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Abstract: In this paper, the free vibration of defective nanographene is investigated 
using Molecular Dynamics Simulation (MD) and Differential Quadrature Method 
(DQM). The equations of motions and the related boundary conditions are derived 
based on the differential constitutive relations in conjunction with the classical plate 
theory via Hamilton’s principle. Then, DQM is used to investigate free vibration of 
the nanographene with various boundary conditions. At first, in order to determine 
natural frequencies more realistically, nanographene mechanical properties are 
determined using MD simulations. The effects of defects are investigated by 
analyzing pristine and defective nanographenes containing Stone Wales, vacancy, 
and Adatom defects. According to the results, the non-dimensional fundamental 
natural frequency parameter converges to the analytical value for N=10×10. Results 
indicate that graphene with CCCC boundary conditions has the maximum natural 
frequency. The minimum value corresponds to the graphene with SSSS boundary 
conditions. In addition, Non-dimensional fundamental frequency parameter of the 
nanoplate increases with increasing nanoplate aspect ratio. Finally, defects reduce 
density, position ratio and elastic moduli of nanographene, which causes a decrease 
in natural frequency. Stone Wales and vacancy defects decrease nanographene 
natural frequencies by about 8 and 25 percent, respectively. 
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1 INTRODUCTION 

Recent studies in the field of nanotechnology have 

yielded a considerable progress in this field. Specially, 

introducing Carbon Nanotubes (CNTs) and graphenes 

with their exceptional mechanical, electronic and 

chemical properties has been a milestone in 

nanotechnology development.  

The mechanical behavior of CNTs and graphenes has 

been analyzed through experiments and elastic 

continuum mechanics. Performing experiments on 

CNTs and graphenes is a challenging and expensive task 

due to their nanometer dimensions. It is reported in the 

literature that continuum mechanics may serve as an 

alternative method to study CNTs and graphenes by 

treating them as continuum elastic structures. In the 

following, nonlocal elasticity theory was presented by 

Eringen [1]. In contrast to the local theory, where the 

stress at a point is assumed to be a function of strain at 

that point, the nonlocal elasticity theory is based on the 

assumption that the stress at any point is a function of 

strain at all points in the continuum. Then, this theory 

has been used for vibration approaches about nanobeam 

(and nanotube) [2-14] and nanoplate (and 

nanographene) [15-21].  

Nazemizadeh et al. [14] performed vibration sensitivity 

analysis of Nano-mechanical piezo-laminated beams 

with consideration of size effects using nonlocal theory. 
Their results show that the length and the thickness of 

the piezoelectric layer have prominent effects on the 

vibration characteristics of the beam. In numerical 

solutions, DQM is used to investigate free vibration of 

the nanobeam and the nanoplate. Jalali et al. [21] studied 

free vibration of rotating functionally graded annular 

disc of variable thickness using DQM. Recently, Shatt 

and Abdelkefi [22] found that Eringen’s nonlocal theory 

fails to simultaneously fit both the longitudinal and 

transverse acoustic dispersion curves of some materials. 

In addition, defects in the atomic structure of the 

nanostructures are one of the main reasons for the 

differences between experimental data and numerical 

predictions. In modeling nanostructures, it is usually 

assumed that the nanostructures are perfect and have no 

defects. It has been reported, however, that different 

defects such as Stone Wales, vacancy, and Adatom exist 

in the atomic structure of CNTs and graphenes. 

Molecular Dynamics simulations can account for these 

defects in determining mechanical properties of CNTs 

and graphenes [23-26]. For examples, Aghadavoudi et 

al. [26] investigate Stone Wales and vacancy defects on 

mechanical properties of CNT in an article entitled 

Investigation of CNT Defects on Mechanical Behavior 

of Cross linked Epoxy based Nanocomposites by 

Molecular Dynamics. 

 

Thus, combining these two methods (DQM and MD) 

provides an effective tool for a more realistic prediction 

of vibration behavior and natural frequencies of these 

nano structures. In this paper, free vibration of pristine 

and defective nanographene is investigated using MD 

simulation and DQM which has not been performed so 

far. Determination of the mechanical properties such as 

density, positions ratio and elastic moduli of pristine and 

defective nanographene accurately using molecular 

dynamics method and investigating their effects on 

graphene vibrations is the main novelty of this research. 

