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Abstract: In dynamic model of planetary gears, one of the key design parameters 

and one of the main sources of vibration is time–varying mesh stiffness of meshing 

gears. According to previous researches, the finite element method and analytical 

method are two techniques to estimate the mesh stiffness of meshing gears. In this 

work, in an innovation the periodically time–varying mesh stiffness of meshing 

gears is examined by both of finite element and analytical methods. The planetary 

gear set is modeled as a set of lumped masses and springs. Each element such as sun 

gear, carrier, ring gear and planets possesses three degrees of freedom and is 

considered as rigid body. The influence of effective parameters on the mesh stiffness 

of meshing gears and also numerical results of natural frequencies and vibration 

modes of the system are obtained. Based on the results, the influence of the higher 

pressure angles on the mesh stiffness of meshing gears is perceptible. By using the 

proposed mesh stiffness of meshing gears, for the system with numbers of odd and 

even equally and unequally spaced planets, natural frequencies and vibration modes 

are validated with a high accuracy.  
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1 INTRODUCTION 

In industry applications, planetary gears are generally 

used in power transmission systems. Dynamic loads, 

noise and reduction of the structural life are resulted 

from the planetary gear vibrations. Because of 

complexity and difficulty in the dynamic model, analysis 

of the dynamic for planetary gear sets is harder and 

complex than the other gear systems such as spur gears. 

In the dynamic model of planetary gears, key design 

factors are: mesh stiffness, bearing (support) stiffness, 

moments of inertia and component masses. Planetary 

gears are widely used in the aerospace, aircraft, wind 

turbine, marine and automotive applications and mining 

equipment. Some advantages and some positive points 

of planetary gear systems are: compactness, high torque 

to weight ratio and low noise, small radial bearing loads 

due to axi–symmetric orientation, high speed reduction 

in small volumes and also co–axial shaft arrangements.  

The main source of vibration in planetary gear systems 

is the periodically time–varying mesh stiffness of sun–

planet and ring–planet.  

A nonlinear time–varying dynamic model for a 

planetary gear system with time–varying mesh stiffness 

and other nonlinearities was investigated in [1, 2]. Lin 

and Parker [3] modelled the time-varying mesh stiffness 

of the sun–planet and ring–planet meshes as rectangular 

waveforms with different contact ratios and mesh 

phasing. Sun and Ha [4] established a lateral–torsional 

coupled model with multiple backlashes, time-varying 

mesh stiffness, error excitation and sun-gear shaft 

compliance. A computer simulation based approach to 

study the effect of shaft misalignment and friction on 

total effective mesh stiffness for spur gear pair was 

proposed by Saxena et al. [5]. A finite element model of 

the geared rotor system established by Hao et al. [6] with 

the linear mesh stiffness of engaged helical gears. Parker 

and Lin [7] showed that the multiple tooth meshes in 

planetary gears have varying numbers of teeth in contact 

under operating speed.  

Inalpolat and Kahraman [8] proposed a nonlinear time–

varying dynamic model to predict modulation sidebands 

of planetary gear sets with periodically time–varying 

mesh stiffness. Wei et al. [9] improved the interval 

harmonic balance method (IHBM) to solve the dynamic 

problems of gear systems with backlash nonlinearity and 

time-varying mesh stiffness under uncertainties. 

Ambarisha and Parker examined nonlinear dynamic 

behaviour of spur planetary gears using two models [10]: 

lumped–parameter model and finite element model. Li 

et al. [11] established a batch module called “integration 

of finite element analysis and optimum design” by 

taking gear systems as testing examples. Meanwhile, 
dynamic of  a lumped–parameter gear model by 

considering the effects of time–varying nonlinearity was 

formulated by Chen et al. [12] to investigate the spur 

gear rattle response under the idling condition. 

Kahraman [13, 14] developed a nonlinear time-varying 

dynamic model of a planetary transmission with an 

arbitrary number of pinions and proposed purely 

torsional model of the planetary gear system.  

