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Abstract: In this study, the characteristics of rectangular Kirchhoff nano-plate 

vibrations are investigated using a modified couple stress theory. To consider the 

effects of small-scale, the modified couple stress theory proposed by Young (2002) 

is used as it has only one length scale parameter. In modified couple stress theory, 

the strain energy density is a function of the components of the strain tensor, 

curvature tensor, stress tensor, and symmetric part of the couple stress tensor. After 

obtaining the strain energy, external work, and kinetic energy equation and 

inserting them in the Hamilton principle, the main and auxiliary equations of nano-

plate are obtained. Then, by applying the boundary and force conditions in the 

governing equations, the vibrations of the rectangular Kirschhof nano-plate with 

the thickness are investigated with simple support around. The solution method 

used in this study is the Navier method and the effects of material length scale, 

length and thickness of the nanoplate on the vibration are investigated and the 

results are presented and discussed in details. 
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1 INTRODUCTION 

Atomic and molecular scale testing is the safest method 

for the small-scale study of materials. In this method, 

the nanostructure is studied in real dimensions. In this 

method, to determine the mechanical properties of 

nanostructures, Atomic Force Microscopy (AFM) is 

used to apply different mechanical loads on nano-plates 

and measure the response. The main problems in this 

method are the difficulty of controlling the test 

conditions at this scale, as well as the high economic 

costs and time-consuming nature of the method. 

Therefore, this method is only used to validate other 

simple and low-cost methods. Atomic simulation is 

another solution for evaluating structures on a small 

scale. In this method, the behavior of atoms and 

molecules is examined by considering the effect of 

intermolecular and interatomic on their motion, which 

ultimately involves the deformation of the whole body. 

Using this method has a very high computational cost 

when the problem has a large deformation or a scale 

larger than one or more atoms. Therefore, its use is 

limited to problems with small deformations. 

Due to the limitations of the above methods for 

evaluating nanostructures, researchers have sought 

simpler solutions to evaluate nanostructures. Modeling 

small-scale structures using continuum mechanics is 

another solution in the study of these materials. There 

are a variety of size-dependent continuum theories that 

consider the effects of size, including micromorphic 

theory, microstructure theory, micropolar theory, 

Cosserat theory, nonlocal theory, modified couple 

stress theory, and strain gradient elasticity theory. 

These are developed from classical field theories that 

consider size effects. 

In this paper a rectangular Kirchhoff nano-plate model 

is developed for the vibration analysis of a graphene 

nanoplate based on a modified couple stress theory  and 

the results are presented with new figures and tables.  

2 MODIFIED COUPLE STRESS THEORY 

Young et al. (2002) [1] using a couple of stress theories 

proposed by Toupin [2], Mindlin and Tiersten [3], 

Koiter [4], and Mindlin [5] in 1964 proposed a 

modified couple stress model that has only one material 

length scale parameter to illustrate the effect of size, 

while the classical couple stress theory has two material 

length scale parameters. 

In the modified couple stress theory, the strain energy 

density in three-dimensional vertical coordinates for an 

object bounded by volume V and surface Ω is 

expressed as follows [6]: 

𝑈 =  
1

2
∫  

𝑉
(𝜎𝑖𝑗ℇ𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉    𝑖, 𝑗 = 1,2,3

 (1) 

ℇ𝑖𝑗  =  
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)   

 (2) 

𝜒𝑖𝑗  =  
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖)                 (3) 

 

Where, χij and εij  are the symmetric parts of the 

curvature tensor and the strain tensor, respectively. 

Also, θi and ui are defined as the displacement vector 

and the rotational vector, respectively: 

 

𝜃 =  
1

2
 𝐶𝑢𝑟𝑙 𝒖                  (4) 

 

Where, σij and mij are the stress tensor and the 

deviatoric part of  the couple stress tensor, respectively, 

which are defined as follows: 

 

𝜎𝑖𝑗  =  𝜆ℇ𝑘𝑘𝛿𝑖𝑗 + 2𝜇ℇ𝑖𝑗                (5) 

 

𝑚𝑖,𝑗  =  2𝜇 𝑙2𝜒𝑖𝑗                 (6) 

 

Where, λ and μ are the lame constants, 𝛿𝑖𝑗 is the 

Kronecker delta, and 𝑙 is the material length scale 

parameter. From “Eqs. (3) and (6)ˮ , it can be seen that 

χij and mij are symmetric. 

