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Abstract: The Non-destructive vibration based structural damage detection 
techniques have been developed in the recent decades. They are usually converted 
into a mathematical optimization problem that should be solved using optimization 
algorithms. In this paper, a new hybrid algorithm, using a particle swarm - genetic 
optimization, is proposed that is called Swarm Life Cycle Algorithm (SLCA). 
Additionally, Modified Total Modal Assurance Criterion (MTMAC) that is modal 
based and involved natural frequencies and mode shapes, is used as an objective 
function. A cantilever beam is modelled and simulated using finite element method 
as a numerical case study with several different damage scenarios. To compare the 
effectiveness of the proposed algorithm with GA and PSO, they are applied to detect 
the locations and severities of damages of numerical cases separately. To assess the 
robustness of them, the effects of environmental noise, coordinate and mode 
incompleteness on the accuracy of damage detection have investigated. For 
experimental validation of the proposed method, empirical studies of single and 
double crack aluminium cantilever beams were conducted. The numerical and 
experimental results show that the proposed algorithm has great potential in crack 
identification. It is observed that SLCA is able to detect the location and extent of 
damage irrespective of the noise level and perform well in the presence of mode and 
coordinate incompleteness. 
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1 INTRODUCTION 

In recent decades, structural damage detection 

techniques have been developed regarding their 

important role in structural health monitoring. Such 

damages will severely affect the structural durability and 

reduce the designed working life if it is not duly detected 

and controlled. Some cracks take place in available 

components and are sensible; so, the damage is detected 

by visual inspection. However, most of others are too 

small and not accessible. Therefore, they are identified 

by advanced methods, for instance, vibration-based 

damage techniques.  

Many researchers have investigated the identification of 

vibration-based damage. A comprehensive study of 

vibration-based damage detection was presented by 

Doebling et al. [1]. The presence of damage can result in 

some vibrational parameters, mainly because the system 

loses its stiffness. Modal properties of a structure change 

when its components are damaged mainly due to a 

reduction in the stiffness [2]. Several review articles of 

vibration-based Structural Damage Detection (SDD) 

techniques have been undertaken [3–11].  

SDD is usually converted into a mathematical 

optimization problem that should be solved using 

optimization algorithms. Due to the large search space, 

finding the global optimum in a reasonable time may not 

be possible using traditional optimization techniques. 

On the other hand, the heuristic algorithms can deal with 

finding global optimum for such complex problems with 

a significantly less computational cost. In one aspect, 

meta-heuristic optimization methods are generally 

classified into population-based and single-solution 

based categories, which are exploitation and 

exploration-oriented, respectively. Two main types of 

population-based optimization algorithms are Swarm 

Intelligence (SI) and Evolutionary Computation (EC). 

SIs are derived from the social behavior of swarm and 

ECs are inspired by Darwin’s reproduction and survival 

of the fittest Theory. Among the SIs and ECs, Genetic 

Algorithm (GA) and Particle Swarm Optimization 

(PSO) are superior to the others, respectively. Many 

researchers have presented novel improved methods for 

damage detection by GA [12–29] and many others have 

implemented damage identification techniques by PSO 

and improved it [30-46]. However, they both have their 

strengths and weaknesses. GAs use evolutionary 

operators like selection, mutation, and crossover can 

reach the global region and are quite robust. 

Nevertheless, the convergence speed of these methods is 

slow. Moreover, as in GAs the worst individuals are 

eliminated and not permitted to pass to the Next 

Generation, the experiences of the individuals are 

missed compared to PSO. On the other hand, PSOs have 

easier coding and are faster in convergence because of 

their mathematical operators. But 

prematureconvergence may occur due to a lack of 

diversity. The lack of selection operator in PSOs leads 

to wasting resources on poor individuals. To boost the 

strengths of PSO and GA and to overcome their 

weaknesses, hybridizing them can be beneficial. In this 

way, a method with high diversity and fast convergence 

will be obtained [47-59]. 

