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1 INTRODUCTION 

The beginning of the twentieth century can be 

considered as the beginning of the widespread use of 

mathematical models and optimization fields. 

Mathematical optimization in engineering refers to 

select the best member from a set of achievable 

members. In the simplest form, an attempt is made to 

obtain the maximum and minimum values of a real 

function by systematically selecting data from an 

achievable set and calculating the value of a real 

function. Optimization consists of several sectors such 

as operational research, artificial intelligence and even 

computer science. It has been used in many different 

fields, such as energy, agriculture, industry, 

management, economy, business etc. which shows the 

importance of the issue of optimization.  

These branches together can help us improve the 

efficiency of industrial systems [1]. Analytical 

optimization methods seek to solve problems accurately. 

Therefore, they include derivation of the objective 

function for finding the optimal solution [2]. The main 

advantage of this type of optimization methods is to 

guarantee the optimal solution, but it is difficult to use 

then for problems with high complexity or large number 

variables or discrete functions [3]. Therefore, the need 

for more efficient optimization methods seems 

necessary. Researches show that nature inspired meta-

heuristic optimization methods have more ability in 

comparison with the classical methods to solve these 

kind of optimization problems [4]. These methods have 

been more widely used in the last two decades due to 

increasing the speed and power of the computers.  They 

can be grouped in five main categories (see “Fig. 1”): 

evolution based, physics based, swarm intelligence 

based, human based and hybrid methods. Holland 

introduces Genetic Algorithm (GA) as one of the first 

meta-heuristic algorithms to solve complicated 

optimization problems [5].  

 

 
Fig. 1 Classification of the meta-heuristic algorithms. 

 

It is a special type of evolutionary algorithms that uses 

some biological techniques such as crossover, mutation 

biology, and Darwin's principles to find the optimal 

solutions. In 1995, Eberhart and Kennedy originally 

proposed the particle swarm optimization algorithm 

inspired by the swarm movement of birds looking for 

food sources [6]. Ant colony algorithm was introduced 

through studies and observations on ant colonies [7]. 

The studies have shown that the ants are social insects 

that live in colonies and their behavior is more colonial 

than individual. This algorithm is generally based on the 

swarm intelligence of ants. In 2014, Mirjalili et al. 

introduced a meta-heuristic algorithm called Gray Wolf 

Optimization (GWO) [8]. Meta-heuristic methods are 
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inspired by the hierarchical structure and social behavior 

of gray wolves while hunting. In 2019, the Harris Hawk 

Optimization (HHO) was presented by Heydari et al. [9] 

Inspired by the participatory behavior and pursuit style 

of the hawk in nature, which is known as surprise attack. 

In this smart strategy, several falcons collaboratively 

work to surprise a prey from different angles. The 

algorithms were some of the outstanding optimization 

approaches, while many other algorithms have been 

introduced in recent years, Such as: artificial  fish swarm 

optimization algorithm [10], cat swarm optimization 

algorithm [11], imperialist  competition optimization 

algorithm [12], magnetic optimization algorithm [13], 

artificial bee colony optimization algorithm [14], firefly 

optimization algorithm [15], bat optimization  algorithm 

[16], lions optimization  algorithm [17], whale 

optimization algorithm [18], dragonfly optimization 

algorithm [19], bacterial foraging  optimization  

algorithm [20] etc. In recent decades, researchers have 

combined meta-heuristic algorithms together to achieve 

new techniques algorithms that have better performance 

and faster convergence speed [21-22]. For instance, Yu 

and Zhu developed a PSO-GA optimal model to predict 

energy demand in China using gross domestic product, 

population, economic structure, urbanization rate, and 

energy structure with linear, exponential and quadratic 

forms [23]. Kiran et al. presented a novel hybrid 

algorithm based on the PSO and ACO for energy 

demand forecasting in Turkey [24]. In another work, 

they also applied two new models in order to estimate 

electricity energy demand in Turkey using Artificial Bee 

Colony (ABC) and PSO algorithms [25]. Further, Yu 

and Zhu proposed a hybrid technique based on the PSO 

and GA to improve energy demand estimation in China 

by applying linear, exponential, and quadratic models 

and considering the GDP, population, economic 

structure, urbanization rate, and energy consumption 

structure [26]. Piltan et al. used the PSO and GA to attain 

the parameters of the energy demand forecasting model 

in Iranian metal industries [27]. 

In the present paper, an attempt is made to combine two 

meta-heuristic algorithms to provide an algorithm that is 

able to improve the solutions of the optimization 

problems. As the novelty of the present study, the firefly 

optimization algorithm and the artificial bee colony are 

the two algorithms discussed in this paper. By 

combining the two algorithms, it can be seen that the 

proposed algorithm has much better performance than 

other optimization algorithms for solving mathematical 

benchmark problems. Next, thermodynamic, economic 

and environmental modeling of a power plant with a 

production capacity of 30𝑀𝑊 and 14 
𝐾𝑔

𝑠⁄  of saturated 

steam at a pressure of 20𝑏𝑎𝑟 known as the CGAM 

problem is discussed. Eventually, the proposed 

optimization algorithm (FA-ABC) is successfully 

employed to reduce the total cost and increase efficiency 

of the system, and the results are depicted in the form of 

Pareto front diagrams.  

2 OPTIMIZATION ALGORITHMS 

2.1. Firefly Algorithm 
The firefly algorithm was initially designed through 

modeling the luminosity of fireflies and their behavior 

in nature by Xin-She Yang in 2008 at the University of 

Cambridge [28]. Most of fireflies produce short and 

rhythmic lights with unique and particular patterns. The 

main task of these lights is attracting for hunting. The 

attractiveness of each firefly is related to the power of its 

light radiation. In fact, for each pair of fireflies, the one 

with less light is attracted to the other having side, which 

has lighter [28]. The motion of firefly Ith to ward firefly 

Jth is simulated via the following Equation. 