3 KIRCHHOFF PLATE MODEL 

The displacement equations for the Kirchhoff plate are 

defined as follows: 

 

𝑢1(𝑥, 𝑦, 𝑧, 𝑡)  =  −𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
 

𝑢2(𝑥, 𝑦, 𝑥, 𝑡) = −𝑧
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑦
                                 (7) 

𝑢3(𝑥, 𝑦, 𝑧)  =  𝑤(𝑥, 𝑦) 

 

Where, w is the amount of displacement of the center 

point of the plane along the z-axes. The symmetric part 

of the curvature tensor and the strain and stress tensors 

and the rotational vector for the Kirchhoff plate model 

is as follows: 

 

ℇ𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
 (8) 

  

ℇ𝑦𝑦 = −𝑧
𝜕2𝑤

𝜕𝑦2
 (9) 

  

ℇ𝑥𝑦 = ℇ𝑦𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
 (10) 
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ℇ𝑧𝑧 = ℇ𝑥𝑧 = ℇ𝑧𝑥 = ℇ𝑦𝑧 = ℇ𝑧𝑦 = 0 (11) 

 

θx =
∂w

∂y
 (12) 

  

θy = −
∂w

∂x
 (13) 

  
𝜃𝑧 = 0 (14) 

 

𝑥𝑥𝑥 =
𝜕2𝑤

𝜕𝑥 𝜕𝑦
 (15) 

  

𝑥𝑦𝑦 = −
𝜕2𝑤

𝜕𝑥 𝜕𝑦
 (16) 

  

𝑥𝑥𝑦 = 𝑥𝑦𝑥 =
1

2
(

𝜕2𝑤

𝜕𝑦2
−

𝜕2𝑤

𝜕𝑥2
) (17) 

  

𝑥𝑥𝑧 = 𝑥𝑧𝑥 = 𝑥𝑦𝑧 = 𝑥𝑧𝑦 = 𝑥𝑧𝑧 = 0 (18) 

 

𝜎𝑥𝑥 = −(𝜆 + 2𝜇) (𝑧
𝜕2𝑤

𝜕𝑥2
) − 𝜆 (𝑧

𝜕2𝑤

𝜕𝑦2
) (19) 

  

𝜎𝑦𝑦 = −𝜆 (𝑧
𝜕2𝑤

𝜕𝑥2 ) −(𝜆 + 2𝜇) (𝑧
𝜕2𝑤

𝜕𝑦2 ) (20) 

  

𝜎𝑧𝑧 = −𝜆𝑧 (
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) (21) 

  

𝜎𝑦𝑥 = 𝜎𝑥𝑦 = −2𝜇 (𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
) (22) 

  

𝜎𝑥𝑧 = 𝜎𝑧𝑥 = 𝜎𝑦𝑧 = 𝜎𝑧𝑦 = 0 (23) 

 
The variation of strain energy is expressed as follows: 

 
𝛿𝑈 = ∫  

𝑉
(𝜎𝑥𝑥  𝛿 ℇ𝑥𝑥 + 𝜎𝑦𝑦 𝛿ℇ𝑦𝑦 + 2𝜎𝑥𝑦  𝛿 ℇ𝑥𝑦 + 

2𝜎𝑥𝑧 𝛿 ℇ𝑥𝑧 +  2𝜎𝑦𝑧 𝛿 ℇ𝑦𝑧 +𝑚𝑥𝑥 𝛿 𝑥𝑥𝑥 + 𝑚𝑦𝑦 𝛿𝑥𝑦𝑦 +

𝑚𝑧𝑧 𝛿𝑥𝑧𝑧 + 2𝑚𝑥𝑦 𝛿𝑥𝑥𝑦 + 2𝑚𝑥𝑧 𝛿𝑥𝑥𝑧 +

2𝑚𝑦𝑧 𝛿 𝑥𝑦𝑧)𝑑𝑉                                                         (24) 

 

For simplification, the coefficients of the variables can 

be named from F1 to F3 according to “Eq. (25)ˮ  and 

obtained separately. 