In this paper, a new hybrid PSO-GA algorithm is 

proposed which is called the Swarm Life Cycle 

Algorithm (SLCA). It is adopted specially for structural 

damage detection problems. Numerical and 

experimental results illustrate the effectiveness of the 

proposed method in the identification of the location and 

severity of the damage. The accuracy of the method in 

predicting the damage location and severity, as well as 

its convergence speed, are investigated. Moreover, the 

effect of the number of Modes, coordinate 

incompleteness and environmental noise on obtained 

results is studied.  

2 VIBRATION BASED STRUCTURAL DAMAGE 

DETECTION 

2.1. Theoretical Background 

The equation of motion for free vibration of an un-

damped multi-degree of freedom (MDOF) system is 

given by: 

 

[𝑀]{𝑋(𝑡)̈ } + [𝐾]{𝑋(𝑡)} = 0                                       (1) 

 

Where, [𝑀]and [𝐾] are respectively mass and stiffness 

matrices and {𝑋(𝑡)̈ } and {𝑋(𝑡)}are acceleration and 

displacement vectors, respectively. For an N-DOF 

system, there are N natural frequencies and mode shapes 

that can be obtained by solving the following eigenvalue 

problem: 

 

([𝐾] − 𝜆𝑖[𝑀]){𝜑𝑖} = 0                                               (2) 

 

Where, 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue and {𝜑𝑖} is its 

corresponding eigenvector. Here, 𝜆𝑖 is the square of the 

𝑖𝑡ℎ natural frequency. Natural frequencies and mode 

shapes are called modal parameters, which are functions 

of the physical properties of the system. 

2.2. Modeling of Damage 

Physical properties of a system such as mass and 

stiffness are affected by the crack occurrence. As the 

change of mass is negligible compared to the change of 

stiffness, cracks are usually modeled through the 

reduction in local stiffness of the structure, as formulated 

below: 

 

                       (3) 
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Where, [𝐾𝑖
𝑑] and [𝐾𝑖] are the 𝑖𝑡ℎ element stiffness 

matrices of damaged and intact structure, respectively. 𝛽 

is the damage index, which is defined between 0 and 1. 

If 𝛽𝑖 = 0, the 𝑖𝑡ℎ element is completely intact; on the 

contrary, if 𝛽𝑖 = 1, the 𝑖𝑡ℎ element is destroyed. Although 

in this model, the damage severity does not exactly 

match the crack depth and also is affected by mesh 

density, Friswell et al. [60] showed that the crack is 

modeled correctly by this method. They also showed 

that if the crack is modeled elaborately by more details, 

it can substantially improve the damage assessment 

results.  

3 OBJECTIVE FUNCTION 

Choosing the appropriate objective function is a key 

success factor for any optimization problem. In 

vibration-based damage detection, the objective 

function is usually constructed from modal parameters 

such as natural frequency mode shapes or a combination 

of them. 

Perera and Torres [17] presented an objective function 

based on the Modified Total Modal Assurance Criterion 

(MTMAC). MTMAC, in turn, is based on the Total 

Modal Assurance Criterion (TMAC) developed by Gao 

and Spencer [61]. These researchers, however, modified 

this criterion by introducing the frequency parameter as 

follows: 

 

𝑀𝑇𝑀𝐴𝐶 = ∏
𝑀𝐴𝐶([𝜑𝑖

𝐸] ,[𝜑𝑖
𝑁])

(1+|
𝜆𝑖

𝑁−𝜆𝑖
𝐸

𝜆𝑖
𝑁+𝜆𝑖

𝐸|)

𝑚
𝑖=1                (4) 

 

Where, [𝜑𝑖
𝐸] and  [𝜑𝑖

𝑁] are the ith experimental and 

numerical mode shapes, 𝜆𝑖
𝐸𝑎𝑛𝑑 𝜆𝑖

𝑁 are the ith 

experimental and numerical eigenvalues, respectively, 

and MAC is the modal assurance criterion defined by 

Evins 1984 [62], as follows: 

 

𝑀𝐴𝐶𝑖𝑗 =
|{∅𝐴}𝑖

𝑇{∅𝐵}𝑗|
2

({∅𝐴}𝑖
𝑇{∅𝐴}𝑖)({∅𝐵}𝑗

𝑇{∅𝐵}𝑗)
                                  (5) 

 

According to Equation (4), the MTMAC value is 

between 0 and 1, where 1 denotes a perfect correlation. 