Liu et al. [15] considered time–varying stiffness and 

internal and external excitations to analysis gear system 

under fractional–order PID control with the feedback of 

meshing error change rate. Masoumi et al. [16] studied 

the dynamic scenario of planetary gears with a lumped 

mass two–dimensional model under time–varying 

stiffness of gears. Sainsot et al. [17] presented an 

improved fillet/foundation compliance analysis based on 

the theory of Muskhelishvili applied to circular elastic 

rings and they derived an analytical formula for gear 

body–induced tooth deflections. Shen et al. [18] 

established the dynamical model of a spur gear pair with 

time–varying stiffness and static transmission error 

under uncertainties and they extended the Incremental 

Harmonic Balance Method (IHBM) to study the 

nonlinear dynamics of a spur gear pair. In order to study 

on a dynamic model of the gear pair with multi-state 

mesh and time-varying parameters, Shi et al [19] 

considered effects of teeth separation and back–side 

tooth mesh. Wang and Howard [20] proposed the results 

of a detailed analysis of torsional stiffness of a pair of 

involute spur gears in mesh using finite element 

methods.   

Zhou et al. [21] developed a modified mathematical 

model for simulating gear crack from root with linear 

growth path in a pinion by using an improved potential 

energy method to calculate the time-varying meshing 

stiffness of the meshing gear pair. The mesh stiffness of 

a gear under tooth faults such as tooth chip, tooth crack, 

and tooth breakage was derived by Tian et al. [22]. Jin 

et al. [23] developed a bending– torsional coupled 

dynamic model of the system by considering the lumped 

parameter method, and the influence of stiffness, 

damping and backlash and they solved numerically the 

dynamic equations. The complicated phenomenon of 

contact tooth pairs alternation between one and two 

during meshing was considered by Yang and Sun [24]. 

Lin and Parker [25] studied the free vibration of single–

stage planetary gear sets and they examined natural 

frequencies and classified vibration modes into three 

types of translational, rotational and planet modes.  

In this research, the dynamic and mesh stiffness of 

meshing gears in the single–stage spur planetary gear are 

investigated. According to previous researches, the 

mesh stiffness of meshing gears is evaluated by finite 

element [10, 20] and analytical methods [17, 24]. In this 

study, the mesh stiffness is investigated by both of finite 
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element and analytical methods and unlike previous 

researches [25], the main source of vibration; i.e., the 

periodically time–varying mesh stiffness of meshing 

gears is examined. The single mesh stiffness of a tooth 

pair for spur gears (gear and pinion) is investigated by 

analytical calculation. In an innovation, the mesh 

stiffness of a tooth pair is expanded to the mesh stiffness 

of sun–planets and ring–planets in the planetary gear 

system as the function of first planet rotation. The 

periodically time–varying mesh stiffness of sun–planets 

and ring–planets is examined in the form of Fourier 

series and the finite element method by the polynomial 

estimation function. Furthermore, the influence of 

pressure angles on the mesh stiffness is investigated. 

Finally, for geometrical structures of the system (equally 

and unequally spaced planets) numerical results of 

natural frequencies and vibration modes are examined.  

2 DYNAMIC MODEL OF THE PLANETARY GEAR  

Two–dimensional (2D) lumped–parameter model of the 

single–stage spur planetary gear system is shown in 

“Fig. 1”. Each element such as carrier (𝑐), ring (𝑟), sun 

(𝑠) and 𝐽 planets is assumed to have rigid behavior, i.e., 

lumped parameter system. The sun gear and carrier are 

connected to the input and output shaft, respectively. 

The external torque and force are applied to the input 

shaft (𝜏𝑠 and 𝐹𝑠) and the ring gear is held stationary. 

