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1 INTRODUCTION 

Performing experiments in the atomic and molecular 

scales are the safest approach for the study of materials 

in small-scale. In this method, the nanostructures are 

studied in real dimensions. In this method in order to 

determine the mechanical properties of nanostructures, 

the Atomic Force Microscopy (AFM) applies different 

mechanical loads on nanoplates and measures the plate 

responses. The difficulties of controlling the test 

conditions at this scale, high economic costs and time-

consuming processes are some setbacks of this method. 

Therefore, it is only used to validate other simple and 

low-cost methods. 

Atomic simulation is another approach for studying 

small-scale structures. In this method, the behaviors of 

atoms and molecules are examined by considering the 

intermolecular and interatomic effects on their motions, 

which eventually involves the total deformation of the 

body. In the case of large deformations and multi atomic 

scales, the computational costs of this approach become 

unbearable, so it is only used for small deformation 

problems. 

Given the limitations of the aforementioned methods, 

researchers have been looking for simpler solutions for 

studying nanostructures. Modeling small-scale 

structures using continuum mechanics is another 

approach for this problem. There are a variety of size-

dependent continuum theories that consider size effects, 

some of these theories are; micromorphic theory, 

microstructural theory, micropolar theory, Kurt's theory, 

non-local theory, modified couple stress theory and 

strain gradient elasticity. All of which are the developed 

notion of classical field theories, which includes size 

effects. Daghigh et al, studied the nonlocal bending and 

buckling of agglomerated CNT-Reinforced composite 

nanoplates. They investigated the effect of the 

parameters, such are degree of agglomeration, nonlocal 

material scale parameter, temperature, foundation 

properties, volume fraction of CNTs, and length-to-

thickness aspect ratio for the plate [1]. 

Daikh et al, studied A novel nonlocal strain gradient 

Quasi-3D bending analysis of sigmoid functionally 

graded sandwich nanoplates. They investigated the 

effect of the elastic foundation models, sigmoidal 

distribution index constant, configuration of sandwich 

plate, material and length nanoscales, boundary 

conditions on the static deflection [2]. Ruocco et al, 

studied the buckling analysis of elastic–plastic 

nanoplates resting on a Winkler–Pasternak foundation 

based on nonlocal third-order plate theory. They 

investigated the effect of geometrical, constitutive, and 

nonlocal parameters on the critical behavior of plates 

with different boundary conditions [3]. 

Banh-Thien et al, studied the buckling analysis of non-

uniform thickness nanoplates in an elastic medium using 

the isogeometric analysis. They discretized the 

governing equation into algebraic equations and solved 

by using IGA procedure to determine the critical 

buckling load. By using the non-uniform rational B-

splines, IGA easily satisfies the required continuity of 

the partial differential equations in buckling analysis [4]. 

In this paper, a Nth order nanoplate model is developed 

for the bending and buckling analysis of a graphene 

nanoplate based on a modified couple stress theory and 

the results are presented with new figures and tables.  

2 MODIFIED COUPLE STRESS THEORY 

In 2002, Yang et al. [5] proposed a modified couple 

stress model by modifying the theory proposed by 

Toppin [6], Mindlin and Thursten [7], Quitter [8] and 

Mindlin [9] in 1964. The modified couple stress theory 

consists of only one material length scale parameter for 

projection of the size effect, whereas the classical couple 

stress theory needs two material length scale parameters. 

In the modified theory, the strain energy density in the 

three-dimensional vertical coordinates for a body 

bounded by the volume V and the area Ω [10], is 

expressed as the follows:  
 

𝑈 =  
1

2
∫  

𝑉
(𝜎𝑖𝑗ℇ𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉    𝑖، 𝑗 = 1،2،3       (1) 

 

ℇ𝑖𝑗  =  
1

2
(𝑢𝑖،𝑗 + 𝑢𝑗،𝑖)                 (2) 

 

𝜒𝑖𝑗  =  
1

2
(𝜃𝑖،𝑗 + 𝜃𝑗،𝑖)                 (3) 

 

χ
ij
 and ℇij are the symmetric parts of the curvature and 

strain tensors, and θi and ui are the displacement and the 

rotational vectors, respectively: 

 

𝜃 =  
1

2
 𝐶𝑢𝑟𝑙 𝒖                  (4) 

 

σij, the stress tensor, and mi,j, the deviatory part of the 

couple stress tensor, are defined as: 

 

𝜎𝑖𝑗  =  𝜆ℇ𝑘𝑘𝛿𝑖𝑗 + 2𝜇ℇ𝑖𝑗                (5) 

 

𝑚𝑖،𝑗  =  2𝜇 𝑙2𝜒𝑖𝑗                 (6) 

 

Where،  λ and μ are the lame constants,  δij is the 

Kronecker delta and l is the material length scale 

parameter. From Equations (3) and (6), it can be seen 

that χ
ij
and 𝑚𝑖𝑗  are symmetric. 
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3 NTH-ORDER PLATE MODEL 

The displacement equations for the nth-order plate are 

described as follows: 

 

𝑢1(𝑥،𝑦،𝑧)  =  𝑧𝜑𝑥(𝑥،𝑦) - 
1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧 𝑛 (
𝜕𝑤(𝑥،𝑦)

𝜕𝑥
+

𝜑𝑥(𝑥،𝑦)) 

𝑢2(𝑥،𝑦،𝑥)  =  𝑧𝜑𝑦(𝑥،𝑦) - 
1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛 (
𝜕𝑤(𝑥،𝑦)

𝜕𝑦
+

𝜑𝑦(𝑥،𝑦)) ،  𝑛 = 3، 5، 7، 9، …               (7) 

𝑢3(𝑥،𝑦،𝑧)  =  𝑤(𝑥،𝑦) 