The equations of motion and the related boundary 

conditions are derived based on the differential 

constitutive relations in conjunction with the classical 

plate theory via Hamilton’s principle. DQM is used to 

investigate non-dimensional frequencies. Convergence 

of the present results was carried out and analysis 

approach was validated by comparing the predicted 

results with published data. Mechanical properties of 

pristine and defective nanographenes are determined 

using MD simulations. MD-determined properties are 

used in DQM in order to obtain more realistic natural 

frequencies of nanographene. In addition, pristine and 

defective nanographene are considered to investigate the 

effects of defects on nanographene vibration behavior.  

2 THEORICAL FORMULATIONS 

Figure 1 shows the nanographene in Cartesian 

coordinate system. In this figure, a, b and h are length, 

width and thickness of the nanographene, respectively. 

 

 
Fig. 1 Nanographene. 

 

2.1. Kinematics 

Based on the hypothesis in the classical plate theory, at 

an arbitrary material point (x, y, z) of the nanoplate, the 

in-plane displacement components along the x- and y-

directions are given by: 
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Where, u and v are the in-plane displacement 

components along the x and y-axis of an arbitrary 

material point on the mid-surface of the nanoplate and w 

is the displacement in the z-direction. Therefore, the 

nonzero components of strain tensor are: 
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2.2. Constitutive Relations 
Stress-strain relations can be expressed as follows: 
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Where, E, υ, and G are the material Young’s modulus 

Poisson’s ratio and shear modulus, respectively. For a 

specific strain vector, the stress components are 

calculated using molecular dynamics simulation to 

determine nanographene mechanical properties E, G, 

and ν. 

2.3. Equations of Motion 

The equations of motion are derived using Hamilton's 

principle, which takes the following form for the free 

vibration analysis: 
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Where, δU is the variation of strain energy, δK is the 

variation of kinetic energy and δV is the variation of 

potential energy. Inserting energy variations in (4) and 

integrating by parts, the equations of motion and the 

related boundary conditions for transverse displacement 

can be derived as follows [27]: 
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Where, Mαβ with (α, β = x, y) are the stress resultants 

which are defined as: 

 

(6) 
/2

/2

h

h
M z dz 


   

 

And ρ is the mass density of the nanographene, and (A, 

I) are: 
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Boundary conditions: 
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Substituting (2) into (3) and the subsequent results into 

(6), the stress resultants are obtained as follows: 
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Using (5) and (9), the equations of motion for the 

transverse free vibration of the nanographene, in term of 

w, can be expressed as: 
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Where: 

 

(11) 
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Simply supported (S) and Clamped (C) nanographene, 

along the edge n=0 or ln (n=x or y, lx=a and ly=b) are 

considered in this investigation. The corresponding 

boundary conditions are as follows. 

Simply supported (S) along the edges n=0 or ln: 
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Clamped (C) along the edges n=0 or ln: 
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2.4. Solution Pocedure 

It is impossible to find an analytical solution for the 

nanographene free vibration equations of motions 

exposed to arbitrary boundary conditions. Therefore, an 

approximate method should be used to solve the 

problem. DQM, as an efficient and accurate numerical 

solution method, is used in this investigation. 

First, a set of non-dimensional terms are introduced as 

follows: 
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Using (14) along with (10), the nonlocal equations of 

motion for transverse free vibration of nanographene can 

be written as: 

 

(15) 

4 4 4

4 2 2 4

2 4 4
2

2 2 2 2 2

( 2 )

[( ) 2 ( )]mn

W W W

W W W
m

   

    

  
  

   

  
   

    
 

 

In DQM, the nth-order partial derivative of a continuous 

function f(x, y) with respect to x, y at a given point xi, yi 

can be approximated as a linear sum of weighted linear 

sum of the sampling points at all discrete points in the 

domain of x. 
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Where, Nβ is the number of sampling points, and Aim and 

Bim are the weighting coefficients. 