 

𝛿𝑈 = ∫  
𝑉

(𝐹1𝛿𝑤,𝑥𝑥+ 𝐹2 𝛿𝑤,𝑦𝑦

+ 𝐹3 𝛿𝑤,𝑥𝑦 )𝑑𝑉 

(25) 

 

Where: 

(26) 
𝐹1 =

𝜕2𝑤

𝜕𝑥2
[(𝜆 + 2𝜇)𝑧2 + 𝜇𝑙2] + 

 
𝜕2𝑤

𝜕𝑦2
(𝜆𝑧2 − 𝜇𝑙2) 

 

(27) 
𝐹2 =

𝜕2𝑤

𝜕𝑦2
[(𝜆 + 2𝜇)𝑧2 + 𝜇𝑙2] + 

 
𝜕2𝑤

𝜕𝑥2
(𝜆𝑧2 − 𝜇𝑙2) 

 

(28) 𝐹3 =
𝜕2𝑤

𝜕𝑥𝜕𝑦
(4𝜇𝑧2 + 4𝜇𝑙2)  

4 EQUATION OF VIRTUAL WORK OBTAINED BY 

EXTERNAL FORCE [7] 

Virtual work performed by an external force consists of 

three parts: 

1. Virtual work performed by force body on V= Ω× (- 

h⁄2, h⁄2). 

2. Virtual work performed by surface traction at 

upper and lower levels (Ω). 

3. Virtual work done by surface traction on lateral 

surfaces S= Γ× (- h⁄2, h⁄2), where Ω is the middle 

plate of the sheet and Γ is the middle environment 

of the sheet.  

If (fx, fy, fz) are the body forces, (cx, cy, cz) are the body 

couples, (qx, qy, qz) are the forces acting on the Ω plane, 

(tx, ty, tz) are the Cauchy's tractions and (Sx, Sy, Sz) are 

surface couples, the Variations of the virtual work is 

expressed as: 

 

𝛿𝑤 = −[∫  
𝛺

(𝑓𝑥𝛿𝑢 + 𝑓𝑦𝛿𝑉 + 𝑓𝑧𝛿𝑤 + 𝑞𝑥𝛿𝑢 + 𝑞𝑦𝛿𝑉 

+𝑞𝑧𝛿𝑤 + 𝑐𝑥𝛿𝜃𝑥 + 𝑐𝑦 𝛿𝜃𝑦 + 𝑐𝑧𝛿𝜃𝑧) 𝑑𝑥 𝑑𝑦 +

∫  
𝛤

(𝑡𝑥𝛿𝑢 + 𝑡𝑦𝛿𝑉 + 𝑡𝑧𝛿𝑤 + 𝑠𝑥𝜃𝑥   + 𝑠𝑦𝛿𝜃𝑦 + 𝑠𝑧𝛿)  

                                                                                  (29) 

 

Given that in this study only external force qz was 

applied, virtual work is as follows: 

 

𝛿𝑤 = ∫ ∫ 𝑞(𝑥, 𝑦)𝛿𝑤(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 
𝑏

0

𝑎

0

 (30) 

 

Kinetic energy variations are described as follows: 

 

𝛿𝑇 = ∫ ∫ 𝜌(�̇�1𝛿�̇�1 + �̇�2𝛿�̇�2

ℎ
2

−
ℎ
2𝐴

+ �̇�3𝛿�̇�3)𝑑𝐴 𝑑𝑧  
 

= ∫ [𝜌ℎ�̇�𝛿�̇� +
𝜌ℎ3

12
 (

𝜕�̇�

𝜕𝑥

𝜕𝛿�̇�

𝜕𝑥𝐴

+
𝜕�̇�

𝜕𝑦

𝜕𝛿�̇�

𝜕𝑦
)]  𝑑𝐴  

 (31) 
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Where, ρ is the density. Using the Hamilton principle 

[8]: 

 

∫ (𝛿𝑇 − (𝛿𝑈 − 𝛿𝑤))𝑑𝑡
𝑇

0

= 0 (32) 

 

Where, T is the kinetic energy, U is the strain energy, 

and W is the external energy. 