 

Where,  φ
x 
 and φy  are the rotations of the normal vector 

around the x and y axis, respectively, and w is the 

midpoint displacement of the plate in the z-axis 

direction. The strain and stress tensors, the symmetric 

part of the curvature tensor, and the rotational vector for 

the nth-order plate are obtained as follows: 

 

ℇ𝑥𝑥  =  𝑧
𝜕𝜑𝑥

𝜕𝑥
−  

1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛 (
𝜕2𝑤

𝜕𝑥2 +
𝜕𝜑𝑥

𝜕𝑥
)               (8) 

 

ℇ𝑦𝑦  =  𝑧
𝜕𝜑𝑦

𝜕𝑦
−

1

𝑛
(

2

ℎ
)

𝑛−1

𝑧𝑛 (
𝜕2𝑤

𝜕𝑦2 +
𝜕𝜑𝑦

𝜕𝑦
)               (9) 

 
ℇ𝑧𝑧 = 0                                                                      (10) 

 

ℇ𝑥𝑦  =  ℇ𝑦𝑥  =  
1

2
𝑧 (

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
)                                (11) 

−
1

2𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛 (
𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
+ 2

𝜕2𝑤

𝜕𝑥𝜕𝑦
)  

 

ℇ𝑥𝑧  =  ℇ𝑧𝑥  =  
1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥)             (12) 

 

ℇ𝑦𝑧  =  ℇ𝑧𝑦  =  
1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦)           (13) 

 

𝜃𝑥  =  
𝜕𝑤

𝜕𝑦
−

1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦)                   (14) 

 

𝜃𝑦  =  −
𝜕𝑤

𝜕𝑥
+

1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥)               (15) 

 

𝜃𝑧  =  
1

2
(𝑧 −

1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛) (
𝜕 𝜑𝑦

𝜕𝑥
−

𝜕𝜑𝑥

𝜕𝑦
)                  (16) 

 

𝑥𝑥𝑥  =  
𝜕2𝑤

𝜕𝑥 𝜕𝑦
−

1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕2𝑤

𝜕𝑥 𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
)         (17) 

 

𝑥𝑦𝑦  =  −
𝜕2𝑤

𝜕𝑥𝜕𝑦
+

1

2
 (1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝜑𝑥

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑦
)     (18) 

𝑥𝑧𝑧  =  
1

2
(1 − (

2𝑧

ℎ
)

𝑛−1

) (
𝜕𝜑𝑦

𝜕𝑥
−

𝜕𝜑𝑥

𝜕𝑦
)                        (19) 

𝑥𝑥𝑦  =  
1

2
(

𝜕2𝑤

𝜕𝑦2 −
𝜕2𝑤

𝜕𝑥2 ) +
1

4
(1 − (

2𝑧

ℎ
)

𝑛−1

)                 (20) 

*(
𝜕2𝑤

𝜕𝑥2 + 
𝜕𝜑𝑥

𝜕𝑥
−

𝜕2𝑤

𝜕𝑦2 −
𝜕𝜑𝑦

𝜕𝑦
)    

 

𝑥𝑥𝑧  =  
1

4
 (𝑧 −

1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛) (
𝜕2𝜑𝑦

𝜕𝑥2 −
𝜕2𝜑𝑥

𝜕𝑦 𝜕𝑥
)            (21) 

1

4
((

2

ℎ
−

2𝑛

ℎ
) (

2𝑧

ℎ
)

𝑛−2

) (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦)   

 

𝑥𝑦𝑧  =  
1

4
((

2

ℎ
−

2𝑛

ℎ
) (

2𝑧

ℎ
)

𝑛−2

) (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥)                  (22) 

+
1

4
(𝑧 −

1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛) (
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑥

𝜕𝑦2
) 

 
𝜎𝑥𝑥  =  (𝜆 + 2𝜇)ℇ𝑥𝑥  + 𝜆ℇ𝑦𝑦                                    (23) 

 

𝜎𝑦𝑦  =  𝜆ℇ𝑥𝑥   + (𝜆 + 2𝜇)ℇ𝑦𝑦                                    (24) 

 

𝜎𝑧𝑧  =  𝜆(ℇ𝑥𝑥 + ℇ𝑦𝑦)                                                (25) 

 

𝜎𝑦𝑥  =  𝜎𝑥𝑦  =  2𝜇 ℇ𝑥𝑦                                              (26) 

 

𝜎𝑥𝑧  =  𝜎𝑧𝑥  =  2𝜇 ℇ𝑥𝑧                                                (27) 

 

𝜎𝑦𝑧  =  𝜎𝑧𝑦  =  2𝜇 ℇ𝑦𝑧                                               (28) 

 

The variation of strain energy is expressed as follows: 

 

𝛿𝑈 = ∫  
𝑉

(𝜎𝑥𝑥  𝛿 ℇ𝑥𝑥 + 𝜎𝑦𝑦 𝛿ℇ𝑦𝑦 + 2𝜎𝑥𝑦  𝛿 ℇ𝑥𝑦 + 

𝜎𝑥𝑧 𝛿 ℇ𝑥𝑧 +  2𝜎𝑦𝑧 𝛿 ℇ𝑦𝑧 +𝑚𝑥𝑥  𝛿 𝑥𝑥𝑥 + 𝑚𝑦𝑦 𝛿𝑥𝑦𝑦 +

𝑚𝑧𝑧 𝛿𝑥𝑧𝑧 + 2𝑚𝑥𝑦 𝛿𝑥𝑥𝑦 + 2𝑚𝑥𝑧 𝛿𝑥𝑥𝑧 +

2𝑚𝑦𝑧 𝛿 𝑥𝑦𝑧)𝑑𝑉 

                                                                                  (29) 

 