 

 

 

 

In this study, sampling points are chosen according to 

the following relation: 
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The weighting coefficients of the second order 

derivative can be obtained as: 
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Using DQM, “Eq. (15)” can be written as: 
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3 MOLECULAR DYNAMICS SIMULATION 

In order to determine nanographene natural frequencies 

more realistically, one must use exact mechanical 

properties for the structure under investigation. In this 

research, mechanical properties of pristine and defective 

nanographenes were determined using MD analysis. 

Materials Studio software with Condensed-phase 

Optimized Molecular Potentials for Atomistic 

Simulation Studies (COMPASS) force field was used 

for this purpose. COMPASS has been assessed using 

different calculation methods as well as molecular 

dynamics simulations of liquids, crystals, and polymers 

[28]. The process of simulating molecular dynamics in 

modeling graphene could be found in a previous 

investigation performed by the co-authors [29]. MD 

Models of pristine and nanographene containing various 

defect types were created and analyzed to determine 

their mechanical properties. These models are shown in 

“Fig. 2”. The MD obtained mechanical properties are 

then used in the governing equations to investigate 

nanographene free vibration behavior more realistically. 
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a 

 

 
b 

 

 
c 

 
d 

Fig. 2 Graphene with various defects: (a): Pristine 

graphene, (b): Graphene with 42 Stone Wales defects, (c): 

Graphene with 42 vacancy defects, and (d): Graphene with 42 

Adatom defects. 

4 RESULTS AND DISCUSSION 

First, non-dimensional natural frequencies of SSSS 

nanographene were determined using different number 

of sampling points in DQM. The results were compared 

with analytical solution results presented in Ref [27] in 

order to validate the solution procedure. This 

comparison is presented in “Table 1”. According to 

these results, for N=10×10 (number of sampling points), 

the non-dimensional fundamental natural frequency 

parameter converges to the analytical value presented by 

Pradhan and Phadikar [27].Therefore, N=15×15 was 

used in the analysis of nanographene in this 

investigation. 

 
Table 1 The convergence behavior of non-dimensional 

fundamental natural frequency parameter of the simply 

supported nanographene with different aspect ratios              

(L = 10 nm) 

L/h Method    

 DQM   Analytical [27] 

 (5×5) (10×10) (15×15)  

10 18.9801 19.0653 19.0653 19.0653 

20 19.4728 19.5625 19.5625 19.5625 

50 19.6196 19.7105 19.7105 19.7105 

100 19.6409 19.7320 19.7320 19.7320 

 

To establish validity of the present work, results are 

compared with the presented results in Ref [30] for 

nanoplate in “Tables 2 and 3”. 

 
Table 2 Comparison of the higher order non-dimensional 

natural frequency parameters of the simply supported 

nanographene (L = a = b = 10 nm, (L/h = 10)) 

Mode Investigator 

 [30] Present 

Ω(1,1) 0.0963 0.0963 

Ω(2,2) 0.3853 0.3853 

Ω(3,3) 0.8669 0.8670 

 

Note in “Table 2” that, non-dimensional natural 

frequency results obtained in this study are in good 

agreement with the results presented by Karami and 

Malekzadeh [30]. 

 
Table 3 The non-dimensional fundamental frequency 

parameter of the nanoplate with different types of boundary 

conditions (L = a = b = 10 nm, (L/h = 10)) 

L/h Boundary conditions 

 SSSS SSCS SCSC CCCS CCCC 

10 19.0653 22.536 27.1729 29.6286 32.8859 

20 19.5625 23.3039 28.4682 31.2665 35.1164 

100 19.7376 23.6464 28.0541 31.8008 35.9852 

100 

Ref 

[30] 

19.7376 23.6463 29.0541 31.8008 35.9852 

 

The results presented in “Table 3” show that non-

dimensional fundamental frequency parameter of the 

nanoplate increases with increasing nanoplate aspect 

ratio.  
 

 
Fig. 3 Simulated graphene. 
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Once the modeling technique and the solution 

procedures were verified, models were created to 

investigate free vibration of the nanographenes under 

investigation. First, pristine and defective 

nanographenes were modeled in Materials Studio 

software to determine their mechanical properties. 