Planet bearings are connected to the carrier and they are 

free to rotate and also translate with respect to it. The 

mass and moment of inertia of bearings are: 𝑚𝑖 and 𝐼𝑖  

for 𝑖 = 𝑐, 𝑟, 𝑠, 𝑗 and 𝑗 = 𝑝1, 𝑝2, … , 𝐽 where 𝐽 is number 

of planets and 𝑝 denotes to the planet. Bearings are 

modeled by springs in 𝑥 and 𝑦 directions which are 

represented translational stiffness of bearings 

(𝐾𝑖𝑥 , 𝐾𝑖𝑦 , 𝑖 = 𝑐, 𝑟, 𝑠). The rotational stiffness of bearings 

(𝐾𝑖𝜃 , 𝑖 = 𝑐, 𝑟, 𝑠) is modeled by spring in the rotational 

direction of 𝜃 and stiffness of the planet bearing is 

represented by 𝐾𝑗. The translational and rotational 

coordinates of the carrier, ring and sun are: 𝑥𝑖 , 𝑦𝑖 and 𝜃𝑖 

where 𝑖 = 𝑐, 𝑟, 𝑠. The radial and tangential coordinates 

are: 𝜉𝑗 and 𝜂𝑗 which are known as translational 

coordinates of the planets center. The rotational 

coordinate of planets is: 𝑢𝑗 = 𝑟𝑗𝜃𝑗 and 𝜃𝑗 shows the 

rotation of planets.  

In the present model, each element has three degrees of 

freedom in planar motion: two translations and one 

rotation and the system has 3(𝐽 + 3) degrees of freedom. 

The base radius for bearings of the ring, sun, carrier and 

planets is shown by 𝑟𝑖 , 𝑖 = 𝑐, 𝑟, 𝑠, 𝑗. For the carrier 

bearing 𝑟 is the circle radius passing through the centers 

of planets.  

In the present model (“Fig. 2”), the stiffness and rigidity 

of gear teeth and gear bodies are simulated by springs. 

In “Fig. 2”, the mesh of sun– jth planet and ring– jth 

planet is shown. As an example for the mesh of sun– jth 

planet, the circumferential  jth planet location is 

identified by time–varying angle of 𝜓𝑗(𝑡) and the 

stiffness between sun and  jth planet (𝑘𝑠𝑗(𝑡)) acting along 

the action line. The static transmission error (𝑒𝑠𝑗(𝑡)) is 

included as dynamic excitation at one end of the mesh 

spring and the pressure angle between sun and  jth planet 

is 𝛼𝑠𝑗(𝑡). In “Fig. 1”, coordinates of this study are shown 

and 𝜓𝑗(𝑡) are depended on the unit vector’s rotation (i 

unit vector). 𝜓𝑗(𝑡) can be measured counter–clockwise 

from the first planet, so that 𝜓𝑝1 = 0.  

 

 

Fig. 1 Lumped parameter model of the planetary gear 

and system coordinates. 

 

 

 

Fig. 2 Mesh of sun, ring and  jth planet bearings. 

 

Figure 3 shows the kinematics sketches to derive 

relative deflection of components. As an example for 

mesh of sun gear and  jth planet gear, the gear mesh 
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deflection (𝛿𝑠𝑗) is obtained from the mixture of sun 

and  jth planet deflections along the action line (“Fig. 

3(a)”). Similarly, for mesh of ring gear and  jth planet 

the gear mesh deformation (𝛿𝑟𝑗) is derived by 

kinematics analysis of “Fig. 3(b)”. Kinematics 

analysis of “Fig. 3(c)” also shows the radial and 

tangential interfaces (𝛿𝑗𝑟 and 𝛿𝑗𝑡) of the planet bearing 

with respect to the carrier. Compression of the elastic 

elements (𝛿) is defined as “Eqs. (1)–(4)”: 

 

 

 

(a) (b) 

 

(c) 

Fig. 3 Kinematics sketches to derive relative deflection 

components. 

 

 

2.1 Mesh OF Sun– jth Planet 

 

   cos (   sin (    ) )sj j sj s j sj sy x          

  sin  cos   sj sj s sj j sjj r u e t         
(1) 

 
2.2 Mesh OF Ring– jth Planet 

 

   cos (   sin (    ) )rj j rj r j rj ry x          

  sin  cos   rj rj r rjj j r jr u e t         
(2) 

 
2.3  jth Planet Bearing Radial: 

 

sin    cos   jr j c j c jy x       (3) 

2.4  jth Planet Bearing Tangential: 

 

cos    sin   jt j c j c j c cy x r         (4) 