For the sake of simplification, the coefficient of each 

variable in the above equation is named from F1 to F15 

and this equation can be rewritten as shown below: 

 

𝑈 = ∫  
𝑉

(𝐹1𝛿𝑤,𝑥𝑥+ 𝐹2 𝛿𝑤,𝑦𝑦+ 𝐹3 𝛿𝑤,𝑥𝑦+ 𝐹4𝛿 𝑤,𝑥+

𝐹5 𝛿 𝑤,𝑦+ 𝐹6 𝛿 𝜑𝑥,𝑦𝑦 + 𝐹7𝛿 𝜑𝑦,𝑥𝑥 + 𝐹8 𝛿  𝜑𝑦,𝑥𝑦 +

𝐹9 𝛿𝜑𝑥,𝑦𝑥 + 𝐹10 𝛿 𝜑𝑥,𝑥 + 𝐹12𝛿𝜑𝑥,𝑦 + 𝐹13 𝛿 𝜑𝑦,𝑥 +

+𝐹14 𝛿𝜑𝑥 + 𝐹15 𝛿𝜑𝑦)𝑑𝑉                                                (30) 

 
Where,  F1 to F15 are calculated as shown: 

 

𝐹1  =  
𝜕2𝑤

𝜕𝑥2 [(𝜆 + 2𝜇)(𝐴3 − 𝐴1𝐴2) + 1

2
𝜇𝑙2(1 + 𝐴4) −

1

4
𝜇𝑙2(1 + 𝐴4)(1 − 𝐴4)]+ 

𝜕2𝑤

𝜕𝑦2 [(𝐴3 − 𝐴1𝐴2) −
1

2
𝜇𝑙2(1 + 𝐴4) + 1

4
𝜇𝑙2(1 − 𝐴4)(1 + 𝐴4)] +

  
𝜕𝜑𝑦

𝜕𝑦
[−𝜆(𝐴2𝐴1) − 1

4
𝜇𝑙2(1 −  𝐴4)(1 + 𝐴4)]               (31) 
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F2 = 
∂

2
w

∂y2
[(𝜆 + 2𝜇)(𝐴3 − 𝐴1𝐴2) + 1

2
𝜇𝑙2(1 + 𝐴4) −

1

4
𝜇𝑙2]+ 

𝜕2𝑤

𝜕𝑥2 [𝜆(𝐴3 − 𝐴1𝐴2) − 1

2
𝜇𝑙2(1 + 𝐴4) + 1

4
𝜇𝑙2(1 −

 𝐴4)(1 + 𝐴4)]  +
𝜕𝜑𝑦

𝜕𝑦
[−(𝜆 + 2𝜇)(𝐴2𝐴1) − 1

4
𝜇𝑙2(1 −

 𝐴4)(1 + 𝐴4)] + 
𝜕𝜑𝑥

𝜕𝑥
[−𝜆(𝐴2𝐴1) − 1

4
𝜇𝑙2(1 − 𝐴4)(1 +

𝐴4)]                                                                                       (32) 

 

𝐹3 =  
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[4𝜇 𝐴2

2 + 𝜇𝑙2(1 + 𝐴4)2]  +

𝜕𝜑𝑥

𝜕𝑦
[−2𝜇𝐴2𝐴1 − 1

2
𝜇𝑙2(1 −  𝐴4)(1 + 𝐴4)] +

[−2𝜇𝐴2𝐴1 − 1

2
𝜇𝑙2(1 − 𝐴4)(1 + 𝐴4)]                        (33) 

 

𝐹4 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [𝜇(1 − 𝐴4)2 + 1

4
𝜇𝑙2𝐴5

2] +  (
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑥

𝜕𝑦2 ) [1

4
𝜇𝑙2𝐴5𝐴1]                                                       (34) 

 

𝐹5 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [𝜇(1 − 𝐴4)2 + 1

4
𝜇𝑙2𝐴5

2] +  (
𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑦

𝜕𝑥2 ) [1

4
𝜇𝑙2𝐴5𝐴1]                                                               (35) 

 

𝐹6 = 𝐹8 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [1

4
𝜇𝑙2𝐴5𝐴1] + (

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑥

𝜕𝑦2 ) [ 1
4
𝜇𝑙2𝐴1

2]                                                                 (36) 

 

𝐹7 = 𝐹9 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [−1

4
𝜇𝑙2𝐴5𝐴1] + (

𝜕2𝜑𝑦

𝜕𝑥2 −

𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
) [ 1

4
𝜇𝑙2𝐴1

2]                                                         (37) 

 

𝐹10 =
𝜕2𝑤

𝜕𝑥2  [(𝜆 + 2𝜇)(𝐴1
2 − 𝑧𝐴1) − 1

4
𝜇𝑙2(1 − 𝐴4)(1 +

𝐴4)] +  
𝜕2𝑤

𝜕𝑦2 [𝜆𝐴1(−𝑧 + 𝐴1) + 1

4
𝜇𝑙2(1 − 𝐴4)(1 +

𝐴4)] +
𝜕𝜑𝑥

𝜕𝑥
[ (𝜆 + 2𝜇)𝐴1

2 + 1

4
𝜇𝑙2(1 − 𝐴4)2] +

𝜕𝜑𝑦

𝜕𝑦
[𝜆𝐴1

2 − 1

4
𝜇𝑙2(1 −  𝐴4)2]                                      (38) 

 