  

(1) 

 
𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼𝜖𝑖
𝑡 

Where, 𝑥𝑖  and 𝑥𝑗  denote the position of firefly ith and 

jth, respectively. 𝑡 represents the iteration number. The 

second part of the right-hand side is employed to 

simulate the attractiveness of the fireflies, while the third 

part randomly changes the position to escape from local 

minimum points. Moreover, α is a random coefficient 

and 𝜖𝑖  is a vector of random numbers having Gaussian 

or uniform distributions. For simplicity, ∈𝑖 can be 

replaced by random number with the uniform 

distribution in range of [0, 1]. In the actual 

implementation, attractiveness function 𝛽(𝑟) can be any 

function with the uniform decreasing. For example, the 

following general Equation could be considered for 

computing attractiveness function: 

 

(2) 𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟𝑚(𝑚 ≥ 1)   

  

Where, 𝛽0 is the attractiveness in 𝑟 = 0. For length scale 

Γ in an optimization example, parameter γ can be 

regarded as a typical initial value having the following 

relation. 

  

(3) 𝛾 =
1

𝛤𝑚
  

2.2. Artificial Bee Colony Algorithm 
The artificial bee colony optimization algorithm was 

originally introduced in 2005 by Dervis Karaboga to 

solve unconstrained problems [29]. Based on the 

searching behavior of the bee to find food source, they 

are divided into three parts: scout bee, employed bee and 

onlooker bee [30]. Initially, a set of random solutions 

(𝑃1 , … , 𝑃𝑁𝑒) are generated by the scout bee.  
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 (4) 𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟(𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
) 

Where, 𝑗𝜖{1,2, … , 𝐷} is a dimension-based value, 

𝐷 represents the number of design variables and 

𝑁𝑒  represents the number of the food sources. When the 

scout bees return to the hive, they interact the employed 

bee by performing an especial dance. At this stage, 

depending on the richness of each food source, the 

number of employed bees sent to each source are 

different. Moreover, by applying Equation (5), the 

employed bees try to improve the found solutions. 

 

 (5) 𝑉𝑖
𝑗
= 𝑥𝑖

𝑗
+ 𝜑𝑖

𝑗
(𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
) 

 

Where, 𝑉𝑖𝜖 Ω represents a new solution generated in 

vicinity of existing solution Pi. Further 𝑗𝜖{1,2, … , 𝐷} and 

𝑘𝜖{1,2, … , 𝑁𝑒} are randomly selected, while 𝑘 ≠ 𝑖. 𝜑𝑖  is 

also a real random number between 1 and -1. At this 

stage, according to the richness of each food source 

(solution), the Probability of each source is obtained by 

using the following Equation: 

 

  (6) 
𝑝𝑖 =

𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑁𝑒
𝑛=1

 

 

Which, in this Equation, 𝑓𝑖𝑡𝑖  would be calculated from 

the following Equation: 

 

 

 

  

 (7) 

 

𝑓𝑖𝑡𝑖 =

{
  
 

  
 

1

1 + √∑ 𝑓𝑖
𝑁𝑒
𝑛=1

                       𝑖𝑓 𝑓𝑖 ≥ 0

1 + √|∑ 𝑓𝑖
𝑁𝑒

𝑛=1
|                𝑖𝑓 𝑓𝑖 < 0  

 

 

Where, 𝑓𝑖 is the value of the cost function related to 

bee 𝑖. When the employed bee returned to the hive and 

shared their information with the onlookers, according 

to the suitability of each food source obtained from 

Equation (7), and a probabilistic selection algorithm 

such as the roulette wheel method, one of those sources 

is selected. As the last step, if one of the food sources 

could not be improved after a certain number of cycles, 

the employed bee leaves that food source (answer) and 

randomly replaces it by a new source.  

3 FA-ABC OPTIMIZATION ALGORITHM 

In this section, the proposed optimization algorithm 

based on the firefly algorithm and artificial bee colony 

is discussed, in more details. As it was mentioned in the 

previous sections, in the firefly optimization algorithm, 

the fitness of a firefly depends on the power of its light, 

mathematically formulated by applying Equation (1). 

 
 

Fig. 2 Flowchart of the by FA-ABC algorithm. 
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On the other hand, in the artificial bee colony algorithm, 

after generating the initial solutions by the scout bee, 

share this information with the employed bee. According 

to the richness of resources, the employed bee would be 

sent to food sources in mathematical terms Formulated 

as Equation (5). Based on these distributions, the FA-

ABC optimization algorithm is established in two steps. 

In the first step, if the fitness of the jth firefly is higher 

than that of the ith firefly, the ith firefly is attracted to 

the jth Firefly by applying the formulation that is used to 

send the employed bee to the food sources (Equation 

(5)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Pseudo-code proposed by the algorithm FA-ABC. 