5 THE FINAL EQUATION OF THE PLANE WITH 

THE APPLICATION OF EXTERNAL FORCE 

Using the Hamilton principle, the main equation is 

obtained as follows: 

 

[∫ (
𝜕2𝐹1

𝜕𝑥2
+

𝜕2𝐹2

𝜕𝑦2
+

𝜕2𝐹3

𝜕𝑥𝜕𝑦
) 𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

] 

= 𝑞(𝑥, 𝑦) + 𝜌ℎ �̈� − 
𝜌ℎ3

12
∇2�̈� 

 

(33) 

6 OBTAINING KIRCHHOFF’S PLATE EQUATIONS 

IN THE MOST GENERAL CASE 

Considering the following values: 

 

𝐴1 = (𝜆 + 2𝜇)𝐼2 + 𝜇𝑙2ℎ (34) 

 

𝐼𝑖 = ∫ 𝑍𝑖   𝑑𝑧

ℎ
2

−ℎ
2

   (35) 

 
The general equations of the Kirchhoff plate will be 

obtained as follows: 

 

𝐴1
𝜕4𝑤

𝜕𝑥4 
+ 𝐴1

𝜕4𝑤

 𝜕𝑦4 + 2𝐴1
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 = 𝑞(𝑥, 𝑦) + 𝜌ℎ
𝜕2𝑤

 𝜕𝑡2 −

 
𝜌ℎ3

12
(

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 +
𝜕4𝑤

𝜕𝑦2𝜕𝑡2)                               (36) 

7 NAVIER SOLUTION METHOD 

The Navier solution method can be used for rectangular 

plates with simply supported boundary conditions at all 

edges. Because the boundary conditions are 

automatically satisfied in this method, the unknown 

functions of the middle surface of the plate are 

expressed as dual trigonometric series [7], [9]: 

 

𝑊(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1   

                                                                                         (37) 

The force can also be calculated from the following 

relations: 

 

𝑞 = ∑ ∑ 𝑄𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑒𝑖𝜔𝑡∞
𝑛=1

∞
𝑚=1            (38) 

 

𝑄𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑞(𝑥, 𝑦)𝑠𝑖𝑛𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑑𝑥 𝑑𝑦

𝑏

0

𝑎

0
          (39) 

 

𝑄𝑚𝑛 = {

𝑞0      ;  𝐹𝑜𝑟 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 
16𝑞0

𝑚𝑛𝜋2
    ; 𝐹𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑓𝑜𝑟𝑐𝑒 

4𝑄0

𝑎𝑏
 ; 𝐹𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 

    (40) 

 

Where: 

 

𝛼 =
𝜋𝑚

𝑎
   , 𝛽 =

𝜋𝑛

𝑏
 , 𝑖 = √−1                              (41) 

 

The simply supported boundary conditions are also 

satisfied by the Navier method according to the 

following equations: 

 

𝑥 = 0 
,

𝑥 = 𝑎
{

𝑤(0, 𝑦) = 𝑤(𝑎, 𝑦) = ∑ ∑ 𝑤𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0   

𝜑𝑦(0, 𝑦) = 𝜑𝑦(𝑎, 𝑦) = ∑ ∑ 𝑦𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑐𝑜𝑠

𝑛𝜋

𝑏
 𝑦 = 0

 

                                                                                  (42) 

 

𝑦 = 0 
,

𝑦 = 𝑏
{

𝑤(𝑥, 0) = 𝑤(𝑥, 𝑏) = ∑ ∑ 𝑤𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

𝜑𝑥(𝑥, 0) = 𝜑𝑥(𝑥, 𝑏) = ∑ ∑ 𝑋𝑚𝑛 𝑐𝑜𝑠
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

 

                                                                                  (43) 

8 OBTAINING THE MATRIX OF KIRCHHOFF 

PLATE EQUATIONS  

After solving the equations using the Navier method 

and naming the coefficients of the variables of the 

equations, we have: 
 

(44) 

𝑤𝑚𝑛(𝐴1𝛼4 + 𝐴1𝛽4 + 2𝐴1𝛼2𝛽2)  = 𝑄𝑚𝑛 −

𝜌ℎ𝑤𝑚𝑛 𝜔2 −
𝜌ℎ3

12
𝑤𝑚𝑛𝛼2 𝜔2 −

𝜌ℎ3

12
𝑤𝑚𝑛 𝛽2𝜔2   

 

The general matrix of Kirchhoff plate equations with 

auxiliary equations is obtained as follows: 

 

([𝑁1] − 𝜔2[𝐾1]) [𝑤𝑚𝑛]  = [𝑄𝑚𝑛] (45) 

 

Where: 

 

𝑁1 = 𝐴1𝛼4 + 𝐴1𝛽4 + 2𝐴1𝛼2𝛽2 (46) 

 

𝐾1 = −𝜌ℎ −
𝜌ℎ3

12
𝛼2 −

𝜌ℎ3

12
𝛽2 (47) 
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The material of the plate is considered to be different 

materials such as epoxy, graphene, copper, etc. In this 

study, the plate material was considered as graphene. A 

single-layer graphene plate has the following properties 

[8]: 