𝐹11 =
𝜕2𝑤

𝜕𝑦2[(𝜆 + 2𝜇)(𝐴1
2 − 𝑧𝐴1) − 1

4
𝜇𝑙2(1 − 𝐴4)(1 +

𝐴4)] +  
𝜕2𝑤

𝜕𝑥2 [𝜆𝐴1(−𝑧 + 𝐴1) + 1

4
𝜇𝑙2(1 − 𝐴4)(1 +

𝐴4)] +
𝜕𝜑𝑦

𝜕𝑦
[ (𝜆 + 2𝜇)𝐴1

2 + 1

4
𝜇𝑙2(1 − 𝐴4)2] +

𝜕𝜑𝑥

𝜕𝑥
[𝜆𝐴1

2 − 1

4
𝜇𝑙2(1 − 𝐴4)2]                                      (39) 

 

𝐹12 =  
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[−2𝜇𝐴2𝐴1 − 1

2
𝜇𝑙2(1 − 𝐴4)(1 + 𝐴4)] +

𝜕𝜑𝑥

𝜕𝑦
[𝜇𝐴1

2 + 𝜇𝑙2(1 −  𝐴4)2] +
𝜕𝜑𝑦

𝜕𝑥
[𝜇𝐴1

2 − 1

2
𝜇𝑙2(1 −

 𝐴4)2]                                                                           (40) 

𝐹13 =
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[−2𝜇𝐴2𝐴1 − 1

2
𝜇𝑙2(1 −  𝐴4)(1 + 𝐴4)] +

𝜕𝜑𝑥

𝜕𝑦
[𝜇𝐴1

2 − 1

2
𝜇𝑙2(1 − 𝐴4)2] +

𝜕𝜑𝑦

𝜕𝑥
[𝜇𝐴1

2 + 𝜇𝑙2(1 −

 𝐴4)2]                                                                         (41) 

 

𝐹14 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [𝜇(1 −  𝐴4)2 + 1

4
𝜇𝑙2𝐴5

2] + (
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑥

𝜕𝑦2 ) [1

4
𝜇𝑙2𝐴5𝐴1]                                                        (42) 

 

𝐹15 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [𝜇(1 −  𝐴4)2 + 1

4
𝜇𝑙2𝐴 5

2]  + (
𝜕2𝜑𝑥

𝜕𝑥𝜕𝑦
−

𝜕2𝜑𝑦

𝜕𝑥2 ) [1

4
𝜇𝑙2𝐴5𝐴1]                                                        (43) 

 

In which we have: 

 

𝐴1 = 𝑧 −
1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛                                               (44) 

 

𝐴2 =
1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛                                                      (45) 

 

𝐴3 =
1

𝑛
(

2

ℎ
)

𝑛−1

 𝑧𝑛+1                                                  (46) 

 

𝐴4 = (
2𝑧

ℎ
)

𝑛−1

                                                             (47) 

 

𝐴5 = (
2

ℎ
−

2𝑛

ℎ
) (

2𝑧

ℎ
)

𝑛−2

                                               (48) 

 

𝐴6 =
1

𝑛
(

2

ℎ
)

𝑛−1

                                                            (49) 

 

𝐴7 = 𝜇 (
2

ℎ
)

𝑛−1

𝐼𝑛−1                                                   (50) 

 

𝐴8 = 𝜇 (
2

ℎ
)

2𝑛−2

 𝐼2𝑛−2                                                (51) 

 

𝐴9 = (𝜆 + 2𝜇) (
1

𝑛
(

2

ℎ
)

𝑛−1

)
2

 𝐼2𝑛                                (52) 

 

𝐴10 = (𝜆 + 2𝜇)
1

𝑛
(

2

ℎ
)

𝑛−1

 𝐼𝑛+1                                  (53) 

 

𝐴11 =  1

4
𝜇 𝑙2 (

1

𝑛
(

2

ℎ
)

𝑛−1

)
2

(𝑛2 − 𝑛)2𝐼2𝑛−4                  (54) 

 

𝐴12 = 1

4
𝜇 𝑙2ℎ                                                              (55) 

 

𝐼𝑖 = ∫ 𝑍𝑖   𝑑𝑧
ℎ
2

−
ℎ
2

                                                             (56) 

(𝑖 = 0،1، 2،𝑛 − 1،𝑛، 𝑛 + 1، 2𝑛 − 4، 2𝑛 − 2، 2𝑛)  
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4 THE BUCKLING FORCE  

For a rectangular plate with length a, width b and 

thickness h, under the axial forces (Pxy, Py, Px), the 

buckling force is obtained as shown in equation (57) [11-

12]: 

 

𝑃𝑥
𝜕2𝑤

𝜕𝑥2 + 2𝑃𝑥𝑦  
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑦

𝜕2𝑤

𝜕𝑦2 =  𝑞(𝑥, 𝑦)                 (57) 

 

Where, Px is the Axial force along the x axis, Py is the 

Axial force along the y axis, Pxy is the shear force in the 

xy plane, and q (x, y) is the out-of-plane force. 

5 VIRTUAL WORK OF EXTERNAL FORCES  

In these kind of problems, the virtual work of three kinds 

of external forces are included in the solutions, if the 

middle-plane and the middle-perimeter of the plate are 

shown as Ω and Γ respectively, these virtual works are 

[13]: 

 

1. The virtual work done by the body forces, which is 

applied on the volume V= Ω× (- h⁄2, h⁄2). 

2. The virtual work done by the surface tractions at the 

upper and lower surfaces (Ω). 

3. The virtual work done by the shear tractions on the 

lateral surfaces, S= Γ× (- h⁄2, h⁄2). 

