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Abstract: Demanding high dimensional accuracy of finished work pieces and 
reducing the scrap and production cost, call for devising reliable tool condition 
monitoring system in machining processes. In this paper, a tool wear monitoring 
system for tool state evaluation during hard turning of AISI D2 is proposed. The 
method is based on the use of wavelet packet transform for extracting features from 
vibration signals, followed by neural network for associating the root mean square 
values of extracted features with tool flank wear values of the cutting tool. From the 
result of performed experiments, coefficient of determination and root mean square 
error for the proposed tool wear monitoring system were found to be 99% and 0.0104 
respectively. The experimental results show that wavelet packet transform of 
vibration signals obtained from the cutting tool has high accuracy in tool wear 
monitoring. Furthermore, the proposed neural network has the acceptable ability in 
generalizing the system characteristics by predicting values close to the actual 
measured ones even for the cutting conditions not encountered in the training stage. 

Keywords: Hard Turning, Neural Networks, Tool Wear Monitoring, Vibration 

Signals, Wavelet Packet Transform  

Reference: Pourmostaghimi, V., Zadshakoyan, M., Sadeghi, M.H., “Vibration 

based Assessment of Tool Wear in Hard Turning using Wavelet Packet Transform 

and Neural Networksˮ, Int J of Advanced Design and Manufacturing Technology, 

Vol. 12/No. 2, 2019, pp. 17–26. 

Biographical notes: Vahid Pourmostaghimi is a PhD student in Mechanical 

Engineering at the University of Tabriz, Iran. His current research interest includes 

tool wear monitoring and adaptive control. Mohammad Zadshakoyan is an 

assistant professor in the faculty of Mechanical Engineering at the University of 

Tabriz, Iran. His main research interests are metal forming and vibrations. Morteza 

Homayoun Sadeghi is now a professor in the faculty of Mechanical Engineering at 

the University of Tabriz, Iran. His research interests focus on fault diagnosis, modal 

analysis and mechanical system identification. 

mailto:zadshakoyan@tabrizu.ac.ir
mailto:morteza@tabrizu.ac.ir


18                                            Int  J   Advanced Design and Manufacturing Technology, Vol. 12/ No. 2/ June – 2019 

  

© 2019 IAU, Majlesi Branch 
 

1 INTRODUCTION 

Hard turning is described as the turning process of work 

pieces that have hardness values over 45 HRC. This 

process, which is aimed for finish machining of a wide 

range of hardened steel work pieces, enables 

manufacturers to simplify their processes and still achieve 

the desirable surface finish quality. Its advantages in terms 

of the increased flexibility of the manufacturing 

technology, relatively acceptable rate of material removal, 

and better environmental aspects make it an undeniably 

economical manufacturing process [1]. One of the most 

important issues that must be considered in hard turning is 

cutting tool wear. The state of tool wear is a vital factor 

directly affecting the surface quality and dimensional 

accuracy of the parts being manufactured [2]. Therefore, 

tool wear monitoring (TWM) is inevitable to reduce 

machine tool downtime and to maintain the desired 

dimensionality and surface finish [3]. TWM methods can 

be categorized into two classes: direct and indirect 

methods. Direct methods are based upon direct 

measurements of the tool wear by using optical 

instruments [4], radioactive [5], electrical resistance 

methods [6] or vision systems [7], etc. Although these 

methods present the advantage of high accuracy, they have 

not yet shown to be either economical or technical method 

of monitoring. Indirect methods are based on the 

relationship between cutting tool condition and 

measurable signals that are obtained from the cutting 

process. This involves measuring process parameters 

which are correlated with wear such as force [8], vibration 

[9], acoustic emission [10], cutting temperature [11], etc. 