2.5 Equations OF Motion 

According to degrees of freedom of the system, the 

system consists of 3(𝐽 + 3) nonlinear equations of 

motion. Equations of motion for the single–stage spur 

planetary gear system of “Fig. 1” by the Newton’s 

second law are obtained as follows: 

2.5.1 Carrier Equations 

 

[(sin    c( ) os  )cos ( ( ) )c j c c jjc j jm ty xtK tx         

( (s   )co j ct y  ( )sin   )si ]( )n j c j c c jx rt t       

0cy cK y   

(5) 

[(sin    cos    s( ) ( ) ) in  ( )c c j j c j jc jt ty x tm y K         

(( s   )co j ct y  ( )sin   )co ]( )s j c j c c jx rt t       

0cy cK y   

(6) 

(cos  sin   )( 0) ( )c c j j c j c j c c c cI K y t xt r K             (7) 

 

2.5.2 Sun Gear Equations 

 

 cos (   sin( )( ( ) (    ) () ( )s s sj j sj s jt tk t tm x y       

   ( )) ( )  sin  cos   ( )j jsj s sj sjt x t t        s s jr u    

   sin(   ) () ) )(sj j sj sx s sxe t K xt F t     

(8) 

 cos (   sin( )( ( ) (    ) () ( )s s sj j sj s jt tk t tm y y       

   ( )) (  sin  cos ) ( ) sj s s j jj sjt tx t       s s jr u    

   ) (cos    (( ) )( ) )sj j sj sy s sye t K y tt t F     

(9) 

 ( )(cos (   si( ) ( )) (   )n (s s sj j sj s jtk t y tI t        

   ( )) (  sin  cos ) ( ) sj s s j jj sjt tx t        

 ) ( )js s sj s s sr u e t K t       

(10) 

 

2.5.3 Ring Gear Equations 

 

 cos (   sin ( )( ( ) ( ) ( ) ) (r r rj j rj r jt tyx tm tk        

   ( )) (  sin  cos ) ( ) rj r r j jj rjt tx t       rr jr u    

   sin(  ) ( ) )) 0(rj j rj rx re tt t K x     

(11) 

 cos (   sin ( )( ( ) ( ) ( ) ) (r r rj j rj r jt tyy tm tk        

   ( )) (  sin  cos ) ( ) rj r r j jj rjt tx t       rr jr u    

   cos(  ) ( ) ( ))] 0rj j rj ry rt te t K y     

(12) 

 ( )(cos (   sin (  ( ) ( )) ( )r r rj j rj r jI k t yt t t        

   ( )) (  sin  cos ) ( ) rj r r j jj rjt tx t       rr jr u    

 ) 0rj r re t K    

(13) 
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2.5.4  jth Planet Equations 

 

 cos (   sin( )( ( ) ( )) ) (  (sj j j sj s jj t tk t tm y        

   ( )) (  sin  cos ) ( ) sj s s j jj sjt tx t       s s jr u    

   sin  cos () ( ) ( )( ( ) ( )) sj sj rj j rj re t yt t tkt      

   sin (     sin( ) ( )) (  cos   ) ( )j rj r rj jrjjt t t tx          

 ) (sin  (sin   ) ( )r rj rj pn j cr j tr u e tt K y       

cos    ) 0( )j c j c cxt r     

(14) 

 cos (   sin( )( ( ) (    ) () ( )j j sj j sj s jt tk t tm y        

   ( )) (  sin  cos ) ( ) sj s s j jj sjt tx t       s s jr u    

   cos  cos () ( ) ( )( ( ) ( )) sj sj rj j rj re t yt t tkt      

   sin (     sin  cos ( ) ( )) ( ) ( )j rj r r jj r jjt t txt          

 ) (cos  (c) ( )os   rr rj rj j j cj tr u e tt K y       

sin    ) 0( )j c j c cxt r      

(15) 

 2
cos (   si( ( ) ( )) (n  )(  

j

sj j sj s

j

j jtu y
r

t
I

tk        

   ( )) (  sin  cos ) ( ) sj s s j jj sjt tx t      

s s jr u    

   ) ( )( ( )cos (   si( )) ( )n (  sj rj j rj r je yt t tt k t        

   ( )) (  sin  cos ) ( ) rj r r j jj rjt tx t      

  0)r jr rjr u e t     

(16) 