They formulated the objective function as: 

 

𝐹 = 1 − 𝑀𝑇𝑀𝐴𝐶                                                       (6) 

 

Since the objective function has shown its robustness in 

experimental damage detection [17], it was used in this 

paper as well.  

4 OPTIMIZATION ALGORITHM 

In this study, a new hybrid algorithm called Swarm Life 

Cycle Algorithm (SLCA) is proposed and adopted 

specially for structural damage detection problems. For 

more elucidating, a brief overview of GA, PSO, and the 

new hybrid method is provided in this section. 

4.1. Genetic Algorithm 

John Holland developed GA in 1975 based on the 

principles of genetics and natural selection. In this 

method, a population of individuals is repeatedly 

modified in every generation. At each step, children for 

the next generation are provided using parents that are 

selected randomly from the current population. There 

are three types of rules to create the next generation from 

the current one; i.e., selection, crossover, and mutation. 

Selection rules select parents that contribute to the next 

generation. Crossover rules form children by combining 

two parents. Mutation rules alter some of the individuals 

by changing their genes randomly to increase diversity. 

Some of the individuals that have the highest scores 

based on their fitness are chosen as elite and are passed 

on to the next generation.  

4.2. Particle Swarm Optimization (PSO) 

Edward and Kennedy (1995) formulated PSO in [63] by 

inspiration from the social behavior of animals such as 

insects swarming, fish schooling, or flocks of birds. 

PSO, like continuous GA, begins with a random 

population. However, PSO does not use evolution 

operators. That particles in PSO play the role of 

chromosomes in GA.  

Initially, PSO creates particles and assigns their 

velocities randomly. After evaluating the fitness 

function of the particle’s location, the method 

determines the best locations and their corresponding 

function value. New velocities are chosen in terms of the 

current velocities, individual best locations of the 

particle, and the best locations of their neighbors. 

 

𝑉𝑛𝑒𝑤 = W ∗ 𝑉𝑜𝑙𝑑 + 𝑌1 ∗ 𝑈1 ∗ (𝑃 − 𝑋) + 𝑌2 ∗ 𝑈2 ∗
(𝐺 − 𝑋)                                                                       (7) 

 

Where, 𝑉𝑛𝑒𝑤 is the updated velocity, W is an inertia 

weight, 𝑉𝑜𝑙𝑑  is the velocity of the previous step, Y1 and 

Y2 are self and social adjacent weights, respectively, U1 

and U2 are independent uniformly distributed random 

numbers between 0 and 1, P is the best position of the 

particle, G is the best position in the current 

neighborhood, and X is the current position of the 

particle. The particle locations are updated using the 

following formula: 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑉𝑛𝑒𝑤                                                  (8) 

 



4                                               Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 2/ June – 2021 
 

© 2021 IAU, Majlesi Branch 
 

Where, 𝑋𝑛𝑒𝑤 and 𝑋𝑜𝑙𝑑  are the new and old position of 

the particle, respectively.  

4.3. Swarm Life Cycle Algorithm (SLCA) 

In this paper, a new hybrid technique PSO-GA is 

proposed to overcome the weaknesses of PSO and GA 

algorithms and incorporate their strengths. SLCA 

consists of six stages (“Fig. 1”). 

 

 
Fig. 1 SLCA consists of six stages. 

 

At first, the parameters related to PSO and GA 

algorithms are determined by the user according to the 

flowchart in “Fig. 1ˮ. Also, the new algorithm needs to 

define two parameters, i.e., the minimum variance ratio 

(VR-Min) and the contraction coefficient (Cc), which 

are suggested according to experience to be 0.1 and 100, 

respectively. 

The first stage of the new algorithm is called swarm birth 

in which particles are generated according to the 

determined number, and the position and velocity of 

each will be determined randomly. The second stage is 

related to the life of the individuals, which are produced 

in the first step and will proceed using the PSO 

algorithm. The algorithm will continue until the variance 

of the fitness values is less than the specified minimum 

variance. In this way, this method prevents the PSO 

algorithm from being trapped in local minima. The 

termination conditions will be checked and the 

algorithm will end in case of satisfaction; otherwise, it 

will go on to the next step, which is creating the next 

generation by GA. The population size of the genetic 

algorithm must be equal to the size of the PSO particles 

obtained in the previous step and will be stored as PSO 

particles. 