 

If (fx, fy, fz) are the body forces, (cx, cy, cz) are the body 

couples, (qx, qy, qz) are the forces acting on the Ω plane, 

(tx, ty, tz) are the Cauchy's tractions and (Sx, Sy, Sz) are 

surface couples, the variations of the virtual work is 

expressed as: 

 

𝛿𝑤 = −[∫  
𝛺

(𝑓𝑥𝛿𝑢 + 𝑓𝑦𝛿𝑉 + 𝑓𝑧𝛿𝑤 + 𝑞𝑥𝛿𝑢 + 𝑞𝑦𝛿𝑉 +

𝑞𝑧𝛿𝑤 + 𝑐𝑥𝛿𝜃𝑥 + 𝑐𝑦 𝛿𝜃𝑦 + 𝑐𝑧𝛿𝜃𝑧) 𝑑𝑥 𝑑𝑦 +

∫  
𝛤

(𝑡𝑥𝛿𝑢 + 𝑡𝑦𝛿𝑉 + 𝑡𝑧𝛿𝑤 + 𝑠𝑥𝜃𝑥   + 𝑠𝑦𝛿𝜃𝑦 + 𝑠𝑧𝛿)  

                                                                                  (58) 

 

Given that in this study, only the external force qz was 

applied, virtual work becomes: 

 

𝛿𝑤 = ∫ ∫ 𝑞(𝑥،𝑦)𝛿𝑤(𝑥،𝑦)𝑑𝑥 𝑑𝑦 
𝑏

0

𝑎

0
                      (59) 

 
Finally using the Hamilton's principle, it can be said that 

[14]: 

 

𝛿(𝑈 − 𝑤) = 0                                                           (60) 

6 THE FINAL GOVERNING EQUATIONS OF THE 

PLATE AFTER APPLYING THE BUCKLING AND 

EXTERNAL FORCES 

Using Hamilton's principle, equation (60), and the 

equations from (57) to (59), the governing equations of 

the plate including the buckling and external forces are 

obtained as follows: 

 

[∫ (
𝜕2𝐹1

𝜕𝑥2 −
𝜕𝐹4

𝜕𝑥
+

𝜕2𝐹2

𝜕𝑦2 +
𝜕2𝐹3

𝜕𝑥𝜕𝑦
−

𝜕𝐹5

𝜕𝑦
) 𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

] +𝑃𝑥
𝜕2𝑤

𝜕𝑥2 +

2𝑃𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑦

𝜕2𝑤

𝜕𝑦2 = 𝑞(𝑥, 𝑦)                                  (61) 

 

∫ (
𝜕2𝐹6

𝜕𝑦2 +
𝜕2𝐹9

𝜕𝑥𝜕𝑦
−

𝜕𝐹12

𝜕𝑦
−

𝜕𝐹10

𝜕𝑥
+ 𝐹14) 𝑑𝑧 =

ℎ
2⁄

−ℎ
2⁄

0        (62) 

 

∫ (
𝜕2𝐹7

𝜕𝑥2 −
𝜕𝐹13

𝜕𝑥
+

𝜕2𝐹8

𝜕𝑥𝜕𝑦
 −

𝜕𝐹11

𝜕𝑦
+ 𝐹15) 𝑑𝑧 = 0

ℎ
2⁄

−ℎ
2⁄

       (63) 

7 OBTAINING THE GENERAL GOVERNING 

EQUATION OF THE MINDLIN'S PLATE (INCLUDING 

BUCKLING AND BENDING) 

Considering the following constants: 

 

𝐵1 = 2𝐴12 + 𝑙2𝐴7 + 1

2
𝑙2𝐴8 + 2𝐴9                           (64) 

 

𝐵2 =
1

2
𝐵1 = 𝐴12 + 𝐴9 + 1

2
𝑙2𝐴7 + 1

4
𝑙2𝐴8                  (65) 

 

𝐵3 = −𝜇ℎ + 2𝐴7 − 𝐴8 − 𝐴11                                  (66) 

 

𝐵4 = 𝐴9 − 𝐴10 + 1

4
𝑙2𝐴8 − 𝐴12                                 (67) 

 

𝐵5 = 3𝐴12 − 3

2
𝑙2𝐴7 + 3

4
𝑙2𝐴8 − (𝜆 + 𝜇)𝐼2 + 2(𝜆 +

𝜇)𝐴6 𝐼𝑛+1 − (𝜆 + 𝜇)𝐴6
2𝐼2𝑛                                        (68) 

 

𝐵6 = −𝜇𝐼2 + 2𝜇𝐴6 𝐼𝑛+1 − 𝜇𝐴6
2𝐼2𝑛 − 4𝐴12 + 2𝑙2𝐴7 −

𝑙2𝐴8                                                                            (69) 

 

𝐵7 = 1

4
𝜇𝑙2𝐼2 − 1

2
𝜇𝑙2𝐴6𝐼𝑛+1 + 1

4
𝜇𝑙2𝐴6

2𝐼2𝑛                  (70) 

 

𝐵8 = −(𝜆 + 2𝜇)𝐼2 + 2𝐴10 − 𝐴9 − 𝐴12 + 1

2
𝑙2𝐴7 −

1

4
𝑙2𝐴8                                                                           (71) 

 

𝐵9 = 5

4
𝑙2𝐴8 − 1

2
𝜇𝑙2𝑛𝐴6

2𝐼2𝑛−2 − 𝑙2𝐴7 −  1

2
𝑙2𝑛𝐴7 +

3𝐴12 − (𝜆 + 𝜇)𝐼2 − (𝜆 + 𝜇)𝐴6
2𝐼2𝑛 + 2(𝜆 + 𝜇)𝐴6𝐼𝑛+1 

                                                                                  (72) 

𝐵10 = 3

2
𝑙2𝐴7 + 1

2
𝑙2𝑛𝐴7 − 3

2
𝑙2𝐴8 + 1

2
𝜇𝑙2𝑛𝐴6

2𝐼2𝑛−2 −

𝜇𝐼2 − 𝜇𝐴6
2𝐼2𝑛 + 2𝜇𝐴6𝐼𝑛+1 − 4𝐴12                          (73) 
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The general governing equation of the Mindlin's plate 

will become: 

 

