deflection decreases  

4- By examining the effect of changing the length and 

radius of the shell, it was observed that with increasing 

length, the radial deflection increases due to increasing 

the distance from the support to the center of the shell. 

Also, as the radius decreases, the radial deflection 

increases. 

5- As the mass of the explosive increases, its explosive 

pressure increases leading to deflection increases, so 

that by multiplying the mass of the explosive by 7 

times, the maximum has increased by 33 times. 

6- Also in N = 0 (ceramic), there is the lowest 

deflection and with increasing the amount of N 

(increasing the volume fraction of metal), the deflection 

increscent is more. 
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