It is noteworthy that particles with their best own 

memory are transferred to this stage, which is particle 

reproduction. A GA was used in this step. In this step, at 

the time of choosing the bests, each particle will be 

chosen with their best personal memory. After 

reproduction and in the process of crossover, the 

offspring receives the best personal memory from the 

parents. In the mutation, the particle’s best personal 

memory is also transferred to the mutated particle. 

Therefore, the operation of experience transform will be 

reproduced. 

After a few generations by GA (usually 6 or 7 

generations), the optimum solutions are achieved and the 

next stage begins, which is the death of the swarm. 

Particles that are formed after swarm life will be 

replaced by particles produced by GA, and this is the 

swarm upturn. At this stage, the particles are ready to 

start life. Before the modified particles can enter the life 

stage, the minimum ratio of variance must be reduced 

using the contraction coefficient, which is also shown in 

the flowchart of “Fig. 2”. The minimum ratio of variance 

is obtained from the following equation:  

 

(VR-Min) new=(VR-Min) old / Cc                                 (9) 

 

 
 

 

Fig. 2 Flowchart of SLCA. 
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The purpose of this section is to achieve solutions with 

less variance; i.e., the PSO algorithm can get closer to 

the optimal solutions. These steps will be repeated until 

the termination conditions of the algorithm are satisfied 

and reaching the optimal solution out of the swarm life 

stage.  

5 NUMERICAL IMPLEMENTATION AND 

COMPARATIVE STUDY 

A cantilever beam was considered here as a numerical 

case study to detect the location and severity of damage 

using the proposed method and then its results were 

compared with the solutions obtained from GA and 

PSO. To assess the robustness of the new algorithm, the 

effects of environmental noise, coordinate 

incompleteness and mode incompleteness on the 

accuracy of identification of damage were investigated. 

In order to extract natural frequencies and mode shapes 

of the beam, the Finite Element (FE) model and 

simulation were performed in MATLAB software. The 

material properties and dimensions of the beam are 

presented in “Table 1ˮ. 

  
Table 1 The material properties and dimensions of the beam 

Properties Dimensions 

E(pa) 

ρ 

kg/m(

)3 

υ 
Length 

(mm) 

Width(m

m) 

Height(m

m) 

910*70 2750 0.33 1000 46 9 

 

The beam was discretized to 20 2-nodes 4DOF beam 

elements. Damage scenarios with different locations and 

severities of cracks are specified in “Table 2ˮ. 

 
Table 2 Detail of damage scenarios 

Scenario 
Damaged 

Elements’ 

Numbers 
Damage Severity 

1 5 0.25 

2 2, 18 0.25, 0.1 

3 2, 9, 18 0.1, 0.2, 0.3 

 

The initial parameters required for each applied 

algorithm are presented in “Table 3ˮ. It is noteworthy, 

since the optimization is a stochastic process, the 

average values of 10 individual runs are noticed as the 

damage detection results for each scenario. 

 

 

 

Table 3 Determination of the initial parameters of GA, PSO 

and SLCA in Initialization step 

Algorithm Parameters Value 

PSO 

Swarm size 

Maximum 

Iterations 

Self-Adjustment 

Weight 

Social-Adjustment 

Weight 

200 

100 

2 

2 

GA 

Population size 

Maximum 

generations 

Crossover fraction 

Elite count 

200 

150 

0.7 * Population size 

0.05* Population 

size 

SLCA 

Swarm size 

Maximum 

Iterations 

Self-Adjustment 

Weight 

Social-Adjustment 

Weight 

Population size 

Maximum 

generations 

Crossover fraction 

Elite count 

contraction 

coefficient 

minimum variance 

ratio 

150 

100 

1.5 

1.5 

150 

5 

0.7 * Population size 

0.1* Population size 

100 

0.1 

5.1. Experimental Case Studies 

5.1.1. Setup for Experimental Case Studies 

Single and double crack aluminum cantilever beams, 

which are fixed to a heavy table by clamps, were 

considered for the experimental validation of the 

proposed method. Their dimensions are the same as the 

numerical case. The properties of the cracks are listed in 

“Table 4ˮ. 