 

In the second one, a mutation operator is used to escape 

the populations from the local minimum points. In fact, 

the mutation operator randomly changes the position of 

a number of the fireflies in the population. This number 

is determined as 𝑃𝑚 × 𝑛𝑃𝑜𝑝, where, 𝑃𝑚 and 𝑛𝑃𝑜𝑝 are 

the probability of the mutation and the population size, 

respectively. This operator guarantees variety of the 

population and reduces the probability of the algorithm 

converging to the local optima. Let 𝑥𝑗 represent a 

randomly selected firefly, then the mutation formulation 

is defined as: 

 

 (8) 𝑥(𝑛𝑒𝑤) = 𝑥(𝑗) + 𝜎 × 𝑟𝑎𝑛𝑑𝑛 

 

Where, 𝜎 is determined as 
(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

10
, 𝑥𝑚𝑎𝑥  and 

𝑥𝑚𝑖𝑛  are respectively the upper and lower bounds of the 

related domain and randn produces a random number 

with normal distribution. Figures 2 and 3 show the 

flowchart and the pseudo-code of the proposed 

algorithm, respectively. 

4 COMPARISONS ON MATHEMATICAL TEST 

FUNCTIONS 

In order to evaluate the accuracy and convergence speed 

of the proposed algorithm, several test functions with 

different properties illustrated in “Table 1” are used. 

Initially, the performance of the proposed algorithm in 

term of the accuracy of the solutions, is evaluated 

through comparison method, with the Particle Swarm 

Optimization (PSO), Firefly Algorithm (FA), Artificial 

Bee Colony (ABC), Imperialist Competition Algorithm 

(ICA) and Ant Colony Optimization (ACO), is 

evaluated. This evaluation is performed for the five 

algorithms under exactly the same conditions on the 

population size 25, maximum number of iterations 

10000, and problem dimensions 10, 20 and 30. “Table 

2” shows the results in terms of mean and standard 

deviation for 100 runs performed on the unimodal and 

multimodal functions.  
 

 

Table 1 Description of the unimodal, multimodal and fixed-dimension multimodal benchmark functions 

Function Formulation Domain fmin 

F1 
∑𝑋𝑖

2

𝑛

𝑖=1

 
[−100, 100] 𝑛 0 

F2 
∑𝑖𝑋𝑖

2

𝑛

𝑖=1

 
[−100, 100] 𝑛 0 

F3 
∑|𝑋𝑖|

𝑛

𝑖=1

+ ∏|𝑋𝑖|

𝑛

𝑖=1

 
[−10, 10] 𝑛 0 

F4 
∑|𝑋𝑖𝑠𝑖𝑛(𝑋𝑖) + 0.1𝑋𝑖|

𝑛

𝑖=1

 
[0, 10] 𝑛 0 

F5 

∑[100(𝑋𝑖+1 − 𝑋𝑖
2)
2
+ (𝑋𝑖 − 1)

2]

𝑛−1

𝑖=1

 

[−10, 10] 𝑛 0 

Define the objective function, design variables and algorithm 

parameters 

Starting the population of fireflies xi (i =1,2,…,n ) 
While (it < Maximum iterations) 

Starting the population of mutation xk (k = 1,2,…,k) 

For k=1 to number of mutants 
Mutation operation by Eq. 8 

End For k 

For i = 1 to all n fireflies 
For j = 1 to all n fireflies 

f (xi) is used to ascertain the light intensity Ii at xi 

If ( Ij  > Ii ) 
The firefly approaches firefly in all dimensions by Eq. 5 

End If 

Attractiveness fluctuates within the distance r by exp [-𝛾𝑟] 
Assess new solution and update the intensity of the light 

End For j 

End For i 

Devoting ranks to fireflies and obtaining the current best 

End while 

Analyzing the results and visualization 
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F6 
∑([𝑋𝑖 − 0.5])

2

𝑛

𝑖=1

 
[−100, 100] 𝑛 0 

F7 
∑𝑖𝑋𝑖

4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1] 
[−1.28, 1.28] 𝑛 0 

F8 
∑ [𝑋𝑖

2 − 10𝐶𝑂𝑆(2𝜋𝑋𝑖) + 10]
𝑛−1

𝑖=1
 

[−5.12, 5.12] 𝑛 0 

F9 

−20𝑒𝑥𝑝(−0.2√
1

𝑛
∑𝑋𝑖

2

𝑛

𝑖=1

) − 𝑒𝑥𝑝 (
1

𝑛
∑𝑐𝑜𝑠(2𝜋𝑋𝑖)

𝑛

𝑖=1

) + 20 + 𝑒𝑥𝑝 

[−32, 32] 𝑛 0 

F10 

(
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑗=1

25

𝑗=1
)

−1

 

[−65, 65] 𝑛 1 

F11 
4𝑋1

2 − 2.1𝑋1
4 +

1

3
𝑋1
6 + 𝑋1𝑋2 − 4𝑋2

2 + 4𝑋2
4 

[−5, 5] 𝑛 −1 

.0316 

F12 
(𝑋2 −

5.1

4𝜋2
𝑋1
2 +

5

𝜋
𝑋1 − 6)

2

+ 10(1 −
1

8𝜋
) 𝑐𝑜𝑠𝑋1 + 10 

[−5,5] 𝑛 0.389 

F13 [1 + (𝑋1 + 𝑋2 + 1)
2(19 − 14𝑋1 + 3𝑋1

2 − 14𝑋2 + 6𝑋1𝑋2 + 3𝑋2
2)]

× [30 + (2𝑋1 − 3𝑋2)
2

× (18 − 32𝑋1 + 12𝑋1
2 + 48𝑋2 − 36𝑋1𝑋2 + 27𝑋2

2)] 

[−2, 2] 𝑛 3 

F14 
−∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑋𝑗 − 𝑝𝑖𝑗)

26

𝑗=1
)

4

𝑖=1
 

[0, 1] 𝑛 -3.32 

F15 
−∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

5

𝑖=1
 

[0, 10] 𝑛 -

10.153

2 

F16 
−∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

7

𝑖=1
 

[0, 10] 𝑛 -

10.153

2 

 