 

𝖤 = 1.06𝑇𝑃𝑎, 𝜈 = 0.25 , ℎ = 0.34𝑛𝑚, 𝜌

= 2250
𝑘𝑔

𝑚3⁄  

 

Also, the relationship between E and μ, and ν can be 

written as follows: 

 

𝜆 =
𝜈𝘌

(1 + 𝜈)(1 − 2𝜈)
     , 𝜇 =

𝘌

2(1 + 𝜈)
 

 

(48) 

 

Where, E is Young’s Modulus, and μ and λ are the 

Lame coefficients [10]. Also, the amount of force is 

considered q = 1N⁄m ^ 2. 

9 RESULTS & DISCUSSIONS 

The calculation program is written in MATLAB 

software and the results are obtained using this 

program. All boundary conditions are considered as a 

simple support. 

According to “Figs 1 to 4ˮ , the frequencies of different 

modes (ω11-ω12-ω21-ω22) of the Kirchhoff nano-plate 

decrease with increasing length to nano-plate thickness 

ratio. Also, when the effect of the size parameter is not 

considered (classical theory), the frequency is the 

lowest. Besides, as the effect of size increases, the 

frequency increases as well. It is noteworthy that the 

frequency is the lowest for the first mode and increases 

for the next modes. 

 

 
Fig. 1 Comparison of mode frequencies (ω11) for 

different ratios of length to thickness and ratios of length 

parameter to thickness of the plate for Kirchhoff nano-plate 

(a/b = 1). 

 
Fig. 2 Comparison of mode frequencies (ω12) for 

different ratios of length to thickness and ratios of length 

parameter  to thickness of the plate for Kirchhoff nano-plate 

(a/b = 1). 

 

 
Fig. 3 Comparison of mode frequencies (ω21) for 

different ratios of length to thickness and ratios of length 

parameter to thickness of the plate for Kirchhoff nano-plate 

(a/b = 1). 

 

 
Fig. 4 Comparison of mode frequencies (ω22) for 

different ratios of length to thickness and ratios of length 

parameter to thickness of the plate for Kirchhoff nano-plate 

(a/b = 1). 



90                                           Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 2/ June – 2021 
 

© 2021 IAU, Majlesi Branch 
 

Figure 5 shows that with increasing the ratio of the 

length scale parameter to the nano-plate thickness, the 

frequencies of different modes of Kirchhoff nano-plate 

increase as well. 

 

 
Fig. 5 Comparison of the different frequencies of modes 

for different ratios of length parameter to thickness for 

Kirchhoff nano-plate (a/b = 2 and a/h=30). 

 

Comparing “Fig. 6ˮ  and “Figs. 1 to 4ˮ  shows that the 

frequency increases when the length to width ratio of 

the plate is halved. 

 

 
Fig. 6 Comparison of the different frequencies of modes 

for different ratios of length to thickness for Kirchhoff nano-

plate (a/b = 0.5, a/h=1). 

 

“Tables 1 to 4ˮ  show the frequencies of different (ω11-

ω12-ω21-ω22) for different nano-plates. According to 

the tables, the frequency is the highest for the Kirchhoff 

nano-plate and the lowest for the Mindlin nano-plate if 

the length scale parameter is not considered. 

 

Table 1 Comparison of the first mode frequencies (ω11) for length-to-thickness ratio and different ratios length parameter to 

thickness of different nano-plates (a/b = 1) 

l/h 
a/h  

10 20 30 40 50 

 Kirchhoff plate 

0 124.98838 31.43847 13.98857 7.87172 5.03883 

0.5 176.76026 44.46071 19.78283 11.13229 7.12598 

1 279.48251 70.29855 31.27940 17.60169 11.26717 

2 515.34028 129.62412 57.67637 32.45591 20.77563 

 Mindlin plate 

0 121.5505 31.2102 13.9429 7.8572 5.0329 

0.5 249.5297 64.2570 28.7266 16.1924 10.3732 

1 436.5378 115.4757 51.9052 29.3145 18.7965 

2 722.2379 215.5686 99.1252 56.4382 36.3253 

 Third-order shear deformation plate 

0 121.6342 31.2161 13.9441 7.8576 5.0330 

0.5 173.8911 44.2699 19.7447 11.1202 7.1210 

1 276.5826 70.1049 31.2407 17.5894 11.2621 

2 511.3107 129.3539 57.6223 32.4387 20.7686 
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Table 2 Comparison of the mode frequencies (ω12) for length-to-thickness ratio and different length parameter to thickness ratios 

