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1 INTRODUCTION 

Stress Intensity Factor (SIF), as one of the most 

important criteria in predicting the fracture behaviours 

of materials, has always attracted attentions of 

researchers. Fracture behaviours of materials under 

impact and dynamic loads are completely different from 

static mode. Inertia, reflection of stress waves, and the 

effects of the strain rate dependent behaviours of 

material are some differences between dynamic and 

static fracture behaviours. Therefore, calculating 

Dynamic Stress Intensity Factor (DSIF) is so 

complicated rather than SIF. Analytical methods, the 

finite element simulation, and the experimental tests are 

usually used for calculating DSIF. Sih was one of the 

first researchers who conducted an analytical study on 

the DSIFs of cracks and presented most basic methods 

for stress fields around crack tip and dynamic fracture 

[1]. Frund studied semi-infinite crack on unbounded 

body. He also studied DSIF on different fracture modes 

using step function. In this analysis, the equations, which 

were obtained using the dual Laplace transform, were 

simplified and solved using the Wiener-Hopf method 

[2]. Sih and Embely in one article and Stephen and Tsin-

Hwei in another article discussed behaviour of crack 

analysis with a limited length on an unbounded body in 

a 2D mode. Using the Laplace transform from time 

domain and then Fourier sine and cosine transforms over 

space, they solved the wave equations and the fields 

created around a crack. The obtained dual integral 

equations were solved using the numerical methods and 

the value of DSIF around the crack was determined [3-

4]. Yi-Shyoning and Chen-Chang Ma studied behaviour 

of the crack under anti-plane loading and obtained the 

value of DSIF for this type of waves at modes one and 

two [5]. In another study, they examined crack 

behaviour under the concentrated load imposed on a 

crack place under an anti-plane load [6]. The analytical 

equations of DSIF in orthotropic materials were 

obtained by Kassir and Bandyopadhyay. It was done for 

a cracked plate under distributed tension load [7]. 

Similarly, the analytical equations of DSIF in an 

orthotropic cracked plate under concentrated tension 

load were studied by Rubio-Ganzalez and Mason [8]. 

Rodriguez-Castellanos et al. discussed behaviour of 

DSIF using finite element method on a plate. In this 

study, the plate has a central crack and it is under an 

impact load. Here, the impact load was considered as a 

unit step function (Heaviside). After confirming the 

results obtained from the simulation method by using 

earlier practical studies, the effects of size and crack 

direction on distributing stress waves were examined 

[9]. Iotu solved the equations of DSIF for two cylindrical 

cracks in an unbounded elastic body under an impact 

load. The equations of stress and displacement boundary 

conditions were transformed to a system of dual integral 

equations using Laplace and the Fourier transforms. 

Then DSIF was determined in a Laplace environment. 

Finally, the results were returned to a place-time 

environment using the numerical methods. In this 

research, the impact load is considered as a Heaviside 

function [10]. Eslami and Amini studied the equations 

related to the stress fields at crack tip under the harmonic 

wave and obtained a relation to determine DSIF. In this 

research, the equations were initially transformed to a 

mixing environment by changing a variable and then 

they were solved [11]. Behaviour of stress wave pulse in 

penny-shape cracks was examined by Zhang using the 

Boundary Integral Method [12]. The boundary integral 

method is used in other researches for dynamic 

behaviour and crack analysis [13-16]. In the 

experimental methods, photo elasticity setups and strain 

gauges are usually used at crack tips to determine 

transient stress fields and dynamic stress intensity factor. 

Malezhik et al. studied determination of dynamic stress 

intensity factor using a photo elasticity unit. The sample 

under the test is made of composite and it is assumed 

that it remains at elastic state. In this research, an 

equation was obtained between stress fields at the points 

far from a crack tip and stress intensity factor [17]. In 

addition, several methods for DSIF calculating were 

discussed using the photo elasticity method and strain 

gauges [18].  

For analytical solutions in reviewed articles, impact load 

is defined as a step function. However, the experimental 

tests show that the applied load has not a constant value 

immediately after imposing and it takes a short time to 

reach from zero to its maximum value. The interval time 

is called rising time. Different functions were defined 

here for load changes versus time. Based on them, DSIF 

at finite crack tip in an unbounded elastic body was 

obtained at a 2-D state of plane strain. In this research, 

the crack length was considered as limited with the 

length of 2a. The displacement fields were used for 

solving the wave equations. In the first function, loading 

time is imposed without limitation. In the second pulse, 

a pulse with a certain length that includes loading and 

unloading is applied. In this part, loading and unloading 

are considered as the linear and nonlinear functions. 