Table 2 Comparison of mean and standard deviation of the results related to the unimodal and multimodal test function found by 

the five optimization algorithms 

FA-ABC ACO [7] ICA [12] ABC [14] FA [15] PSO [6]  

Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean D  

0 0 0 0 4.5e-

37 

1.1e-

37 

0 1.3e-

277 

0 1.3e-

177 

0 0 10  

F1 

0 0 0 3.8e-

175 

9.0e-

31 

2.3e-

31 

8.4e-

67 

8.4e-

68 

0 4.8e-

177 

0 5.5e-

268 

20 

0 1.6e-

220 

1.3e-

55 

4.1e-

56 

3.2e-

27 

7.4e-

28 

1.1e-

04 

3.1e-

05 

7e-

145 

7.2e-

146 

3.8e-

59 

5.7e-

160 

30 

0 0 0 0 1.8e-

38 

4.6e-

39 

0 1.6e-

280 

0 9.8e-

180 

0 0 10  

F2 

0 0 0 1.6e-

176 

5.9e-

33 

2.3e-

33 

0 5.6e-

207 

0 1.6e-

178 

0 1.1e-

269 

20 

0 6.4e-

258 

2.9e-

57 

1.1e-

57 

1.5e-

29 

6.4e-

30 

3.6e-

103 

3.6e-

104 

6.4e-

45 

6.4e-

46 

1e-

156 

1.1e-

157 

30 

0 0 0 0 2.5e-

20 

1.1e-

20 

0 1.2e-

221 

9.2e-

90 

9.2e-

91 

0 1.5e-

245 

10  

F3 

0 0 1.9e-

110 

4.2e-

111 

2.5e-

17 

1.3e-

17 

5.2e-

109 

5.2e-

110 

3.3e-

89 

3.3e-

90 

2.9e-

105 

2.9e-

106 

20 

0 8.7e-

170 

9.2e-

37 

2.4e-

37 

7.9e-

16 

5.4e-

16 

9.8e-

73 

9.8e-

74 

8.6e-

57 

8.6e-

58 

7.4e-

46 

7.4e-

47 

30 

0 0 0 0 3.2e-

15 

4.94e-

15 

0 0 1.4e-

15 

1.3e-

15 

2.4e-

15 

7.7e-

15 

10  

F4 

0 0 6.1e-

17 

6.1e-

18 

4.7e-

15 

1.19e-

14 

0.043

65 

0.054

11 

3.3e-

15 

5.1e-

15 

1.1e-

10 

1.1e-

11 

20 
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0 0 0.010

5 

0.005

36 

5.5e-

15 

1.6e-

14 

0.145

41 

0.413

90 

3.7e-

07 

3.7e-

08 

3.8e-

10 

4.7e-

11 

30 

0.29

8 

0.092

6 

0.264

7 

0.037

51 

1.08

94 

0.586

8 

0.118

9 

0.239

3 

1.995

6 

1.192

0 

1.430

2 

0.599

0 

10  

F5 

0.03

9 

0.006

5 

0.687

3 

0.255

61 

2.51

73 

2.078

9 

0.976

3 

1.826

9 

2.218

7 

1.237

0 

1.804

8 

1.117

1 

20 

1.24

7 

0.470

5 

21.53

55 

20.31

92 

9.67

28 

3.598

3 

3.305

7 

6.986

3 

16.83

6 

2.904

3 

3.126

7 

4.320

0 

30 

0 0 0 0 0 0 0 0 0.297 0.05 0 0 10  

F6 0 0 0 0 0 0 0.494

3 

0.41 1.391 0.94 0.795 0.21 20 

0 0 0 0 0 0 1.534 3.36 6.963 3.97 6.607 3.61 30 

2.7e-

05 

3.8e-

05 

9.6e-

05 

1.8e-

04 

6.9e-

04 

0.001

1 

0.007

4 

0.020

9 

1.7e-

05 

2.6e-

05 

4.1e-

04 

4.2e-

04 

10  

F7 

8.5e-

04 

4.8e-

04 

6.1e-

04 

0.001

6 

0.00

17 

0.004

3 

0.036

5 

0.152

4 

4.3e-

04 

3.2e-

04 

9.1e-4 0.001

4 

20 

0.00

32 

0.002

9 

0.002

2 

0.008

7 

0.00

33 

0.009

1 

0.084

1 

0.396

1 

0.002

362 

0.001

51 

0.002

4 

0.003

9 

30 

0 0 7.114

67 

5.160

03 

0 0 1.3e-

13 

4.3e-

14 

4.940

4 

9.959

5 

6.011

6 

11.66

0 

10  

F8 

2.4e-

05 

2.7e-

06 

9.230

7 

95.60

27 

0 0 0.019

8 

0.002

5 

15.30

10 

34.22

98 

10.84

02 

27.47

07 

20 

1.6e-

04 

3.7e-

05 

12.80

40 

202.5

606 

0 0 1.074

8 

1.038

7 

23.14

19 

69.11

64 

15.96

37 

48.14

59 

30 

1.8e-

15 

6.3e-

15 

1.4e-

15 

3.7e-

15 

4.7e-

15 

1.2e-

14 

6.2e-

15 

2.1e-

14 

1.8e-

15 

6.8e-

15 

0.162

5 

0.023

10 

10  

F9 

6.4e-

15 

1.6e-

14 

0 4.4e-

15 

7.8e-

15 

3.2e-

14 

2.4e-

13 

3.4e-

13 

0.392

55 

0.095

83 

0.800

1 

0.566

8 

20 

3.6e-

15 

2.2e-

14 

1.6e-

15 

6.9e-

15 

1.1e-

14 

6.1e-

14 

1.9e-

12 

2.8e-

12 

0.881

98 

0.696

55 

0.935

8 

1.539

7 

30 

 
Table 3 Comparison of mean and standard deviation of five optimization algorithms for fixed-dimension multimodal functions 