Even though these methods offer ease of measurement and 

are economical compared to direct methods, very few 

reliable indirect methods have been established for 

industrial applications. This is mainly because of the 

nonlinear relationship between the measured features and 

tool wear [12]. Among the mentioned TWM techniques, 

the use of vibration signals has received wide popularity 

because of fast data collection and accurate interpretation 

ability [13]. Accelerometers or vibration sensors offer 

some extra advantages over other sensing techniques such 

as ease of implementation and the fact that no 

modifications to the machine tool or the work piece 

fixtures are required [14]. Vibrations are created by 

variations in the dynamic and static components of the 

cutting forces [15]. Mechanical vibrations result from the 

tool wear and the cutting conditions have periodic nature 

and a very minimum vibration from the machine tool and 

shop floor are also incorporated in resultant vibration 

signal [16].  

In the field of TWM by vibration signals, Segreto et al., 

used a multiple sensory system to perform TWM in the 

turning process of a nickel alloy. Dynamometer, acoustic 

emission (AE) sensor and accelerometer were used for 

monitoring signals [17]. Salgado et al. by using variant 

signals obtained from an accelerometer and feed motor 

current tried to determine the value of flank wear when 

cutting aluminum and steel by singular spectrum analyze 

[18]. Painuli et al. in their research considered k-star 

classifier to correlate cutting the tool condition to vibration 

signal of tool holder. Considering the results obtained from 

experiments showed that the accuracy of the proposed 

methodology was 78% for classifying the tool state [19]. 

Aghdam et al. using ARMA technique, modeled vibration 

signals of the tool in turning the process to make a relation 

between the dynamics of tool/holder system and the tool 

major flank wear [20]. Wang et al. employed 

dynamometer and accelerometer to monitor the tool state 

in the milling process. Proposed method improved the 

effectiveness of sensing capability by using various 

dimension reduction techniques [21]. The main problem 

that researchers are faced with in achieving to an effective 

TWM system is the nonlinear and variant nature of the 

cutting process versus time. The variation in the measured 

signals which is because of different disturbances is 

another problem which must be considered. Usually it is 

hard to determine whether the source of this variation in 

the signals is due to tool wear or a change in the cutting 

conditions or machine abnormality [22]. Hence, the 

measurement of signals is not as difficult as interpreting 

them for the correct tool wear state prediction. Signal 

processing is carried out to increase the level of 

information contents of the signals and eliminate the 

disturbing influences [23]. Usually signal processing and 

feature extraction approach should be used to make the 

vibration signal more beneficial in TWM. During the 

feature extraction stage, the most appropriate features that 

correlate well with tool wear are extracted from the 

prepared signals. Features are usually derived from any of 

the time, frequency, time-frequency, or statistical domain. 

Successful use of time-frequency domain features for 

TWM has been demonstrated in few publications. The 

feature extraction in the time-frequency domain is mostly 

performed with the use of wavelet transform. Wavelet 

transform provides information about localization of a 

signal in the time domain and the frequency domain at the 

same time. Feature extraction with wavelet transform 

reduces the processing time [23]. Furthermore, because of 

its fault dependent property, wavelet packet transform  

(WPT ) can be utilized in signal processing widely and this 

ability facilitates the effectiveness of this useful technique 

[24]. Using wavelet transform in TWM has been well 

explored by researchers and many works have been 

published. Wu and Du [25], based on the WPT and signal 

reconstruction, introduced a new feature extraction 

method. To assess the effectiveness of the selected features 

in time and frequency domains, various criteria were 

proposed. Accordingly, an automatic feature extraction 

procedure was developed. The proposed method was 

tested in drilling and results showed the accuracy of 

method. Xiaoli and Zhejun [26] investigated TWM in the 
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boring and milling process using WPT and fuzzy 

clustering method for generating features from AE signals 

with more correlation with tool flank wear. Mehrabi et al. 