3 NATURAL FREQUENCIES AND VIBRATION 
MODES 

Equations of motion for the single–stage spur planetary 

gear system in the matrix form are written as follow: 

 

 ( ) ( ) ( ) ( )t t t t t      m bMq K K q τ F  (17) 

Where, M is the inertia matrix, K𝑏  is the diagonal support 

(bearing) stiffness matrix and K𝑚(𝑡) is the symmetric 

stiffness matrix. 𝛕(𝑡) denotes the external torque and the 

external torque is exerted on the sun gear and F(𝑡) shows 

the static transmission error excitation. Vector of the 

general coordinate for the single–stage spur planetary 

system is: 

 
T

1 1 1[ , , , , , , , , , , , ,..., , , ]c c c r r r s s s p p p J J Jx y x y x y u u      q  (18) 

Where, 𝜔𝑖 are natural frequencies and φ𝑖 are vector of 

vibration modes which are obtained from the numerical 

method of [25]. In planetary gear systems, vibration 

modes are classified into three types of translational, 

rotational and planet modes [25].  

4 CALCULATION OF THE MESH STIFFNESS 

In “Fig. 2”, 𝑘𝑟𝑗(𝑡) and 𝑘𝑠𝑗(𝑡) are the periodically time–

varying mesh stiffness of ring– jth planet and also sun–

 jth planet. The basic frequency of the system is 𝜔𝑇 and 

equals to: 𝜔𝑇 = 𝛾𝑠𝑄𝑆𝑄𝑟/(𝑄𝑠 + 𝑄𝑟), where 𝛾𝑠 is the 

angular velocity of the sun and 𝑄 denotes the teeth 

number for the internal and external gears. The 

periodically time–varying mesh stiffness of ring– jth 

planet and also sun– jth planet in the form of Fourier 

series is obtained from “Eqs. (19) and (20)”. In “Eqs. 

(19) and (20)”, ℎ𝑟 and ℎ𝑠 are harmonic terms used to 

explain and show the periodic functions of 𝑘𝑟𝑗(𝑡) and 

𝑘𝑠𝑗(𝑡). 𝑘𝑟𝑝(𝑡) and 𝑘𝑠𝑝(𝑡) are harmonic coefficients and 

are resulted from the Fourier series with the average 

amounts of 𝑘𝑟𝑝
1  and 𝑘𝑠𝑝

1 .  

 

1 2

1

ˆ( ) [( cos 2 )
rh

j

rj rp rp T rj

j

k t k k t 


       

2 1 ˆsin 2 )]j

rp T rjk t      

(19) 

1 2

1

( ) [( cos 2 )
sh

j

sj sp sp T sj

j

k t k k t 


       

2 1 sin 2 )]j

sp T sjk t      

(20) 

In the present model, the phasing (phase angle) of sun–

 jth planet is ∆𝑠𝑗. The phasing of ring– jth planet is ∆̂𝑟𝑗 and 

equals to ∆𝑠𝑗 + ∆𝑠𝑟 and ∆𝑠𝑟 is the phasing of sun and 

ring gear (the phase angle between mesh of ring– jth 

planet and mesh of sun– jth planet). 

Generally, the mesh stiffness of gears at the mesh 

frequency is the function of different factors such as 

tooth parameters (pressure angle of gears), geometric 

parameters (diameter of gears) and material properties 
and varies with the gears rotation. For pairs of teeth in 

spur gears, the mesh stiffness is depended on factors and 

parameters of the gear such as module, number of teeth, 

pressure angle, face width, hub bore radius and material 

properties [17, 24]. The single mesh stiffness of a pair of 

teeth can be calculated by some stiffness of each tooth 

such as stiffness of bending (𝑘𝑏), shear (𝑘𝑠), axial (𝑘𝑎), 

fillet–foundation (𝑘𝑓,) and contact (𝑘ℎ) according to 

“Eqs. (21)–(25)” [17, 24]:   

 
2

1 1

0

( cos sin )1
d

x

b x

x a h a
d

k EI


 