 
Table 4 Location and depth of damage related to the clamped 

end of the beams 

case Location (mm) 
Depth(mm) @ 

Location (mm) 

1 Single crack 6@175 

2 Double cracks 6@175, 4@675 

 

The beams were excited by impact hammer DJB type 

IH-02 at ten equally spaced along the beam. Two Bruel 

and Kjaer (B&K) accelerometers type 4533-B were used 

to measure the responses. The analyzer used in this study 

was B&K Lan XI type 3160. The experimental setup is 

shown in “Fig. 3”.  
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Fig. 3 Experimental setup of cantilever beam: (a): setup 

components, and (b): the locations of the sensors and cracks. 

5.2.2. Estimation of Damage Indices 

To assess the ability of the proposed method in 

estimating the severity of the damage, first, it is 

necessary to obtain exact damage indices from the 

damage depths. To achieve this aim, the following 

formula can be used: 

 

damage severity % =
𝐸𝐼(𝑋)

𝐸𝐼
=  

1

1+𝐶𝑒
(
−2𝛼|𝑋−𝑋𝑐|

𝑑 )
         (10) 

 

Where, C= (𝐼0 − 𝐼𝑐)/ 𝐼𝑐  for  𝐼0 =
𝑤𝑑3

12
 and 𝐼𝑐 =

𝑤(𝑑−𝑑𝑐)3

12
.  

According to “Fig. 4”, X is any position along the beam 

and α is a constant and equal to 0.667 [45].  

 

 
Fig. 4 The location of the cracks on the experimental 

beam. 

 

Based on Equation (10), damage severity indices were 

calculated and listed in “Table 5ˮ.  

 
Table 5 damage severity indices on FEM with 20 elements 

regarded to single and double crack beams 

case Depth(mm) @ 

Location 

(mm) 

damage severity 

(%) 

number of 

elements 

Single 6@175 3.01, 59.02, 3.01 3, 4, 5 

double 6@175 

4@675 

3.01, 59.02, 3.01 

0.30,19.36, 0.30 

3, 4, 5 

13, 14, 15 

6 RESULT AND DISCUSSIONS 

6.1. Numerical Results 

In practical structural cases, vibration-based damage 

detection is sensitive to several parameters such as 

environmental noise, coordinate incompleteness, and 

mode shape incompleteness. In this study, the effect of 

these parameters on the accuracy of the method in the 

prediction of location and severity of damage is 

investigated 

6.1.1. Sensitivity to Noise 

Real measurement data are generally contaminated by 

environmental noise. The effect of noise is taken into 

consideration for eigenvalues and eigenvectors with the 

following formulas: 

 

𝜑𝑖𝑗
𝑘 = 𝜑𝑖𝑗(1 − 𝜂𝜉𝑖𝑗

𝑘 )                                                       (11) 

                              (12) 

 

Where, 𝜑𝑖𝑗
𝑘  is the jth component of the ith noise-

contaminated mode for kth measurement. 𝜆𝑖𝑗
𝑘  is the ith 

eigenvalue, 𝜂 is the noise level, and 𝜉𝑖𝑗
𝑘  is a random 

number in the range of [0, 1].  
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(c) 

Fig. 5 damage indices for three levels of noise: (a): 0%, 

(b): 2.5%, and (c): 5%, regarding Scenario-1. 

 

Figures 5 to 7 show the effect of noise on the accuracy 

of identification of the location and severity of the 

damage in PSO, GA, and SLCA methods for damage 
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scenarios 1, 2, and 3, respectively. As can be seen, all 

algorithms can detect the damage locations, but GA and 

PSO are not able to determine the damage extent exactly 

when noise levels are increased. Three noise levels 

applied in this process are 0, 2.5, and 5%. Moreover, 

some extent of damage is assigned to intact elements 
when the noise level increases. Interestingly, it is 

observed that SLCA can detect the location and extent 

of damage irrespective of the noise level. 
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(c) 

Fig. 6 damage indices for three levels of noise: (a): 0%, 

(b): 2.5%, and (c): 5%, regarding Scenario-2. 
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(c) 

Fig. 7 damage indices for three levels of noise: (a): 0%, 

(b): 2.5%, and (c): 5%, regarding Scenario-3. 