[27] considered the discrete wavelet transform for feature 

extraction from vibration signals. Scheffer et al. [28] used 

the wavelet transform with spectrograms in order to 

identify the most stationary parts of force signals for 

frequency domain analysis. Velayudham et al. [29] studied 

the capability of WPT in the characterization of the 

acoustic emission signals released from glass polymeric 

composite during drilling. Zhu et al. [30] performed a 

detailed review of different applications of wavelet 

analysis in TWM techniques and showed that wavelet 

transform is more effective in analyzing nonstationary 

machining sensor signals than any other signal processing 

method. Chen et al. [31] considered wavelet filtering while 

Lee [32] used wavelet for processing of vibration and AE 

signals. Classifiers play a vital role in tool condition 

monitoring systems. Neural network classifiers seem to be 

a popular choice among the researchers due to its useful 

abilities such as high rate of adaptability and good 

prediction accuracy [23]. Application of neural networks 

in TWM has been reported by some researchers such as 

Mikołajczyk et al. [33], Teshima et al. [34], Ghosh et al. 

[8], and Kaya et al. [35]. Hard turning is considered a cost-

effective alternative to other finishing processes such as 

grinding. Because of the negative effect of tool wear on 

surface roughness, the wear monitoring of cutting tool is 

of great importance in hard turning. Despite previous 

research effort, no relevant research has been reported in 

the field of tool wear monitoring in hard turning process. 

On the other hand, in the majority of performed researches, 

no detailed analysis is presented about the frequency bands 

in which the effect of tool wear can be traced. Another 

important problem of previous researches is the expensive 

sensory system, which makes proposed monitoring 

systems economically unjustifiable.  

Due to the drawbacks of these commonly performed 

researches, there is a need to develop an efficient, easy to 

use, low-cost and precise technique for progressive 

monitoring of tool flank wear in hard turning. In this 

research, an online tool wear monitoring system is 

proposed based on WPT of vibration signals and neural 

networks in hard turning of AISI D2. To make the 

monitoring system drastically cost-effective, the one-

directional accelerometer was used. The vibration is 

measured in machining direction since this direction has 

more dominant signals than the other two directions. The 

measurements are taken by using an acceleration sensor 

assembled on a tool holder. WPT of vibration signals is 

used to decompose the primary prepared signals and obtain 

a set of features. Among the composed features, the most 

correlated signals with tool condition are extracted. The 

RMSs of the wavelet coefficient of the extracted signals 

are fed to neural networks as input. The output of the 

trained neural network is tool flank wear. The paper is 

organized as follows: section 2 is a theoretical background 

of wavelet transforms. Section 3 explains the experimental 

setup. In Section 4 the results of experiments will be 

represented and discussed. Section 5 contains the 

conclusion. 

2 SIGNAL ANALYZING USING WAVELET 

PACKET TRANSFORM 

2.1. Wavelet Transform  

It is known that an energy limited of a signal f(t), can be 

decomposed by its Fourier transform F(ω) as: 

 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔
+∞

−∞
                                       (1) 

 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
                                             (2) 

 

Note that F(ω) and f(t) constitute a pair of Fourier 

transforms. Equation (2) is called the Fourier transform of 

f(t) and equation (1) is called inverse the Fourier transform. 

From a mathematical point of view, equation (1) implies 

that the signal f(t) can be decomposed into a group of 

harmonics eiwt and the weighting coefficients F(ω) 

represent the amplitudes of the harmonics in f(t) [25]. 

The wavelet transform is defined similarly with some 

slight changes. However, instead of using the harmonics 

eiwt, the wavelet transform uses wavelet bases: 

 

𝜓𝑠𝑡(𝑡) =
1

𝑠
𝜓(

𝑡−𝜏

𝑠
)                                                           (3) 

 

In which s represents the frequency, 𝜏 represents the time 

shift, and ψ(0) is named a mother wavelet function. In a 

similar way, a signal f(t) can be decomposed into: 

 

f(t) =
1

cψ
∫ ∫ 𝑊𝑠[𝑓(𝜏)]

1

𝑠
𝜓 (

𝑡−𝜏

𝑠
) 𝑑𝑠𝑑𝜏

+∞

0

+∞

−∞
                (4) 

 

Which cψ is a constant depending on the base function, and 

Ws[f(t)] is the wavelet transform defined below: 

 