 

 

(21) 

2

1

0

1.2cos1
d

x

s x

a
d

k GA
 

 
(22) 
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2

1

0

sin1
d

x

a x

a
d

k EA
 

 
(23) 

2

21cos1
( *( / ) *( / )f f f f

f

a
L u s M u s

k WE
    

2

1*(1 * tan ))P Q a  

(24) 

21 4(1 )

hk EW








 
(25) 

Where, 𝑊 is the gear face width, 𝐸, 𝐺 and 𝜈 are the 

Young's modulus, shear modulus and Poisson's ratio of 

the gear. Other parameters of “Eqs. (21)–(25)” are 

displayed in “Fig. 4” and defined in [17, 24]. The single 

and double tooth pair duration of the gear and the pinion 

are derived as the rotation of the pinion [22]. So, the 

overall effectual mesh stiffness for the single tooth pair 

meshing duration is obtained as:  

 

1
( )

1 1 1 1 1 1 1 1 1p

bg sg ag fg h bp sp ap fp

k

k k k k k k k k k

 

       

 
 (26) 

Where, 𝑘(𝜃) denotes the overall effectual mesh stiffness 

which is expressed as the function of pinion rotation. 

Subscripts 𝑔 and 𝑝 represent the gear and the pinion.  

  

 
Fig. 4 Tooth parameters [24]. 

 

There are two pairs of gears meshing at the same time 

for the double tooth pair meshing duration. The 

overall effectual mesh stiffness for the double tooth 

pair meshing duration can be derived as: 

1 2( ) ( ) ( )p p pk k k      

2

1

, , , , , , , , ,

1

1 1 1 1 1 1 1 1 1
i

bg i sg i ag i fg i h i bp i sp i ap i fp ik k k k k k k k k
        
  (27) 

Where 𝑖 =  1 for the first pair of meshing teeth 

and 𝑖 =  2 for the second pair of one. For the 

planetary gear the overall effectual mesh stiffness of 

sun–first planet and ring–first planet can be derived 

as the function of first planet rotation. So: 

1 1 1 1 1 1( ) ( ), ( ) ( )s rk t k r k t k r  
 

(28) 

Note that, because of mesh phasing relationships [7], 

the mesh stiffness of sun– jth planet (𝑗 = 2,3, … ) is the 

function of mesh stiffness of sun–first planet and 

relative phase between sun– jth planet (𝑗 = 2,3, …) and 

sun–first planet. This is similar for the mesh stiffness 

of ring– jth planet (𝑗 = 2,3, … ). In this study, all sun– jth 

planet and ring– jth planet meshes have the same phase. 

5 NUMERICAL RESULTS   

Mesh stiffness of a tooth pair in some contact points 

(Fourier series coefficients), is obtained separately for 

both external (sun– jth planet) and internal (ring– jth 

planet) gears by design software of gear (MSC Marc 

software which investigates contact of gears by finite 

element method) for some pressure angles (“Fig. 5”). 

Fourier series coefficients of mesh stiffness function are 

resulted from the design software of gear. On the other 

hand, the profile of mesh stiffness function by the 

polynomial estimation function is resulted from the 

design software of gear.  

  

 

 

(a) 
 

   

(b) (c) (d) 

Fig. 5 Model of gear meshes by: (a) finite element with (b) 

20° (c) 25° and (d) 30° pressure angle of gears. 

Therefore, the periodically time–varying mesh stiffness 

of ring– jth planet and also sun– jth planet is produced by 

change in the number of contact tooth pairs for the 

rotational system in form of Fourier series of “Eqs. (19) 

and (20)” by the polynomial estimation function and 

system parameters of [25]. Moreover, 1.63 mm for the 

contact ratios, 20 mm for the teeth width, 206000 
𝑁

𝑚𝑚2 

for the Young’s modulus, 1100 𝑁. 𝑚 for the torque, 0.3 

for the Poisson’s ratio and 7850 
𝐾𝑔

𝑚3 for the density are 

considered for gears parameters. All sun– jth planet and 
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ring– jth planet meshes have same phase (∆𝑠𝑗= ∆̂𝑟𝑗). It 

means that all sun– jth planet and ring– jth planet mesh 

stiffnesses have same profile. Time–varying mesh 

stiffness of meshing gears is shown in “Figs. 6 and 7” 

along the action line.  