 

To investigate the accuracy of the solutions, the error 

values are presented in “Table 6ˮ. These values are 

obtained by the following equation: 

 

Error % =
‖real value−numerical value‖

‖real value‖
∗ 100                (13) 

 
 

Table 6 Average error of damage severity regarded to each 

scenario 

scenario algorithm 
noise (%) 

0 2.5 5 

Scenario 

1 

GA 0 1.3532 5.5514 

PSO 2.9411 1.1638 9.0453 

SLCA 0.8152 1.2092 2.2479 

Scenario 

2 

GA 1.6037 3.7075 4.4104 

PSO 1.3501 2.6483 10.3291 

SLCA 0.3516 1.394 2.6642 

Scenario 

3 

GA 1.2567 1.23 3.6013 

PSO 1.4097 1.9482 9.1526 

SLCA 0.9223 0.2548 1.3155 

 

According to “Table 6ˮ, the proposed algorithm 

achieves better results and shows its robustness to noise 

for single-crack and multi-crack beams. 
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6.1.2. Sensitivity to Coordinate Incompleteness 

In practice, it is not possible to measure all DOFs in a 

structure, either due to the physical inaccessibility, 

difficulties encountered in the measurement of rotational 

DOFs, lack of the number of accelerometers and 

analyzer channels, or the cost of time of the experiment. 

Thus, in this research, the effect of coordinate 

incompleteness on results is investigated. 

According to “Fig. 8”, three sets of coordinate 

incompleteness are used for comparing the performance 

of the methods. Due to experimental limitations, only the 

displacement coordinates can be measured, so the odd 

numbers correspond to the coordinates of each node are 

considered. First, the responses are measured only at 

nodes 2, 9, and 17. Next, the coordinates of nodes 2, 5, 

10, 13, 17, and 20 are considered. Lastly, it is assumed 

that all nodes are measured and the measurements are 

done at odd coordinate numbers shown in “Table 7ˮ. 

 

 
Fig. 8 Finite element model of cantilevered beam with 20 

elements, 21 nodes and 42 DOFs. 
 

Table 7 Three sets of coordinate incompleteness related to 

displacement coordinates 

Set 
Number of 

coordinates 
Coordinates’ numbers 

1 3 3 , 17 , 33 

2 6 3 , 11 , 19 , 27, 33 , 41 

3 20 
3 , 5 , 7 , . . . , 37 , 39 , 

41 

 

Figures 9 to 11 present the effect of coordinate 

incompleteness on the accuracy of identification of the 

location and severity of the damage by PSO, GA, and 

new hybrid method for damage scenarios 1 to 3, 

respectively. 
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(c) 

Fig. 9 Damage identification for three sets of coordinate 

incompleteness: (a): set-1, (b): set-2, and (c): set-3, regarding 

Scenario 1. 
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(c) 

Fig. 10 Damage identification for three sets of coordinate 

incompleteness: (a): set-1, (b): set-2, and (c): set-3, regarding 

Scenario 2. 
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(c) 

Fig. 11 Damage identification for three sets of coordinate 

incompleteness: (a) set-1, (b): set-2, and (c): set-3, regarding 

Scenario 3. 

 
Table 8 Error average of damage severity for each scenario 

vs. three sets of coordinate incompleteness 

Scenario Set GA PSO SLCA 

Scenario 

1 

1 1.1785 0.291 0 

2 0 0.04 0.2715 

3 0 0.8152 0.4426 

Scenario 

2 

1 4.591 3.161 1.9888 

2 2.7849 1.0888 0.6187 

3 1.0144 1.3501 0.3516 

Scenario 

3 

1 27.7762 18.066 11.183 

2 9.089 2.603 1.3922 

3 3.0637 0.5996 0.9223 

 

As can be seen from “Table 8ˮ, the algorithms in the 

first and second scenario have presented good results in 

the presence of the coordinate incompleteness. 

However, in the third scenario, in the first set, a large 

error is seen. Although the proposed algorithm presented 

better results, it needs more points to get better results.  