Finally, practical methods, which are effective at rising 

time, are presented. The main novelties of this study are: 

1- Considering a more real load-time function rather 

than theoretical functions and solving  

2- Calculating the stress filed around the crack using 

displacement filed instead of potential functions. 

2 STATEMENT OF PROBLEM 

As mentioned, in impact mechanics, a step function is 

used for defining impact load changes versus time. The 

function is defined as follows: 
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(1) 

 

However, as shown in “Fig. 1ˮ, in real behaviour of 

structures and due to the inertial effects, the loading and 

unloading need a short time to reaches from zero to 

maximum (rising time) and return to zero (falling time). 

 

 
Fig. 1 Experimental and analytical comparison of real 

behavior of load changes versus time [19]. 

 

Therefore, including rising time value to examine a more 

real behaviour of materials is necessary for the 

equations. In this article, a mathematical function was 

defined in which load value is increasing in a linear 

manner so that the value reaches to its final value and 

remains at the same value after duration t*. In fact, this 

function is more similar to the real behaviour of material. 

Load changes versus time are defined as the following 

function (2). 

 

* *

* *
( ) ( ) ( 1) ( )

t t
t H t H t t

t t
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Where, H is a step function, which is as “Eq. (3)ˮ: 

 
*

*

*

0
( )

1

t t
H t t

t t

 
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  
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Figure 2 shows diagram of load changes versus time and 

t* is the rising time. 
 

 
Fig. 2 Changes of impact load versus time [12].  

 

Regarding “Eq. (2)ˮ for load changes versus time, the 

equations related to DSIF at crack tip on an unbounded 

plate will be calculated analytically. To calculate DSIF, 

assume a linear unbounded elastic body with a crack of 

length of 2a on it. It is assumed that in point y=0, the 

origin of coordinates is placed in the middle of the crack 

and the crack mouth is expanded to x direction. Figure 3 

shows the parameters related to stress field around the 

crack. 

 

 
Fig. 3 Coordinates used for crack analysis. 

 

An impact load, which is perpendicular to y=0 plate, is 

imposed on the crack surface at t=0 time. The load 

reaches to its maximum amount at t=t* time, i.e. 𝜎∗, and 

remains during the whole period. As the load is applied 

perpendicularly, shear stress at the surface crack is equal 

to zero. Therefore, the effects of the second mode of 

fracture can be ignored and the calculations are only 

made based on the first mode of fracture. Regarding the 

symmetry of the problem and assuming x=0, boundary 

conditions in y=0 is as “Eq. (4)ˮ [3]: 

 

*

0 * *

( ,0, ) 0,

( ,0, ) ( ) ( 1) ( )

,0

( ,0, ) 0, 0

xy

y

x t x

t t
x t H t H t t

t t

x a

v x t x



 

  

 
    

 

 
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(4) 

To solve the stress fields around the crack, two 

displacements functions of 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are 

assumed, which both are true in the wave equation [7]. 

Therefore: 

 
2 2 2

2 2 2 2

2 2 2

2 2 2 2

( , , ) ( , , ) 1 ( , , )

( , , ) ( , , ) 1 ( , , )

p

s

u x y t u x y t u x y t

x y C t

v x y t v x y t v x y t

x y C t
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 

  

  
 
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(5) 

 

In these equations, Cp is longitudinal wave speed, Cs is 

shear wave speed, u is displacement at x, and v is 

displacement in y direction. The relationship between 

stress and displacement fields is defined as follows: 
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Where: 
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Consequently: 
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( )
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 

 
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(7) 

 

As the analytical solution is difficult in a time-place 

environment, to solve them, they are first taken to 

Laplace environment. Then, with respect to the 

geometrical symmetry, the Fourier sine and cosine 

transform are used for solving the problems. To do so, 

Laplace displacement is defined as follows [20]: 

 

0
( ) ( )

1
( ) ( )

2

st

st

Br

f s f t e dt
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
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 (8) 

 

Now, Laplace is taken of “Eq. (5)ˮ versus time 

consequently: 

2 2 2

2 2 2

2 2 2

2 2 2
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( , , )

p

s

u x y s u x y s s
u x y s

x y C

v x y s v x y s s
v x y s

x y C

 
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 
 
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(9) 

 

Now, the Fourier sine and cosine transform, which are 

defined as “Eq. (10)ˮ, are used for transforming “Eq. 