 

 

(a) 

 
(b) 

 

(c) 

Fig. 6 Mesh stiffness variations of ring– jth planet with: (a) 

𝛼𝑟𝑗 = 20°, (b) 𝛼𝑟𝑗 = 25° and (c) 𝛼𝑟𝑗 = 30°. 

 

 

 

In “Figs. 6 and 7”, the influence of pressure angles on 

the mesh stiffness of gears is shown. The influence of 

the higher pressure angles on the mesh stiffness of 

gears is perceptible. Similarly, it can be concluded 

that the influence of the other parameters such as 

gears diameter and the number of teeth on the mesh 

stiffness of gears is observable.  
 

 

(a) 

 
(b) 

 

(c) 
Fig. 7 Mesh stiffness variations of sun– jth planet with: (a) 

𝛼𝑠𝑗 = 20°, (b) 𝛼𝑠𝑗 = 25° and (c) 𝛼𝑠𝑗 = 30°. 
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For a pair of meshing gears, the overall effectual mesh 

stiffness can be converted to the overall effectual 

mesh stiffness of sun–first planet and ring–first planet 

in the planetary gear system. The mesh stiffness of 

sun–first planet and ring–first planet is obtained from 

“Eq. (28)” as the function of first planet rotation 

(“Figs. 8 and 9”). In this study, all sun– jth planet and 

ring– jth planet meshes are in the phase with each 

other in the planetary gear system (∆𝑠𝑗= ∆̂𝑟𝑗).   

All sun– jth planet and ring– jth planet mesh stiffness 

have the same profile. The time–varying mesh 

stiffness of sun–first planet and ring–first planet is 

produced by change in the number of contact tooth 

pairs. The time–varying mesh stiffness of gears by 

parameters of [25] is obtained as “Figs. 8 and 9”.  

 

 

Fig. 8 Mesh stiffness variations of ring–first planet. 

 
 
Table 1 Natural frequencies and vibration modes of ASS and 

SS with three planets 

 
ASS with 

𝐽 = 3 

SS with 

𝐽 = 3 

SS with 

𝐽 = 3 
[25] 

Vibration 

mode 

Natural 

frequenc

ies [HZ] 

with 

multipli

city one 

0 0 0 Rotational 

1476.9 1476.1 1475.7 Rotational 

1932.2 1931.9 1930.3 Rotational 

2661.7 2660.6 2658.3 Rotational 

7469.5 7466.1 7462.8 Rotational 

11780.1 11782.3 11775.2 Rotational 

Natural 

frequenc

ies [HZ] 

with 

multipli

city two 

— 744.1 743.2 Translational 

— 1103.2 1102.4 Translational 

— 898.51 1896.0 Translational 

— 2278.9 2276.4 Translational 

— 6999.8 6986.3 Translational 

— 9652.4 9647.9 Translational 

Natural 

frequenc

ies [HZ] 

with 

multipli

city 𝐽 −
3 

— —  planet 

 

 

“Table 1” and “Table 2” also show for the system with 

numbers of even unequally spaced planets (ASS with 

𝐽 = 4), natural frequencies of translational modes have 

multiplicity one. When numbers of planets of the system 

are odd and the position of them is unequally spaced 

(ASS with 𝐽 = 3) natural frequencies of translational 

modes are omitted (have multiplicity zero) and other 

unknown modes are appeared on the system.  

 

 

Fig. 9 Mesh stiffness variations of sun–first planet. 