𝑊𝑠[𝑓(𝜏)] = ∫ 𝑓(𝑡)
1

𝑠
𝜓 (

𝑡−𝜏

𝑠
) 𝑑𝑡

+∞

−∞
                                (5) 

 

Similar to the Fourier transform, Ws[f(t)] and f(t) constitute 

a pair of wavelet transforms. Specially, equation (5) is 

called the wavelet transform of f(t) and equation (4) is 

called the inverse wavelet transform [25]. In comparison 

with the Fourier transform, equation (4) shows that 

wavelet transform can be considered as the signal 

decomposition. It decomposes a signal f(t) into a family of 

wavelet bases, and the weighting coefficients, Ws[f(t)], 

represent the amplitudes at a given location (𝜏) and 

frequency (s). Compared to the Fourier transform, the 

wavelet transform is a time-frequency function which 
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characterizes the behavior of f(t) in different time windows 

and frequency bands. WT presents a three-dimensional 

figure versus the time-frequency plane. On the contrary, 

the Fourier transform F(ω) depends only on frequency and 

hence, forms a two-dimensional curve versus the 

frequency axis.  

As a result, the wavelet transform is capable of capturing 

non-stationary information such as frequency variation 

and magnitude undulation, whereas the Fourier transform 

does not have mentioned ability [25]. 

2.2. Wavelet Packet Transform  

The WPT method is a generalization of the wavelet 

decomposition that offers a rich range of possibilities for 

signal processing and analysis [36]. Wavelet packet 

decomposition split the original signal S into two 

frequency bands: an approximation A and a detail D. The 

approximation A is then itself split into a 2nd level 

approximation AA and detail AD, the detail D is split into 

a 2nd level approximation DA and detail DD, and the 

process can be repeated for the 3rd level and over. The 

schematic view of this process is shown in “Fig. 1”. For an 

nth level decomposition, the signal can be decomposed in 

n+1 possible ways [37]. For example, wavelet packet 

analysis allows signal S to be represented as a summation 

of packets such as: A + AAD + DAD + DD that cover all 

branches of the decomposition packets tree. Each packet is 

composed of N×2-j coefficients defined as: 

 

𝐴𝑗+1[𝑛] = ∑ ℎ[2𝑛 − 𝑘]𝐴𝑗[𝑘]
+∞
𝑘=−∞                                (6) 

 

𝐷𝑗+1[𝑛] = ∑ 𝑔[2𝑛 − 𝑘]𝐷𝑗[𝑘]
+∞
𝑘=−∞                                (7) 

 

In which: 

N: number of original signal samples, 

j: number of transformation levels with j = 1, 2, …, 

k: number of filter coefficients, 

n: number of packet coefficients with n = 1, 2, …, N×2-j, 

g: coefficients of high-pass filter, 

h: coefficients of low-pass filter based on chosen mother 

wavelet [38]. 

3 EXPERIMENTATION 

The main scheme of the experimental procedure for the 

online TWM system is designing a system to evaluate 

flank wear values as accurately as possible for hard turning 

of AISI D2. The experiments were performed on an 

Emcoturn CNC lathe machine. The work piece was a 

round bar (60 mm diameter and 250 mm long) AISI D2 

alloy steel with hardness 46 HRC. The TiN coated carbide 

insert, type TNMG 220408 with grade NC3030 was 

selected. The experiments were conducted in dry cutting 

mode.  

The cutting parameters were: cutting speed (v) 40, 60, and 

80 m/min, and feed rate (f) 0.02, 0.04, and 0.06 mm/rev. 

Since the process had been designed for finish turning, the 

depth of cut was selected 1 mm. For each cutting 

condition, 12 tests were performed in various cutting times 

in order to investigate the effect of cutting parameters 

along with tool wear on vibration signals. Therefore, 108 

cutting tests totally were carried on until tool life end. 

Maximum tool life (VBmax) was considered 0.3 mm. 