PSO [6] FA [15] ABC [14] ICA [12] ACO [7] FA-ABC 

 D Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

F10 2 4.3903 3.8734 1.1171 0.4519 0.9980 4.3e-

16 

0.9980 9.8e-

16 

1.1364 0.7154 0.9980 4.6e-

13 

F11 2 -

1.0316 

1.5e-

15 

-

1.0316 

1.3e-

15 

-1.0316 1.5e-

15 

-

1.0316 

1.5e-

15 

-

1.0316 

1.5e-

15 

-1.0316 1.3e-

15 

F12 2 0.3979 1.1e-

15 

0.3979 1.1e-

15 

0.3979 1.1e-

15 

0.3979 1.1e-

15 

0.3979 1.1e-

15 

0.3979 1.1e-

15 

F13 2 3.54 3.799 3 1.4e-

15 

3 2.02e-

5 

3 1.2e-

15 

3 1.2e-

15 

3 1.2e-

15 

F14 6 -

3.2732 

0.588 -

3.2661 

0.0596 -3.3220 2.2e-

15 

-

3.2828 

0.0562 -

3.2768 

0.0580 -3.2761 0.0542 

F15 4 -

4.8733 

3.1092 -

8.7465 

2.6504 -

10.1532 

1.9e-

14 

-

7.2145 

2.7e-

10 

-

5.2322 

3.5507 -9.7023 1.6825 

F16 4 -

6.6937 

3.5730 -

9.9012 

1.7263 -

10.4029 

1.4e-

14 

-

7.1314 

3.3715 -

8.2558 

3.3090 -

10.0206 

1.5353 

 

 
 

Fig. 4 Positions of the fireflies observed in 4 stages of the FA-ABC process for Sphere function. 

Iteration = 1 

 

Iteration = 30 

 

Iteration = 60 

 

Iteration = 90 
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Fig. 5 Comparison of the convergence process of the five algorithms applied on the test functions for 30 dimensions. 

 

“Table 3” shows the results obtained by the six 

algorithms in terms of mean and standard deviation for 

the fixed-dimension multimodal functions. In “Fig. 4”, 

the positions of the fireflies are observed in 4 steps of the 

FA-ABC process with population size 25 for the sphere 

function having dimension 30. This figure shows that the 

population is distributed in the initial iterations. After 60 

iterations, the particles gather round to the position of 

the best particle. At the end, in about 90 iterations, all 

particles can find the best solution. Figure 5 shows a 

comparison of the convergence process of the five 

algorithms (PSO, FA, ABC, ICA and ACO) on the test 

functions having dimension 30. This figure shows that 

the proposed algorithm performs better for most 

functions than other algorithms.  

In order to make further investigation, the shifted test 

functions are employed for comparison of the five 

algorithms. In “Tables 4”, the test functions mentioned 

in “Tables 1” have been shifted one unit. Therefore, the 

shifted test functions have a minimum value of 0 at 𝑥𝑖 =
1, except for G5 which has a minimum of 0 at 𝑥𝑖 = 2. 

Table 5 shows the results in terms of mean and standard 

deviation for these Shifted unimodal and multimodal 

functions found in 100 runs. In this evaluation, the 

dimensions of the problem are 30, the maximum number 

of iterations is set at 10000, and the number of 

populations is considered as 25.  

 
Table 4 Shifted unimodal and multimodal test functions 

Function 

 

Formulation Domain fmin 

G1 
∑(𝑋𝑖 − 1)

1

𝑛

𝑖=1

 
[−100, 100] 𝑛 1 

G2 
∑𝑖(𝑋𝑖 − 1)

2

𝑛

𝑖=1

 
[−100, 100] 𝑛 1 

G3 
∑|𝑋𝑖 − 1|

𝑛

𝑖=1

+ ∏|𝑋𝑖 − 1|

𝑛

𝑖=1

 
[−100, 100] 𝑛 1 
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G4 
∑|(𝑋𝑖 − 1)𝑠𝑖𝑛(𝑋𝑖 − 1) + 0.1(𝑋𝑖 − 1)|

𝑛

𝑖=1

 
[0, 10] 𝑛 1 

G5 

∑[100((𝑋𝑖+1 − 1) − (𝑋𝑖 − 1)
2)
2
+ ((𝑋𝑖 − 1) − 1)

2
]

𝑛−1

𝑖=1

 

[−10, 10] 𝑛 2 

G6 
∑([(𝑋𝑖 − 1) − 0.5])

2

𝑛

𝑖=1

 
[−100, 100] 𝑛 1 

G7 
∑𝑖(𝑋𝑖 − 1)

4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1] 
[−1.28, 1.28] 𝑛 1 

G8 
∑ [(𝑋𝑖 − 1)

2 − 10𝐶𝑂𝑆(2𝜋(𝑋𝑖 − 1)) + 10]
𝑛−1

𝑖=1
 

[−5.12, 5.12] 𝑛 1 

G9 

−20𝑒𝑥𝑝(−0.2√
1

𝑛
∑(𝑋𝑖 − 1)

2

𝑛

𝑖=1

) − 𝑒𝑥𝑝(
1

𝑛
∑𝑐𝑜𝑠(2𝜋(𝑋𝑖 − 1))