𝐵1
𝜕4𝑤

𝜕𝑥2 𝜕𝑦2 + 𝐵2
𝜕4𝑤

𝜕𝑥4 
+ 𝐵2

𝜕4𝑤

𝜕𝑦4 
+ 𝐵3

𝜕2𝑤

𝜕𝑥2 
+ 𝐵3

𝜕2𝑤

𝜕𝑦2 
+

𝐵4
𝜕3𝜑𝑥

𝜕𝑥3 
+ 𝐵4

𝜕3𝜑𝑥

𝜕𝑥 𝜕𝑦2 + 𝐵4
𝜕3𝜑𝑦

𝜕𝑦 𝜕𝑥2 + 𝐵3
𝜕𝜑𝑥

𝜕𝑥
+ 𝐵3

𝜕𝜑𝑦

𝜕𝑦
+

𝐵4
𝜕3𝜑𝑦

𝜕𝑦3 
+ 𝑃𝑥

𝜕2𝑤

𝜕𝑥2 + 2𝑃𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑦

𝜕2𝑤

𝜕𝑦2 = 𝑞(𝑥،𝑦)      (74) 

 

−𝐵4
𝜕3𝑤

𝜕𝑥 𝜕𝑦2 + 𝐵5
𝜕2𝜑𝑦

𝜕𝑦 𝜕𝑥
+ 𝐵6

𝜕2𝜑𝑥

𝜕𝑦2 
+ 𝐵7

𝜕4𝜑𝑦

𝜕𝑥 𝜕𝑦3 −

𝐵7
𝜕4𝜑𝑥

𝜕𝑦4 
+ 𝐵7

𝜕4𝜑𝑦

𝜕𝑦 𝜕𝑥3 − 𝐵7
𝜕4𝜑𝑥

𝜕𝑦2 𝜕𝑥2 − 𝐵3
𝜕𝑤

𝜕𝑥
− 𝐵3𝜑𝑥 −

𝐵4
𝜕3𝑤

𝜕𝑥3 
+ 𝐵8

𝜕2𝜑𝑥

𝜕𝑥2 
= 0                                                 (75) 

 

−𝐵4
𝜕3𝑤

𝜕𝑦 𝜕𝑥2 + 𝐵9
𝜕2𝜑𝑥

𝜕𝑦 𝜕𝑥
+ 𝐵10

𝜕2𝜑𝑦

𝜕𝑥2 
+ 𝐵7

𝜕4𝜑𝑦

𝜕𝑥4 
+ 𝐵7

𝜕4𝜑𝑦

𝜕𝑥2 𝜕𝑦2 −

𝐵7
𝜕4𝜑𝑥

𝜕𝑦 𝜕𝑥3 − 𝐵7
𝜕4𝜑𝑥

𝜕𝑥 𝜕𝑦3 − 𝐵4
𝜕3𝑤

𝜕𝑦3 
− 𝐵3

𝜕𝑤

𝜕𝑦
− 𝐵3𝜑𝑦 +

𝐵8
𝜕2𝜑𝑦

𝜕𝑦2 
= 0                                                                  (76) 

8 SOLUTION OF THE GOVERNING EQUATIONS 

USING NAVIER'S METHOD 

The Navier's solution is applicable to the rectangular 

plates which have simply supported boundary 

conditions on all edges. Since the boundary conditions 

are spontaneously satisfied in this method, the unknown 

functions of the plate's mid-plane were assumed to be 

double trigonometric series [11], [13]: 

 

𝑊(𝑥،𝑦،𝑡) = ∑ ∑ 𝑊𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1   

                                                                                  (77) 

 

𝜑𝑥(𝑥،𝑦،𝑡) = ∑ ∑ 𝑋𝑚𝑛 𝑐𝑜𝑠 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1    

                                                                                  (78) 

 

𝜑𝑦(𝑥،𝑦،𝑡) = ∑ ∑ 𝑦𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑐𝑜𝑠 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1    

                                                                                  (79) 

 

The force can also be calculated from the following 

relations: 

 

𝑞 = ∑ ∑ 𝑄𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1            (80) 

 

𝑄𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑞(𝑥،𝑦)𝑠𝑖𝑛𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑑𝑥 𝑑𝑦

𝑏

0

𝑎

0
            (81) 

 

𝑄𝑚𝑛 = {

𝑞0      ;  𝐹𝑜𝑟 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 
16𝑞0

𝑚𝑛𝜋2     ; 𝐹𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑓𝑜𝑟𝑐𝑒 

4𝑄0

𝑎𝑏
 ; 𝐹𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 

    (82) 

 

Where: 

 

𝛼 =
𝜋𝑚

𝑎
   ،  𝛽 =

𝜋𝑛

𝑏
 ،  𝑖 = √−1                                 (83) 

 

Simply-supported boundary conditions were also 

satisfied by the Navier's method according to the 

following equations: 

 

𝑥 = 0 
،

𝑥 = 𝑎
{

𝑤(0،𝑦) = 𝑤(𝑎،𝑦) = ∑ ∑ 𝑤𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0   

𝜑𝑦(0،𝑦) = 𝜑𝑦(𝑎،𝑦) = ∑ ∑ 𝑦𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑐𝑜𝑠

𝑛𝜋

𝑏
 𝑦 = 0

 

                                                                                  (84) 
 

𝑦 = 0 
،

𝑦 = 𝑏
{

𝑤(𝑥،0) = 𝑤(𝑥،𝑏) = ∑ ∑ 𝑤𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

𝜑𝑥(𝑥،0) = 𝜑𝑥(𝑥،𝑏) = ∑ ∑ 𝑋𝑚𝑛 𝑐𝑜𝑠
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

 

                                                                                  (85) 

9 THE GENERAL EQUATION MATRIX OF A 

MINDLIN'S PLANE 

After solving the governing equations and naming the 

coefficient of each variable, we have: 