All vibration signals were captured using a CTC AC102 

accelerometer with a sensitivity of 100±5% mV/g, which 

had been mounted on the holder as near as possible to 

insert. The frequency range of measurement was 1 Hz to 5 

kHz. The accelerometer was connected to a CTC signal 

conditioner, which was powered by a 10V supplier. A NI 

USB DAQ 6008 data acquisition card with a sampling rate 

of 10 kHz was selected. The captured signals were passed 

through this data acquisition to MATLAB software for 

further processing and signal display. Figure 2 shows a 

schematic representation of the equipment set-up. 

Fig. 1 Three level wavelet packet decomposition [38]. 

 

 
Fig. 2 Schematic diagram of the experimental set-up. 

 

As illustrated, vibration signals are collected by an 

accelerometer. These signals are amplified by a signal 

conditioner and are sent to the WPT unit through a data 
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acquisition card. In “Fig. 3”, experimental set-up of the 

study is shown.  

The collected vibration signals were subjected to 

processing in the time-frequency domain by four levels 

WPT. The RMSs of the wavelet coefficient of the 

decomposed signals were calculated and then were sent to 

the neural network. Input parameters of the neural network 

were cutting speed, feed rate and RMSs of wavelet 

coefficient of selected features, which have the most 

correlation with tool wear values. Output was tool wear 

values. The trained network had 3 layers with 10 neurons 

in each hidden layer.  

 

 

Fig. 3 Experimental set-up used in the present study. 

 

A schematic view of the trained neural network is shown 

in “Fig. 4”. The Levenberg-Marquardt training algorithm 

was used to train the feed-forward back propagation 

network in this research. A light source microscope with 

magnification 36x and image processing software were 

employed respectively to capture the image of 

corresponding flank wear and make measurements of wear 

values. 

   

 

Fig. 4 A schematic view of the trained neural network. 

4 RESULTS AND DISCUSSION  

4.1. Signal Analysis  

After performing specified cutting tests, according to 

cutting parameters mentioned in experimentation, 

vibration signals were captured and tool flank wear values 

were measured carefully.  

Figure 5 displays original vibration signals captured in 

different flank wear values in the time domain when 

machining with v=60 m/min and f= 0.04.  

At the beginning moments of the cutting process, the tool 

was fresh (VB=0.06 mm), therefore the magnitude of the 

original signal was small (“Fig. (a)”). As the tool wear 

increased (VB=0.137mm), the magnitude of the original 

signal changed (“Fig. 5(b)”). 

In the end moments of tool life (VB=0.27mm), the high 

magnitude for vibration signal was evaluated (“Fig. 5(c)”). 

Considering the original signals corresponding to 

VB=0.06 mm, VB=0.137 mm, and VB=0.27 mm, it can 

be found that the magnitude of the original signal 

increased as the tool flank wear expanded. 

 

 
Fig. 5 Captured signals v= 60 m/min and f= 0.04 mm/rev 

for different tool flank wear values: (a): VB=0.06 mm, (b): 

VB=0.137 mm and (c): VB=0.27 mm. 

 

Figure 6 shows the decomposing results of vibration signal 

for v=60 m/min and f= 0.04 when VB=0.27 mm. The 

decomposed components of the original signal are listed 

from n1 to n16 which each component corresponds to a 

specific frequency band from [0, 312.5] Hz to [4687.5, 

5000] Hz respectively. 

4.2. Feature Extraction  

In vibration based TWM systems, monitored signals 

contain some environmentally affected information. To 

ensure the reliability and robustness of TWM, extracting 

the features of the signal that describe the tool condition is 

necessary. Therefore, utmost care must be taken in 
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selecting the features that have the most correlation with 

tool flank wear. The selected sub-band features must 

describe the overall condition of the system independently 

and their number must be large enough. 

 

 
Fig. 6 Captured signal for v= 60 m/min and f= 0.04 

mm/rev and decomposed wavelet packets, VB=0.27 mm. 