𝑛

𝑖=1

) + 20

+ 𝑒𝑥𝑝 

[−32, 32] 𝑛 1 

 

Table 5 Comparison of mean and standard deviation of five optimization algorithms for shifted unimodal and multimodal functions 

PSO [6] FA [15] ABC [14] ICA [12] ACO [7] FA-ABC 

 D Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

G1 30 1.6e-

31 

7.9e-

31 

3.7e-

31 

1.6e-

30 

5.6e-

05 

1.7e-

04 

3.1e-

28 

8.9e-

28 

4.1e-32 4.4e-

32 

3.2e-

32 

4.2e-

32 

G2 30 8.3e-

29 

6.6e-

28 

3.7e-

30 

5.3e-

30 

0.0022 0.0027 1.5e-

27 

3.0e-

27 

6.72e-31 7.8e-

31 

4.1e-

31 

7.3e-

31 

G3 30 1.0e-

11 

8.0e-

11 

5.1e-

13 

5.1e-

12 

3.1e-

15 

1.6e-

15 

8.7e-

16 

2.1e-

15 

1.9e-17 6.1e-

17 

9.9e-

18 

3.8e-

17 

G4 30 1.0e-

11 

6.8e-

11 

0.2726 0.6511 0.016 0.0101 9.9e-

15 

2.2e-

15 

0.0027 0.0078 8.6e-

16 

8.6e-

16 

G5 30 4.853 7.155 10.29 89.14 9.70 3.94 4.15 12.006 19.53 12.69 6.4145 7.8381 

G6 30 6.22 17.21 5.38 8.20 3.14 1.38 0 0 0 0 0 0 

G7 30 0.0038 0.0023 0.0358 0.069 0.53 0.085 0.10 0.0037 0.0090 0.0027 7.3e-

04 

0.0010 

G8 30 58.3 18.7 71.737 21.2 1.02 0.95 0 0 2.01e+02 11.44 0.0089 0.0357 

G9 30 1.45 0.08 0.67 0.89 2.0e-

12 

2.5e-

12 

3.9e-

14 

1.7e-

14 

2.7e-15 9.6e-

16 

1.3e-

14 

2.9e-

15 
 

 

5 CGAM PROBLEM MODELING 

5.1. CGAM Problem 
Conventional mathematical optimization methods are 

not efficient for large systems having many design 

variables. Moreover, economic and exergy analysis can 

be used to help optimization of these problems [31]. The 

word CGAM is derived from the first letters of the 

names of four researchers who have worked in this field 

(C. Frangopoulos, G. Tsatsaronis, A. Valero and M. Von 

Spakovsky). In 1990, a group of experts in the field of 

the large thermal systems have compared different 

solving methods for optimization of the CGAM [32]. In 

this study, by examining the economic, environmental 

and thermodynamic analysis of the CGAM problems 

and considering the system costs and efficiency as the 

objective functions, the system is optimized by using the 

FA-ABC algorithm. This system includes the air 

compressor, combustion chamber, air preheater, gas 

turbine and heat recovery. In this problem, 

environmental conditions are defined as 𝑃0 =
1.013 𝑏𝑎𝑟 and 𝑇0 = 298.15𝐾. The fuel injected into 

this system is pure methane with a Lower Heating Value 

(LHV) of 50000 
𝐾𝑗

𝐾𝑔⁄ . The system design parameters 

include compressor pressure ratio (𝑃𝐴𝐶), isentropic 

compressor efficiency (η𝐴𝐶), turbine isentropic 

efficiency (η𝐺𝑇), gas turbine inlet temperature (𝑇4) and 

air preheater efficiency (𝜀𝑎𝑝) [33].  
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5.2. Economical Modeling 
To calculate the investment costs, which include the cost 

of equipment purchase and maintenance, the following 

relation is proposed. 

 

(11) �̇�𝐾 = 𝑍𝐾𝐶𝑅𝐹𝜑/(𝑁 ∗ 3600)   

 

Where, 𝑍𝐾 is the cost of purchasing for the K component 

in dollars. As we know, the global energy price does not 

have much fluctuation in the dollar, and the results in 

this article will be usable for a longer period of time. 

𝐶𝑅𝐹 is the annual capital recovery factor used to 

estimate the equipment life (its value in this article is 

equal to 0.182). 𝑁 stands for the system operating hours 

per year (8000 hours). Parameter 𝜑 is the maintenance 

coefficient that its value is determined according to the 

type of the power plant, considered as 1.6 in this article. 

The fuel cost flow rate (�̇�𝑓) is given by: 

 

(12) �̇�𝑓 = �̇�𝑓 ∗  𝐶𝑓 ∗ 𝐿𝐻𝑉  

 

Where, 𝐶𝑓 is the fuel cost (in this paper is considered to 

be 0.000004) and 𝑚𝑓 is the mass flow rate of the fuel, 

and 𝐿𝐻𝑉 is the Lower Heating Value, which is 

equivalent to 50000 
𝐾𝑗

𝐾𝑔⁄  for methane [34]. Equations 

(13 to 17) are related to the cost of equipment, including 

compressor air preheater, gas turbine, combustion 

chamber and heat recovery, respectively. Table 6 shows 

the constants for Equations (13 to 17). 