of different nano-plates (a/b = 1) 

a/h 
l/h 

0 0.5 1 2 

 Kirchhoff plate 

10 308.7461 436.6329 690.3772 1272.9926 

20 78.3559 110.8119 175.2090 323.0695 

30 34.9237 49.3895 78.0917 143.9940 

40 19.6641 27.8093 43.9704 81.0774 

50 12.5909 17.8062 28.1540 51.9135 

 Mindlin plate 

10 289.5156 592.8023 988.5087 1223.2879 

20 76.9722 158.2169 280.4153 492.9660 

30 34.6425 71.3140 128.0217 237.9174 

40 19.5743 40.3193 72.7219 137.8488 

50 12.5539 025.8663 46.7575 89.4593 

 Third-order shear deformation plate 

10 289.9375 420.6563 674.3836 1250.9755 

20 77.0069 109.6563 174.0385 321.4395 

30 34.6497 49.1546 77.8533 143.6613 

40 19.5766 27.7342 43.8941 80.9709 

50 12.5548 17.7753 28.1226 51.8696 

 

Table 3 Comparison of the mode frequencies (ω21) for length-to-thickness ratio and different length parameter to thickness ratios 

of different nano-plates (a/b = 1) 

a/h 
l/h 

0 0.5 1 2 

 Kirchhoff plate 

10 308.7461 436.6329 690.3772 1272.9926 

20 78.3559 110.8119 175.2090 323.0695 

30 34.9237 49.3895 78.0917 143.9940 

40 19.6641 27.8093 43.9704 81.0774 

50 12.5909 17.8062 28.1540 51.9135 

 Mindlin plate 

10 289.5156 592.8023 988.5087 1223.2879 

20 76.9722 158.2169 280.4153 492.9660 

30 34.6425 71.3140 128.0217 237.9174 

40 19.5743 40.3193 72.7219 137.8488 

50 12.5539 25.8663 46.7575 89.4593 

 Third-order shear deformation plate 

10 289.9375 420.6563 674.3836 1250.9755 

20 77.0069 109.6563 174.0385 321.4395 

30 34.6497 49.1546 77.8533 143.6613 
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40 19.5766 27.7342 43.8941 80.9709 

50 12.5548 17.7753 28.1226 51.8696 

 

Table 4 Comparison of the mode frequencies (ω22) for length-to-thickness ratio and different length parameter to thickness ratios 

of different nano-plates (a/b = 1) 

a/h 
l/h 

0 0.5 1 2 

 Kirchhoff plate 

10 488.2420 690.4785 1091.7424 2013.0735 

20 124.9884 176.7603 279.4825 515.3403 

30 55.8018 78.9157 124.7766 230.0767 

40 31.4385 44.4607 70.2985 129.6241 

50 20.1355 28.4759 45.0243 83.0207 

 Mindlin plate 

10 443.6884 908.3644 1444.5250 1088.1654 

20 121.5505 249.5297 436.5378 722.2379 

30 55.0918 113.3246 202.1703 365.8010 

40 31.2102 64.2570 115.4757 215.5686 

50 20.0412 41.2804 74.4444 141.0270 

 Third-order shear deformation plate 

10 444.5855 653.6982 1055.3211 1963.4588 

20 121.6342 173.8911 276.5826 511.3107 

30 55.1098 78.3225 124.1752 229.2384 

40 31.2161 44.2699 70.1049 129.3539 

50 20.0437 28.3971 44.9443 82.9090 

 

10 CONCLUSIONS 

In this study, the vibrations of the Kirchhoff nano-plate 

are investigated using the modified couple stress 

theory. Based on the obtained results, the frequencies 

of the different modes of Kirchhoff nano-plate decrease 

with increasing the length to thickness ratio of the 

nano-plate. Also, the frequency is the lowest, when the 

effect of the size parameter is not considered (classical 

theory). Meanwhile, with increasing the effect of size, 

the frequency increases as well. The frequency is the 

lowest for the first mode and increases for the next 

modes. Furthermore, frequency increases when the 

length to width ratio of the plate is halved. 
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