 

𝑀1 = 𝐵1𝛼2𝛽2 + 𝐵2𝛼4 + 𝐵2𝛽4 − 𝐵3𝛼2 − 𝐵3𝛽2 −
𝑃𝑥𝛼2 − 𝑃𝑦𝛽2                        (86) 

 

𝑀2 = 𝑀4 = 𝐵4𝛼3 + 𝐵4𝛼 𝛽2 − 𝐵3𝛼                    (87) 

 

𝑀3 = 𝑀7 = 𝐵4𝛽3 + 𝐵4𝛼2𝛽 − 𝐵3𝛽                (88) 

 

𝑀5 = −𝐵7𝛽4 − 𝐵7𝛼2𝛽2 − 𝐵6𝛽2 − 𝐵8𝛼2 − 𝐵3       (89) 

 

𝑀6 = 𝐵7𝛼𝛽3 + 𝐵7𝛼3𝛽 − 𝐵5𝛼𝛽                     (90) 

 

𝑀8 = −𝐵7𝛼3𝛽 − 𝐵7𝛼𝛽3 − 𝐵9𝛼𝛽                    (91) 

 

𝑀9 = 𝐵7 𝛼4 + 𝐵7𝛼2𝛽2 − 𝐵10𝛼2 − 𝐵8𝛽2 − 𝐵3        (92) 

 

Finally, the general equation matrix of the Mindlin's 

plate along with the auxiliary equations will be obtained 

as follows: 

 

[

𝑀1 𝑀2 𝑀3

𝑀4 𝑀5 𝑀6

𝑀7 𝑀8 𝑀9

] [

𝑤𝑚𝑛

𝑋𝑚𝑛

𝑦𝑚𝑛

] = [
𝑄𝑚𝑛

0
0

]            (93) 

 

Various materials such as epoxy, graphene, copper and 

so on can be considered as the plate's material. In this 

study, graphene is chosen as the plate's material. A 

single-layer graphene plate has the following properties 

[14]: 

 

𝐸 = 1.06𝑇𝑃𝑎، 𝜈 = 0.25 ، ℎ = 0.34𝑛𝑚، 𝜌 =

2250
𝑘𝑔

𝑚3⁄    
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Also, the relationship between E, μ and ν can be 

expressed as: 

𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
     ، 𝜇 =

𝐸

2(1+𝜈)
                    (94) 

 

Where, μ and λ are the lame's coefficients and E is the 

Young's modulus [15]. The value of the distributed force 

was considered to be q = 1N⁄m2. 

10 RESULTS & DISCUSSIONS 

Results were obtained using a computational program 

coded in the MATLAB software. The results have also 

been compared with the literature [16-18] and good 

agreements between results were observed. The plate's 

dimensional parameters are chosen as follows: 

a: plate's length 

b: plate's width 

h: plate's thickness 

l: material length scale parameter 
 

Tables 1 and 2 show the Mindlin's nanoplate bending 

rate under uniform surface traction for different material 

length scale parameters to thickness (l/h) and length to 

width ratio (a/b). As can be seen, as the length scale 

parameter to thickness ratio increases, the bending ratio 

decreases but it increases due to the increase in the 

plate's length to width ratio. 

 
Table 1 The Mindlin's nanoplate bending rate under 

sinusoidal load for different length to width and material 

length scale to thickness ratios (n=3, q=1e-18 N/nm2, a/h=30)  

 

a/b 

l/h 

0 0.5 1 2 

1 10.7837 5.3783 2.1483 0.6315 

1.5 20.7713 10.3671 4.1428 1.2179 

2 28.0010 13.9789 5.5868 1.6426 

 

Table 2 The Mindlin's nanoplate bending rate under 

sinusoidal load for different length to width and material 

length scale to thickness ratios (n=5, q=1e-18 N/nm2, a/h=30)  

 

a/b 

l/h 

0 0.5 1 2 

1 10.7822 5.3763 2.1500 0.6313 

1.5 20.7694 10.3644 4.1417 1.2177 

2 28.0010 13.9789 5.5856 1.6422 

 

Figure 1 compares the bending values of different 

nanoplates under sinusoidal load for different material 

length scale parameters to thickness and length to width 

ratio. As shown in the picture, the mentioned parameters 

affect the bending ratio as discussed in “Table 1ˮ . 

Figure 2 shows the bending contours of a Nth order 

simply supported nanoplate under the transverse load q. 

According to the results, the maximum bending value 

occurs at the midplane point. 

 

 

Fig. 1 Comparison of bending values of a Nth order 

nanoplate under the sinusoidal surface traction for different 

length to width and length scale parameter to thickness ratios 

(a/h=30, l/h=1, q=1e-18 N/nm2). 

 

 

 

Fig. 2 The bending contours of a Nth order nanoplate 

(a/h=30, l/h=1, q=1e-18 N/nm2, a/b=1, n=5). 

 

Table 3 compares the dimensionless bending values of a 

Nth order nanoplate under the uniform surface traction 

and sinusoidal load for material length scale to thickness 

and length to width ratios. As shown in the table, except 

for the classical theory (I=0), the dimensionless bending 

values under sinusoidal load were lower than bending 

values obtained under the uniform surface traction. 