6.1.3. Sensitivity to the Number of Measured Modes 

It is known that measuring all the natural frequencies 

and their corresponding mode shapes is not possible due 

to the limits of the frequency range of accelerometers, 

force transducers, and analyzer channels as well as the 

restrictions ahead of the frequency range of exciters like 

hammer or shakers, the mode shape incompleteness. 

To survey mode incompleteness accurately, damage 

identification was carried out on the cantilever beam 

applying three frequency levels. Levels 1, 2, and 3 

include the first 3, 6, and 10 bending natural frequencies 

along with their mode shapes, respectively. It is evident 

from the results shown in “Figs. 12-14ˮ and “Table 9ˮ 

that PSO is severely sensitive to number of measured 

modes.  
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(c) 

Fig. 12 Damage indices for mode incompleteness: (a): the 

three first, (b): the six first, and (c): the ten first frequencies 

and mode shapes - Scenario 1. 

 

As a result, it is not recommended when there are a few 

numbers of modes measured. On the contrary, GA 

performed better than the other two algorithms in the 

case of single damage, but does not present good 



10                                               Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 2/ June – 2021 
 

© 2021 IAU, Majlesi Branch 
 

accuracy in multi crack beams. (specially in level 3 of 

three crack beam). SLCA presents better results 

compared to the other two methods specially in multi 

crack beams except for level 1 for single crack beam. 

However, it shows a level of sensitivity to mode 

incompleteness. 
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(c) 

Fig. 13 Damage indices for mode incompleteness: (a): the 

three first, (b): the six first, and (c): the ten first frequencies 

and mode shapes - Scenario 2. 
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(c) 

Fig. 14 Damage indices for mode incompleteness: (a): the 

three first, (b): the six first, and (c): the ten first frequencies 

and mode shapes - Scenario 3. 

 
Table 9 Average error of damage severity for each scenario 

with three sets of mode incompleteness 

scenario level GA PSO SLCA 

Scenario 

1 

1 0.0002 57.886 21.5404 

2 0.0011 0.0938 0.0172 

3 0.0004 0.0022 0.0001 

Scenario 

2 

1 133.64 154.86 119.19 

2 2.2287 15.1114 2.9431 

3 2.7373 12.7274 2.6642 

Scenario 

3 

1 127.51 199.33 123.9 

2 18.6614 15.5132 8.7587 

3 15.7532 16.6678 5.917 

6.2. Experimental Results 

As mentioned in section 5.2, single-crack and double-

crack beams were tested and the results are obtained in 

terms of Frequency Response Functions (FRFs). As the 

beam was excited by hammer at ten equally spaced 

nodes and the responses were measured at two nodes on 

the beams, twenty FRFs were measured for each of 

single and double cracked beams. Figure 15 shows 

magnitude and phase of one of the measured 

accelerances (point FRF for measuring force and 

response at point free end of the beams) for intact, 

single-crack, and double-crack beams. As can be seen 

from “Fig. 15”, the existence of the single crack and 

double crack has a considerable effect on the decrease of 

natural frequencies due to reduction of the local stiffness 

of the beam, which is more observable on higher modes.  
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Fig. 15 Magnitude and phase of one of the measured FRFs 

for intact, single-crack, and double-crack beams. 

 

Natural frequencies and mode shapes of the beams were 

calculated from obtained FRFs using the rational 

fraction Polynomial-Z (RFP-Z) method by BK Connect 

software. The results are presented in “Table 10ˮ.  

 
Table 10 The first ten natural frequencies (Hz) 

Mode Intact Single  Double  

1 7.48978 6.9002 6.88947 

2 46.93581 46.6315 44.93315 

3 132.1978 132.0289 126.4366 

4 259.719 252.3577 252.1405 

5 428.7169 409.4698 398.5931 

6 639.9772 616.2975 596.7422 

7 893.1108 876.6919 876.4676 

8 1190.111 1184.987 1156.168 

9 1522.263 1515.491 1490.863 

10 1902.634 1858.843 1857.81 

 

A beam was discretized to a twenty 2-noded 4DOF 

elements in order to use by the proposed method in the 

numerical identification process. First, SLCA algorithm 

was applied to the undamaged beam to determine the 

global Young’s modulus and the density of the beam for 

updating the FE model. These values were obtained to 

be 68.7 Gpa and 2590 kg/m3, respectively. Comparison 

of the first 10 natural frequencies by experiments and FE 

before and after updating are listed in “Table 11ˮ.  