(9)ˮ into an ordinary differential equation [20]: 

 

0

0

( ) ( )sin( )

2
( ) ( )sin( )
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f x F p px dp



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0

0

( ) ( ) cos( )

2
( ) ( ) cos( )

F p f x px dx

f x F p px dp














 (10-b) 

 

By applying the transforms of Eq. (10) in Eq. (9), we 

have: 

 
2 2

2

2 2

2 2
2
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p
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
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(11) 

 

Which are two ordinary differential equations and their 

general solution are as “Eq. (12)ˮ: 
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Where,

1

2 2
2

1 2

p

s
p

C


 
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 

,

1

2 2
2

2 2

s

s
p

C


 
  
 

and 

1( , )A p s  and 
1( , )B p s  are vanished because when y 

tends to infinity, displacement value cannot be infinite. 

By taking reverse integration of “Eq. (12)ˮ, we have: 

 

1

0
( , , ) ( , ) sin( )

y
u x y s A p s e px dp


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
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a) 

 

2

0
( , , ) ( , ) cos( )

y
v x y s B p s e px dp





   

(13-b) 

 

Now, we have two equations based on x, y and p. To 

apply the effects of boundary conditions, first, Laplace 

transform is applied to them. Therefore: 
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u v
x y p

y x
 

 
 

 
 (14-b) 

 

( ,0, ) 0,xy x p x    (15-a) 

  
*

0 * 2

1
( ,0, ) , 0

st

y

e
x p x a

t s
 


   (15-b) 

  

( ,0, ) 0, 0v x t x  (15-c) 

 

By replacing equations (13-a) and (13-b) in “Eq. (14-b)ˮ 

and applying boundary conditions (15) and inserting 

y=0, we have: 
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(16) 

Now, by replacing equations (13-a) and (13-b) in “Eq. 

(14-a)ˮ and applying “Eq. (15)ˮ boundary conditions 

and inserting y=0: 
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(17) 

 

Meanwhile, with respect to the boundary conditions 15-

c, we have: 

 

0 0
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y
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As a result, a dual integral equation is obtained, which is 

defined as follows: 
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(19-a) 

(19-b) 

To solve the above dual integral equation, we assume 

that [7]: 
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(20) 

 

Moreover, two properties of Integral equation that are 

shown in equations (21) and (22) are used [21]. 
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(22) 

By replacing “Eq. (20) in Eq. (19-a)ˮ and using 

equations (21) and (22), we have: 
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To solve the above equation, ( , )s  value should be 

calculated. By putting this value in “Eq. (23)ˮ and 

calculating ( , )s   and finally replacing it in Eq. (20) 

and the result in “Eq. (17)ˮ, y value is obtained. 

Meanwhile, for ,r x a r a   dynamic stress 

intensity factor in a Laplace environment and 
y  stress 

value are as “Eq. (24)ˮ [7]: 
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(24) 

 

Where, r is the point very close to crack tip. 

Therefore: 
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
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(25) 

 

To solve “Eq. (23)ˮ, first, the equation is non-

dimensionalized by changing the following variables. 
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As a result: 
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After solving the above equation and replacing it in “Eq. 

(25)ˮ, we have: 
 

*1

2
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1
( ) (1, )

ste
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t s



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(28) 

 

The dynamic stress intensity factor in a Laplace space 

will be obtained using this relation. To calculate this 

factor in a space-time environment, it is necessary to 

apply the reversed Laplace transform as follows: 
 



114                                             Int  J   Advanced Design and Manufacturing Technology, Vol. 13/ No. 2/ June – 2020 
  

© 2020 IAU, Majlesi Branch 
 

*
1

2
0

1 * 2

1
( ) (1, )

2

st
st

Br

a e
K t s e ds

i t s






 

 

(29) 

 

The numerical method and software MATLAB code are 

used for calculating “Eq. (29)ˮ. The numerical method 

used for solving this equation is presented in References 

[22-23]. By calculating (1, )s  and replacing it in “Eq. 

(29)ˮ, the DSIF is calculated. The above method is also 

used for a limited-time pulse shown in “Fig. 4ˮ, The 

relation between parameters of this pulse is presented in 

“Eq. (30)ˮ. 

 

 

Fig. 4 Changes of impact load versus time for a finite 

pulse [12]. 
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(30) 

The calculation method is not mentioned here due to the 

large volume of calculations. 
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“Eq. (31)ˮ can also be solved using the above method. It 

is completely clear from this equation, that if the pulse 

duration tends to infinity (𝑡𝑑 → ∞), the “Eq. (31)ˮ 

converts to the “Eq. (29)ˮ. To extract the results, a 

nonlinear function is selected for load changes in rising 

and falling times. This function is shown in “Eq. (32)ˮ. 