However, when the material length scale is neglected the 

bending responses under the two types of load are the 

same. 
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Table 3 The comparison of dimensionless bending values of a Nth order nanoplate under uniform surface traction and sinusoidal 

load for various material length scale to thickness and length to width ratios (n=5, a/h=30, q=1e-18 N/nm2(  

a/b 

l/h 

0 0.5 1 2 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

1 1.00000 1.00000 0.49863 0.49845 0.19918 0.19907 0.05855 0.05851 

1.5 1.00000 1.00000 0.499902 0.49872 0.19941 0.19923 0.05863 0.05857 

2 1.00000 1.00000 0.49915 0.49885 0.19949 0.19931 0.05865 0.05859 

 

 

Figure 3 compares the bending values of different 

nanoplates under sinusoidal load for different material 

length scale parameters to thickness. As can be seen, the 

Kirchhoff's nanoplate yielded the lowest values and the 

third-order nanoplate yielded the highest values for 

bending. 

 

 
Fig. 3 Comparison of bending values of different 

nanoplates under the sinusoidal surface traction for different 

length to width ratios (a/h=30, l/h=1, q=1e-18 N/nm2). 

 

Figure 4 shows that the critical force value of a Nth order 

nanoplate under bi-axial loading in the x-y plane, 

increases due to an increase in the material length scale 

to thickness and decreases due to an increase in length 

to width ratio. Figure 5 compares the dimensionless 

buckling load values of a Nth order nanoplate under the 

uniform surface traction in the x direction for various 

material length scale to thickness and length to width 

ratios. As can be seen, dimensionless buckling load 

increases due to an increase in the material length scale 

to thickness and slightly decreases due to an increase in 

length to width ratio. 

 
Fig. 4 Values of critical force for a Nth order nanoplate 

under a bi-axial surface force in x and y directions for 

material length scale to thickness and length to thickness ratio 

of the nanoplate (a/b=1, n=5). 
 

Table 4 compares dimensionless buckling load values of 

different nanoplates under axial and bi-axial loads. As 

can be seen, the Kirchhoff's nanoplate yielded the lowest 

values and the Mindlin's nanoplate yielded the highest 

values for buckling. And also under the bi-axial loading 

in the x-y plane the plate's responses due to an increase 

in the material length scale parameter are as follows: 

- The dimensionless buckling load of the Mindlin's 

nanoplate increases. 

- The dimensionless buckling load of 3rd and 5th order 

shear nanoplate slightly decreases. 

- The dimensionless buckling load of Kirchhoff's 

nanoplate remains constant. 

Table 4 compares dimensionless buckling load values of 

3rd and 5th order nanoplate under axial loading. The 

results show that the dimensionless buckling load values 

for the 5th order nanoplate are higher than that of the 3rd 

order nanoplate. 
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Table 4 The comparison of dimensionless buckling values for different nanoplates under uniaxial and bi-axial loads for various 

material length scale to thickness and length to width ratios (n=5, a/h=30, q=1e-18 N/nm2(  

a/h 

 

Kirchhoff plate Mindlin plate 
Third order shear 

deformation plate 

N order shear 

deformation plate (n=5) 

Bi-axial 

buckling 

Uniaxial 

buckling 

Bi-axial 

buckling 

Uniaxial 

buckling 

Bi-axial 

buckling 

Uniaxial 

buckling 

Bi-axial 

buckling 

Uni-axial 

buckling 

5 5.0000 5.0000 10.1594 10.1594 5.6521 5.6521 5.6937 5.6937 

10 5.0000 5.0000 12.8101 12.8101 5.1723 5.1723 5.1826 5.1826 

20 5.0000 5.0000 13.6820 13.6820 5.0437 5.0437 5.0463 5.0463 

30 5.0000 5.0000 13.8568 13.8568 5.0195 5.0195 5.0206 5.0206 

40 5.0000 5.0000 13.9191 13.9191 5.0110 5.0110 5.0116 5.0116 

50 5.0000 5.0000 13.9481 13.9481 5.0070 5.0070 5.0074 5.0074 

 

Table 5 The comparison of dimensionless buckling values of the third and fifth order nanoplates under uniaxial loads for various 

length to width ratios (n=5, a/h=30, q=1e-18 N/nm2( (all the quantities for n=0 are 1.00000) 

a/h 

 

l/h 

0.5 1 1.5 2 

n=3 n=5 n=3 n=5 n=3 n=5 n=3 n=5 

5 2.1654 2.18047 5.6521 5.69366 11.4581 11.53596 19.5847 19.71135 

10 2.0442 2.04832 5.1723 5.18258 10.3835 10.40186 17.6785 17.70759 

20 2.0113 2.01231 5.0437 5.04627 10.0972 10.10167 17.1718 17.17888 

30 2.0050 2.00549 5.0195 5.02062 10.0433 10.04529 17.0765 17.07967 

40 2.0028 2.00309 5.0110 5.01161 10.0244 10.02549 17.0431 17.04485 

50 2.0018 2.00198 5.0070 5.00743 10.0156 10.01632 17.0276 17.02871 

 

 
Fig. 5 Values of critical force for a Nth order nanoplate 

under a uniaxial surface force in x direction for material 

length scale to thickness and length to thickness ratio of the 

nanoplate (a/b=1, n=5). 

11 CONCLUSIONS 

In this study, the bending and buckling of a Nth order 

nanoplate were investigated using the modified couple 

stress theory. As observed in the tables and figures, the 

nth order nanoplate's bending rate under uniform surface 

traction load decreases with an increase in length scale 

parameter to thickness ratio of the nanoplate, but, it 

increases with an increase in the aspect ratio of the 

nanoplate. Furthermore, the dimensionless bending 

values under sinusoidal and uniform surface tractions 

were compared and it was found that when the material 

length scale is neglected, the bending value is the same 

for both the loading but otherwise the bending value is 

always lower under the sinusoidal loading. 

The buckling analysis under uniaxial loading showed 

that the critical force value increases due to an increase 

in material length scale parameter to thickness ratio but 

slightly decreases due to an increase in the length to 

thickness ratio of the nanoplate. It was also found that 

the critical force value of a 5th order nanoplate is higher 

than that of 3rd order one. 
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