Nanographene with dimensions L = a = b = 50.5 Å, and 

h = 3.35 Å were considered in all models.  Figure 3 

shows graphene simulation box in Materials Studio 

software. 

MD-determined mechanical properties for pristine and 

defective graphene are presented in “Table 4”. The 

accuracy of the MD models was also verified by 

comparing the results with those found in the literatures 

[31-32]. Their results show that pristine nanographene 

elastic moduli is about 500 GPa. Note that the difference 

between our result with those presented is below 1 

percent. 
 

Table 4 Graphene properties 

Properties Material 

υ 
E 

(GPa) 

ρ 

(kg/m3) 
 

0.32 505 2368 Pristine graphene 

0.15 460 2319 
Graphene with 42 Stone 

Wales defects 

0.14 280 2109 
Graphene with 42 

Vacancy defects 

0.24 475 2134 
Graphene with 42 

Adatom defects 

 
 

Figure 4 shows the first and higher modes of natural 

frequencies for pristine graphene with SSSS boundary 

conditions. Note in this figure that, natural frequency of 

pristine nanographene increases by mode number 

increasing. 
 

 
Fig. 4 Natural frequencies of pristine nanographene. 

 

Figure 5 shows the first vibration mode of pristine 

graphene natural frequency with five different boundary 

conditions. 

 

 
Fig. 5 First mode of pristine graphene natural frequency. 

 

It can be observed that graphene with CCCC boundary 

conditions has maximum natural frequency whereas 

minimum value corresponds to the graphene with SSSS 

boundary conditions. The trend suggests that the 

graphene stiffness increases as the number of boundary 

constraints is increased. In addition, to investigate the 

effects of defects on the natural frequency of graphene, 

the first frequency mode was determined for pristine and 

defective graphenes. In this model, SSSS boundary 

conditions were imposed. The results are presented in 

“Fig. 6”. 

 

 
Fig. 6 First mode natural frequency of graphene 

 

As can be observed in this figure, Stone Wales and 

vacancy defects reduce all natural frequency modes of 

graphene, but Adatom defect has a negligible effect on 

natural frequency of graphene. The largest decrease is 

related to Vacancy defect. The reductions in natural 

frequencies are due to the weakening of the 

nanographene structure and stiffness as a result of 

defects. Vacancy defects eliminate a number of bonds 

from the pristine nanographene, which results in a 

pronounced decrease in its elastic modulus that 

decreases natural frequencies. The Stone Wale defect is 
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a crystallographic defect which involves the change of 

connectivity of two bonded carbon atoms. This defect 

type leads to a bond rotation by 90 degrees with respect 

to the midpoint of the bond and results in a reduction of 

nanographene natural frequencies. This defect type has 

an effect on nanotube stiffness compared to the flat 

graphene sheets causing natural frequencies decrease. 

The Adatom defect interrupts the sequencing in the 

nanographene structure. This type of defect has a 

negligible effect on graphene modulus, and in turn, 

natural frequencies. 

5 CONCLUSIONS 

In this paper, free vibration of pristine and defective 

nanographenes is investigated using molecular 

dynamics simulation and differential quadrature 

method. The equations of motion and the related 

boundary conditions were derived based on the 

differential constitutive relations in conjunction with the 

classical plate theory via Hamilton’s principle. MD-

determined properties are used in DQM in order to 

obtain more realistic natural frequencies of 

nanographene. In addition, pristine and defective 

nanographene are considered to investigate the effects of 

defects on nanographene vibration behavior. Stone 

Wales, vacancy, and Adatom defects were modeled. 

Finally, vibration behavior of nanographene with 

various boundary conditions was studied. Results 

indicate that graphene with CCCC boundary conditions 

has the maximum natural frequency. The minimum 

natural frequency corresponds to the graphene with 

SSSS boundary conditions. Finally, Stone Wales and 

vacancy defects have large effects on nanographene 

natural frequencies. Adatom defect type has a negligible 

effect on graphene natural frequency. 
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