 

Table 11 The first ten natural frequencies comparison 

experiment and FEM before and after updating 

Modes 
Experiment 

(Hz) 

Before 

updating 

(Hz) 

After 

updating 

(Hz) 

1 7.49 7.34 7.49 

2 46.93 45.97 46.93 

3 132.2 128.75 131.39 

4 259.72 252.47 257.49 

5 428.72 418 425.7 

6 639.98 626.21 636.05 

7 893.11 878.6 888.67 

8 1190.11 1177.08 1183.78 

9 1522.26 1521.95 1521.71 

10 1902.63 1892 1902.92 

 

As it is evident from “Fig. 16”, the proposed method can 

estimate the damage location and severity in both cases 

successfully. It should be noted that the method was able 

to detect the damage locations exactly and estimate the 

severity of damage by 2.4% and 4.8% error for single-

crack and double-crack beams, respectively.  
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(b) 
Fig. 16 damage indices for: (a): single, and (b): double 

crack beams. 

7 CONCLUSIONS 

In this paper, a novel hybrid algorithm (SLCA) approach 

based on PSO and GA was presented for estimating 
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damage locations and severity in beam like structures. 

The objective function was based on modal parameters 

(natural frequencies and mode shapes). The 

effectiveness of the proposed method has been evaluated 

by numerical and experimental cantilever beams. The 

effects of several parameters such as environmental 

noise, coordinate and mode incompleteness on the 

accuracy of the method in identification of location and 

severity of damage have been investigated. Some 

conclusions can be reached as follows: 

1. In contrast to PSO and GA, which were not able to 

estimate the severity of damages accurately, the 

proposed algorithm achieved acceptable outcomes 

and showed its robustness to noise for single and 

multi-crack beams.  

2. All algorithms have presented good results for the 

single and double crack beams in the presence of the 

coordinate incompleteness. Although. the proposed 

algorithm presented better results compared two other 

algorithms for the case of multi carack beams, with 

only three measured coordinates (sever coordinate 

incompleteness) a large error was seen. So, it is 

recommended that the method needs more points to 

get better results.  

3. It is evident from the obtained results that PSO is 

severely sensitive to number of measured modes. As 

a result, it is not recommended when only a few 

modes have been measured. On the contrary, GA 

performed better than the other two algorithms in the 

case of single damage, but does not present good 

accuracy in multi crack beams. (specially in level 3 

of three crack beam). SLCA presents better results 

compared to the other two methods specially in multi 

crack beams except for level 1 for single crack beam.  

4. In experimental studies, the proposed method was 

able to detect the damage locations exactly and 

estimate the severity of damage by 2.4% and 4.8% 

error for single and double crack beams. respectively. 

Therefore, it can be mentioned that SLCA is 

successful as a damage detection technique on 

experimental cases. “Table 12ˮ presents a qualitative 

glance at the results of numerical studies in which the 

symbols ++, +, * and – stand for up to 3%, 3% to 6%, 

6% to 10% and over 10% error, respectively.   

 

 
Table 12 A qualitative glance at the results of numerical studies 

 Environmental The coordinate 

incompleteness levels 

The mode 

Noise levels Incompleteness levels 

 1 2 3 1 2 3 1 2 3 

GA Scenario 1 ++ ++ + ++ ++ ++ ++ ++ ++ 

Scenario 2 ++ + + + ++ ++ - ++ ++ 

Scenario 3 ++ ++ ++ - * + - - - 

PSO Scenario 1 ++ ++ * ++ ++ ++ - ++ ++ 

Scenario 2 ++ ++ - + ++ ++ - - - 

Scenario 3 ++ ++ * - ++ ++ - - - 

SLCA Scenario 1 ++ ++ ++ ++ ++ ++ - ++ ++ 

Scenario 2 ++ ++ ++ ++ ++ ++ - ++ ++ 

Scenario 3 ++ ++ ++ - ++ ++ - * + 
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