 

(13) 𝑍𝐴𝐶 = (𝑐11 ∗  
�̇�𝑎

𝑐12−𝜂𝐴𝐶
) ∗ 𝑟𝑐𝑝 ∗ log (𝑟𝑐𝑝)  

  

(14) 
𝑍𝐴𝑃𝐻 = 𝐶41�̇�𝑔 ∗  

(ℎ5 − ℎ6)

𝑈𝛥𝑇𝑙𝑚𝐴𝑃𝐻
  

  

(15) 
𝑍𝑐𝑐 = (𝑐21 ∗

�̇�𝑎

𝑐22−
𝑃3
𝑃4

) ∗ [1 + exp (𝑐23𝑇4 −

𝐶24)]       
 

(16) 
𝑍𝐺𝑇 = (𝐶31 ∗

𝑚𝑔

𝑐32 − 𝜂𝐺𝑇
) ∗ log (

𝑃4
𝑃3
) ∗ [1

+ exp(𝑐33𝑇4 − 𝐶34)] 
  

(17) 
𝑍𝐻𝑅𝑆𝐺 = 𝑐51 ∗ ((

𝑄𝐸𝐶̇

Δ𝑇𝑙𝑚𝐸𝐶
)0.8

+ (
𝑄𝐸𝑉̇

∆𝑇𝑙𝑚𝐸𝑉
) 0.8) �̇�𝑠𝑡  

+ 𝑐52�̇�𝑠𝑡  + 𝑐53�̇�𝑔
1.2

 

 

 
Table 6 Numerical values of the variables related to the economic model 

Heat recovery Air preheater Gas turbine Combustion 

chamber 

Air compressor 

𝑐51 = 3650$/(𝐾𝑊/𝐾)۰/8 

𝑐52 = 11820$/(
𝑘𝑔

𝑠⁄ ) 

𝑐53 = 658$/(
𝑘𝑔

𝑠⁄ )
۰/5 

𝑐41
= 2290$/(𝑚1/2) 

𝑐42 = 0.018(
𝐾𝑊

𝑚2𝑘
) 

 

𝑐31

= 266.3$/(
𝑘𝑔

𝑠⁄ ) 
𝑐32 = 0.92 

𝑐33 = 0.036𝐾−1 

𝐶34 = 54.4 

 

𝑐21

= 25.6$/(
𝑘𝑔

𝑠⁄ ) 
𝑐22 = 0.995 

𝑐23 = 0.018𝐾−1 

𝑐24 = 26.4 

 

𝑐11 = 39.5$/(
𝑘𝑔

𝑠⁄ ) 
𝑐12 = 0.9 

 

 

5.3. Thermodynamical Modeling  
The CGAM problem refers to a cogeneration plant 

which provides 30𝑀𝑊 electricity and 14 
𝐾𝑔

𝑠 ⁄ saturated 

steam at 20𝑏𝑎𝑟 pressure. Figure 6 shows a schematic of 

the problem, and the temperature changes of the air 

preheater and heat recovery. In order to avoid forming 

the sulfuric acid and corrosion of the tubes, the 

temperature of exhaust gases must be kept more than 

400 K. Other specifications and operating conditions of 

the problem are regarded according to Ref. [34]. 

Moreover, the following assumptions are considered in 

this work. (A) All processes are steady-state, (B) The 

law of the ideal gas is used for the air and combustion 

gases, (C) The pressure drop of the combustion chamber, 

air preheater and HRSG are given and (D) Heat loss in 

the combustion chamber is 2% of 𝐿𝐻𝑉 and the other 

processes are considered to be adiabatic. 

5.4. Environmental Modeling 

Since determining the pollutant emissions is essential to 

organize an environmental objective function, an extra 

model, based on semi-analytical correlations, is added 

here for thermo economical modeling of the plant. The 

adiabatic flame temperature at the primary zone of the 

combustion chamber is derived from the expression 

introduced in [35] as follows: 

 

(18) 𝑇𝑃𝑍 = 𝐴𝜎𝑥 ∗ exp (𝛽(𝜎 + 𝜆)2 ∗ 𝜋𝑥 ∗ 𝜃𝑦 ∗ 𝜓𝑧  

 

Where, 𝜋 is a dimensionless pressure (𝑝/𝑝𝑟𝑒𝑓  that 𝑝 

being the combustion pressure 𝑝3, and 𝑝𝑟𝑒𝑓 = 1𝑎𝑡𝑚). 𝜃 

is a dimensionless temperature 𝑇/𝑇𝑟𝑒𝑓  (𝑇 being the inlet 

temperature 𝑇3, and  𝑇𝑟𝑒𝑓 = 300𝐾); 𝜓 is the 𝐻 𝐶⁄  atomic 

ratio (𝜓 = 4); 𝜃 is the dimensionless temperature. The 
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factors consisting of 𝐴, 𝛽, λ, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖  are constants 

presented in [35-36]. In order to have an accurate 

prediction, four sets of constants for the following 

ranges are used. 

 

(19) 0.3 < ∅ < 1  &  0.92 < 𝜃 < 2.0   

  

(20) 0.3 < ∅ < 1  &  2 < 𝜃 < 3.2   

  

(21) 1 < ∅ < 1.6  &  0.92 < 𝜃 < 2.0   

  

(22) 1 < ∅ < 1.6  &  2 < 𝜃 < 3.2   

 

Also, 𝑥, 𝑦 and 𝑧 are polynomial functions of 𝜎 

introduced by: 

 

(23) 𝑥 = 𝑎1 + 𝑏1𝜎 + 𝑐1𝜎 

  

(24) 𝑦 = 𝑎2 + 𝑏2𝜎 + 𝑐2𝜎 

  

(25) 𝑧 = 𝑎3 + 𝑏3𝜎 + 𝑐3𝜎 

 

The adiabatic flame temperature is used in the semi-

empirical correlations proposed by Rizk and Mongia 

[36] to determine the pollutant emissions in grams per 

kilogram of fuel as follows: 