 

Using wavelet packet transform, each of 108 raw vibration 

signals was decomposed into 4 levels consisting of 16 sub-

band components and the corresponding RMS values of 

wavelet coefficients were calculated. Each wavelet packet 

corresponded to each frequency band ranging from [0-

312.5] Hz to [4687.5-5000] Hz. By precise consideration 

of RMS values of sub-band components, it was found that 

the effect of tool gradual wear can be traced in only 4 

decomposed signals; 2nd, 6th, 11th and 14th sub-band 

signals. These features corresponded to [312.5-625] Hz, 

[1562.5-1875] Hz, [3125-3437.5] Hz and [4062.5-4375] 

Hz frequency ranges respectively. 

 

 
Fig. 7 RMS of wavelet coefficients in selected features for 

v=60 m/min and f=0.02 mm/rev. 

 

 
Fig. 8 RMS of wavelet coefficients in selected features for 

v=60 m/min and f=0.04 mm/rev. 

 

Fig. 9 RMS of wavelet coefficients in selected features for 

v=60 m/min and f=0.06 mm/rev. 
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The variation of RMS of wavelet coefficients in mentioned 

frequency ranges for cutting speed 60 m/min and feed rates 

0.02, 0.04 and 0.06 mm/rev are represented in “Figs. 7-9”. 

As can be seen, in all selected features, the value of RMSs 

increases with any increase in tool wear values. The 

increase in the RMSs along with gradual tool flank wear is 

an indicator of the correctness of selected sub-band 

features. However, such a manner was not observed in 

other decomposed features with different frequency bands. 

Since the effect of cutting parameters will be reflected by 

the extracted features, the cardinal part of the TWM 

system is assessing the effect of cutting parameters on the 

selected features, [26]. It is evident that the selected 

features are sensitive to any variation in cutting speed and 

feed rate. Results of previously performed studies have 

indicated the correlation between cutting force and 

machining vibration signal.  

 
Fig. 10 RMS of wavelet coefficients in selected features for 

v=80 m/min and f=0.06 mm/rev. 
 

 

Any increase in cutting force usually accompanies with the 

increase in vibration captured from tool holder in 

machining [39]. Figures 7, 8, and 9 indicate that an 

increase in feed rate causes the RMSs to increase. The 

reason for this change can be explained by the variation of 

undeformed chip thickness. Increasing the feed rate caused 

undeformed chip thickness to increase that resulted in a 

noticeable rise in cutting forces and subsequently led to 

increscent of vibrations. The variation of RMSs of wavelet 

coefficients of selected features for cutting speeds 80 

m/min and feed rate 0.06 mm/rev is demonstrated in “Fig. 

10”. Considering the behavior of RMS values shown in 

“Fig. 9” and “Fig. 10”, it was found that the effect of the 

increase in cutting speed could be seen only in features 

with low frequency band. The main reason is the negligible 

effect of cutting speed on cutting force in turning of 

hardened AISI D2 [40]. Therefore, only a little increase 

was encountered in low frequency features (n1 and n2), 

which was because of natural increased vibration 

magnitude in machine tool in higher spindle rotations. 

4.3. Neural Networks  

In this research a three-layer feed forward network was 

structured to predict the tool flank wear. Input parameters 

of the network were cutting speed, feed rate and the RMSs 

of wavelet coefficient of the decomposed vibration signals. 

To train the neural network, 100 tests were used according 

to mentioned cutting parameters discussed in the 

experimental section. “Table 1ˮ shows the selected tests to 

validate the proposed monitoring system. Validation tests 

were not presented to the network for training and were 

used only for evaluating the accuracy and reliability of the 

proposed monitoring system.  

 

Table 1 Experimental validation tests 

   RMS of selected features  Flank wear VB (mm) 

Test 

No. 

Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

2nd 6th 11th 14th  Measured Predicted 

1 40 0.04 0.0194 0.0389 0.0195 0.0361  0.288 0.264 

2 60 0.02 0.0265 0.0363 0.0188 0.0318  0.314 0.328 

3 60 0.04 0.0169 0.0247 0.0099 0.0252  0.137 0.157 

4 80 0.02 0.0269 0.0280 0.0111 0.0249  0.221 0.194 

5 40 0.035 0.0017 0.052 0.0255 0.0305  0.271 0.250 

6 50 0.05 0.0085 0.029 0.0098 0.0249  0.132 0.121 

7 70 0.03 0.024 0.028 0.0126 0.026  0.19 0.201 

8 85 0.06 0.0253 0.0281 0.0131 0.0291  0.126 0.144 

9 40 0.04 0.0079 0.0241 0.0089 0.0229  0.143 0.153 

10 60 0.02 0.0136 0.0208 0.0061 0.0203  0.099 0.112 

11 60 0.06 0.022 0.03 0.0133 0.0274  0.179 0.191 

12 80 0.04 0.0322 0.0327 0.0158 0.0302  0.242 0.223 

 

The values of input cutting parameters along with 

measured and predicted wear values of validation cutting 

parameters and corresponding RMS values of wavelet 

coefficients of selected features are shown in “Table 1ˮ. 

The accuracy of the trained network in this research was 

evaluated in terms of two statistical measures. These 

measures were the root mean square error, RMSE, and 

coefficient of determination, R2, which are defined as 

below:  
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𝑅𝑀𝑆𝐸 = √∑
(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑚−𝑌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑚)2

𝑛

𝑛
𝑚=1            (8) 

 

𝑅2 = 1 −
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑚−𝑌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑚)2𝑛
𝑚=1

∑ (𝑌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑚
𝑛
𝑚=1 )2

                 9) 

 

Where n is the number of data points, Ypredicted,m and 

Yexperimental,m indicates the predicted value and the 

measured value from experimental data, respectively, of 

one data point m. RMSE gives the deviation between the 

experimental and predicted values. A precise fit yields R2 

value of 1, whereas a poor fit results in a value near zero. 

Based on values obtained for RMSE and R2, the accuracy 

of the trained network for both train and validation data set 

was evaluated as shown in “Table 2ˮ. 

 
Table 2 Fitness values of trained neural network 

 R2 RMSE 

Training 0.9934 0.0104 

validation 0.9511 0.0261 

 

The results given in “Table 2ˮ allow concluding that 

proposed TWM methodology has a unique ability in 

assessing the value of flank wear in finish turning of AISI 

D2. Furthermore, the system has good prospects in 

predicting tool flank wear for cutting parameters other than 

those in the training set.  

6 CONCLUSION AND FUTURE WORK 

One of the most difficult problems in TWM is extracting 

signal features and describing the correlation between 

extracted features and tool wear values as accurate as 

possible. Based on the wavelet packet transform, an 

efficient system for TWM was designed. Key features 

were extracted from vibration signals. These features were 

used as input of a neural network, which was trained to 

predict tool flank wear. The proposed technique can be 

integrated into an industrial tool condition monitoring 

system and estimate the value of tool flank wear at various 

cutting conditions quite accurately in real time.  

The results can be summarized as follows: 

1- In order to design a reliable and applicable TWM 

system, vibration signals can be used. Furthermore, using 

a vibration sensor offers some extra advantages over other 

sensing techniques such as ease of implementation and the 

fact that no modifications to the machine tool or the work 

piece fixtures are required.  

2- The WPT has an acceptable performance and high 

accuracy in TWM. This technique has the ability to capture 

the important features of sensor signal that are sensitive to 

tool flank wear. Therefore, reliable and accurate online 

monitoring decisions can be made. Moreover, the RMS of 

the wavelet coefficient of selected features contains 

important information about tool condition and can be 

considered as the monitoring factor of features.  

3- Results show the ability of the proposed neural network 

in generalizing the system characteristics by predicting 

values close to the actual measured ones even for the 

cutting conditions not encountered in its training stage. 

In the authors’ opinion, researches in TWM systems 

should center in the future on preprocessing signals 

obtained from more sensors that work together. Moreover, 

it is proposed to perform precise cutting parameters and 

develop time-frequency signal processing techniques, 

such as wavelet transforms, to get more information about 

the different frequency bands that the various sources of 

noise, for example machine tool parts, generate.  
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