 
Table 2 Natural frequencies and vibration modes of ASS and 

SS with four planets 

 

ASS 

with 

𝐽 = 4 

SS with 

𝐽 = 4 

SS with 

𝐽 = 4 

[25] 

Vibration 

mode 

Natural 

frequencies 

[HZ] with 

multiplicity 

one 

0 0 0 Rotational 

1537.3 1537.1 1536.6 Rotational 

1972.5 1971.6 1970.6 Rotational 

2627.9 2627.4 2625.7 Rotational 

7778.4 7789.8 7773.6 Rotational 

13080.7 13082.5 13071.1 Rotational 

Natural 

frequencies 

[HZ] with 

multiplicity 

two 

— 728.1 727 Translational 

— 1092.3 1091 Translational 

— 1893.9 1892.8 Translational 

— 2344.5 2342.5 Translational 

— 7194.2 7189.9 Translational 

— 10445.6 10437.6 Translational 

Natural 

frequencies 

[HZ] with 

multiplicity 

𝐽 − 3 

1809.2 1809.9 1808.2 Planet 

5967.4 5967 5963.8 Planet 

6987.2 6987.9 6981.7 Planet 

Natural 

frequencies 

[HZ] with 

multiplicity 

one 

714.3, 

739.9 
— — Translational 

1086.5, 

1097.9 
— — Translational 

1860.2, 

1938.8 
— — Translational 

2333.6, 

2359.1 
— — Translational 

7054.6, 

7330.8 
— — Translational 

9903.5, 

10960.1 
— — Translational 
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(a) Rotational 

mode:  
𝜔6 =1476.9 Hz 

(b) Planet mode:  
𝜔 = — 

(c) Translational 

mode:  
𝜔 = — 

Fig. 10 Types of vibration modes of the ASS with three 

planets (0, 80 and 260 degrees). 

 

   
(a) Rotational 

mode:  
𝜔6 =1476.1 Hz 

(b) Planet mode:  
𝜔 = — 

(c) Translational 

mode:  
𝜔2 = 744.1 Hz 

Fig. 11 Types of vibration modes of the SS with three 

planets (0, 120 and 240 degrees). 

 

  
(a) Rotational mode:  

𝜔6 = 1537.3 Hz 

(b) Planet mode:  
𝜔7 = 1809.2 Hz 

  
(c) Translational mode:  

𝜔8 = 1860.2 Hz 

(d) Translational mode:  
𝜔8 = 1938.8 Hz 

Fig. 12 Types of vibration modes of the ASS with four 

planets (0, 80, 180 and 260 degrees). 

 

 
 

(a) Rotational mode:  
𝜔6 = 1537.1 Hz 

(b) Planet mode:  
𝜔7 = 1809.9 Hz 

  
(c) Translational mode:  

𝜔2 = 728.1 Hz 

(d) Translational mode:  
𝜔2 = 728.1 Hz 

Fig. 13 Types of vibration modes of the SS with four 

planets (0, 90, 180 and 270 degrees). 

6 CONCLUSION 

In this paper, the dynamic of single–stage spur planetary 

gear is investigated. The planetary gear set is modeled as 

a set of lumped masses and springs. Each element such 

as sun gear, carrier, ring gear and planets possesses three 

degrees of freedom and is considered as rigid body. The 

periodically time–varying mesh stiffness of ring– jth 

planet and also sun– jth planet in form of Fourier series 

and finite element method is obtained by the polynomial 

estimation function. With calculating the overall 

effectual mesh stiffness for the single tooth pair 

meshing, the mesh stiffness of gears in the planetary gear 

system is investigated as the function of first planet 

rotation. The influence of gear parameters on the mesh 

stiffness of gears is obtained. For the system with 

numbers of odd and even equally and unequally spaced 

planets, natural frequencies and vibration modes are 

investigated. According to results, the inherent factors 

such as tooth parameters, geometric parameters and 

material properties are affected on the periodically time–

varying mesh stiffness of gears. As an example, the 

influence of the higher pressure angles on the mesh 

stiffness of meshing gears is perceptible. Similarly, this 

result can be expanded for other parameters such as 

gears diameter and teeth number of gears. The mesh 

stiffness of sun–all planets has the same profile and also 

it can occurr for ring–all planets if all sun– jth planet and 

ring– jth planet are in the phase with each other. 

Furthermore, by using the proposed mesh stiffness of 

meshing gears, for the system with numbers of odd and 

even equally and unequally spaced planets, natural 

frequencies and vibration modes are obtained and 

validated with a high accuracy.  
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