The chart of this loading changes vs. time is shown in 

“Fig. 5ˮ for n=2, n=0.5. It is obvious that for n=1 the 

changes of loading and unloading are linear and similar 

to the “Fig. 4ˮ.  
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Fig. 5 Changes of impact load versus time for n=2(left) 

and n=0.5(right). 

For different values of n, DSIF can be calculated from 

“Eq. (33)ˮ. 
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3 DISCUSSION 

As mentioned later, in real behaviour of materials, 

immediately after applying an impact load, its amount 

does not reach the final level and it takes a while for the 

load to impose completely. To study the accuracy of the 

obtained results, the equations are solved and drawn in 

this section. Then the effects of rising time and pulse 

shape on DSIF are discussed. To do so, an infinite plate 

that containing a central crack with length 10 cm is 

assumed. The sample is made of steel. The mechanical 

properties are mentioned in “Table 1ˮ, so that we could 

compare the results with other references. 

To verify the accuracy of “Eq. (29)ˮ, a pulse with 

different rising time is applied and the changes of DSIF 

vs. time are presented in “Fig. 6ˮ. As it can be seen in 

“Fig. 6ˮ, when t* tends to zero ( * 0t  ), the results are 

matched with the results of Heaviside function in 

reference 3. By increasing the rising time, the effects of 

inertia and DSIF reduced. 

 

 

Table 1 Mechanical properties of the material under study 

 
Density 

(kg/m3) 

Elasticity 

Module (GPa) 
Poisson’s ratio λ (GPa) μ (GPa) (m/s)1 C (m/s)2 C 

Steel 7800 200 0.3 115.4 76.9 5875 3140 

 

 

 

 
Fig. 6 Effect of rising time in dynamic stress intensity 

factor. 
 

In experimental tests, changing the rising time duration 

was performed by putting an interface pad between 

cracked samples and impacting object. As far as yield 

stress is concerned, the interface sample should be softer 

than the one of the cracked objects. As far as stiffness is 

concerned, the stiffness of interface sample should be 

lower than the one of the cracked objects [24-26]. In fact, 

at the time of applying impact load, the softer material 

by increasing the applied rising time decreases dynamic 

stress intensity factor, which is followed by reducing 

fracture probability. For tensile loads, it can be done by 

putting a Springer. In fact, after imposing an impact 

load, springs prevent sudden increase of the load and 

create a delay in rising time. In fact, this result satisfies 

the aim of the present article that is reduction of the 

amount of DSIF. 

Next, a pulse with limited time duration that contain 

loading and unloading is applied to cracked media and 

DSIF is shown in “Figs. 7 & 8ˮ. In “Fig. 7ˮ, the rising 

time is 0.1 Ms and in Fig. 8, the rising time is 0.5 Ms, 

but the pulse time duration is different. As it can be seen 

in these figures, when the pulse duration is too limited, 

the DSIF cannot reaches to its maximum value. In this 

situation, because of the inertia effects, before the DSIF 

reaches to its maximum value, the unloading is started 

and so it never starts decreasing.  

 
Fig. 7 Effect of pulse duration in DSIF for t*=0.1 Ms. 

 

 
Fig. 8 Effect of pulse duration in DSIF for t*=0.5 Ms. 

 

Then, it is considered that the changes of loading and 

unloading is non-linear. The function of variation is 
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assumed as a power function. For n=2 and n=0.5 in this 

relation, DSIF is calculated from “Eq. (33)ˮ. These 

results are compared with linear results from last part for 

long td in “Figs. 9 & 10ˮ. Results show that the 

maximum of DSIF is independent of loading condition 

and final value of it is similar for n=1 (linear) and n=2 

or n=0.5 (nonlinear).  

 

 
Fig. 9 Effect of linearity and non-linearity of loading on 

DSIF for t*=0.1 Ms. 

 
Fig. 10 Effect of linearity and non-linearity of loading on 

DSIF for t*=0.5 Ms. 

5 CONCLUSIONS 

Analytical solution of shape and rising time of pulse 

effect on DSIF were discussed in the present article. It 

was observed that with the rise-time increasing, DSIF 

decreases. These phenomena are occurred because of 

inertia effects. In impact pulses with limited duration, 

the results are a little different. In these cases, for low 

time duration, the DSIF cannot reach to the maximum 

value, but for pulses with a sufficient loading time 

duration, the DSIF increased. In addition, results show 

that the linearity or non-linearity of loading have no 

effects of DSIF maximum value but it changes the 

variation of DSIF vs. time. 
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