 

(26) 
�̇�𝑁𝑂𝑥 = (

0.5×1016×(𝜏)0.5×exp (
−7100

𝑇𝑝𝑧
)

𝑃3
0.05(

∆𝑃3
𝑃3

) 0.5
)  

  

(27) 
�̇�𝑐𝑜 = (

0.179×109×𝑒𝑥𝑝 (
−7800

𝑇𝑃𝑍
)

𝑃3
2×𝜏×(

∆𝑃3
𝑃3

) 0.5
)   

 

Where, 𝜏 is the residence time in the combustion zone (𝜏 
is assumed constant and equal to 0.002s), 𝑇𝑝𝑧 is the 

temperature in the primary zone combustion; 𝑝3 is the 

pressure in the combustor inlet, ∆𝑝3/𝑝3 is the non-

dimensional pressure drop in the combustor (∆𝑝3/𝑝3  = 

0.05 is assumed for the considered CGAM problem). 

Note that the temperature of the primary zone 

temperature is used in the 𝑁𝑂𝑥  correlation instead of the 

stoichiometric temperature, since the maximum 

attainable temperature in premixed flames is 𝑇𝑝𝑧, as 

pointed out by Lefebvre [37]. 𝐶𝐶𝑂2 and 𝐶𝑁𝑂𝑥  are equal to 

0.02086 $
𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒 and 6.853 $

𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒, 

respectively. 

 
 

 

 
 

 

Fig. 6 (a): Schematic of the CGAM problem, and (b): its temperature profiles for the air preheater and heat recovery steam 

generator. 

 

a 

b 
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5.5. Decision Variables and Constraints  

The following parameters in this paper are considered as 

the decision variables for the optimization process: 

compressor pressure ratio (𝑃𝐴𝐶), compressor isentropic 

efficiency (η𝐴𝐶), turbine isentropic efficiency (η𝐺𝑇), 

recuperator efficiency (𝜀𝑎𝑝), and gas turbine inlet 

temperature (𝑇4). Moreover, the feasible ranges of these 

decision variables mentioned in “Table 7” are applied as 

the constraints of the problem and implemented through 

the final approach for the proposed FA-ABC algorithm. 

 
Table 7 Feasible ranges for the design variables 

Cause constraint 

Metallurgical temperature 

limitations 
1400 < 𝑇4 < 1650 

Available in the Market 7 < 𝑃𝐴𝐶 < 16 

Available in the Market 𝜂𝐴𝐶 = 0.8468 

Available in the Market 0.6 < 𝜀𝑎𝑝 < 0.9 

Available in the Market 𝜂𝐺𝑇 = 0.8786 

 

5.6. Objective Function 

Thermodynamical, economic and environmental 

objectives are considered to design the CGAM problem. 

The pollution costs are also added directly to the 

investment costs and the fuel costs. Therefore, the 

following objective functions are defined for multi-

objective optimization. 

 

(28) 

 

 

𝜂𝐻 =
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Fig. 7 Pareto fronts for different equivalence ratios 

(Cf = 0:004 $/kg-fuel and NOx =0.05 g/kg-fuel). 

 
Fig. 8 Pareto fronts for different unit costs of fuel (∅ = 

0.64 and NOx = 0.05 g/kg-fuel). 

 
Fig. 9 Pareto fronts for different emissions (∅ =0 .64 and 

Cf= 0.004 $/kg-fuel). 
 

Pareto Front is shown in “Figs. (7–9)”. Figure 7 

obviously shows that increasing the equivalence ratio 

leads to higher Pareto fronts for 𝐶𝑓 = 0.004 $ 𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒 

and 𝑁𝑂𝑥 = 0.05 
𝑔
𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒. That is due to inevitable 

increasing of the total cost rate and definitely is not 

desirable. This behavior is perhaps due to the reduction 

of the equivalence ratio resulted in decreasing the 

adiabatic flame temperature. Thus, it reduces harmful 

emissions and leads to reduction of the environmental 

cost rate. 

Figure 8 depicts the obtained Pareto fronts for the 

different unit costs of the fuel for ∅ = 0.64 and 𝑁𝑂𝑥 = 

0.05 
𝑔
𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒. As it could be seen, raising the unit 

fuel-costs leads to increasing in the cost rate and drives 

the Pareto fronts higher which is not desired. At lower 
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values of the exergetic efficiency, the difference 

between the Pareto fronts is very clear; however, for the 

higher values, the Pareto fronts converge together. This 

affirms the qualified investment for compensating the 

rising of the unit cost of the fuel. Figure 9 illustrates the 

effect of the different emissions on the Pareto front 

diagrams for ∅ = 0.64 and 𝐶𝑓= 0.004 $ 𝐾𝑔⁄ − 𝑓𝑢𝑙𝑒. 

Increasing the emission makes rising in the 

environmental and, total cost rate.  

6 CONCLUSIONS 

In the present paper, it was tried to provide a novel 

algorithm by combining two optimization approaches to 

solve single and multi-objective problems. By 

combining the firefly algorithm and artificial bee colony, 

the proposed FA-ABC method was far more successful 

than other algorithms for solving mathematical test 

functions. Finally, thermodynamical, economic and 

environmental modeling of a power plant was discussed 

and optimized by the proposed algorithm. Results 

illustrated that the fewer equivalence ratios have more 

desirable effects on performance of the system 

economically, exergetically, and environmentally. 

Moreover, rising in the unit fuel-cost and the emission is 

harmful for the performance of the system; but it can be 

compensated by utilizing high qualified investments. 
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