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Abstract: Equal channel angular pressing (ECAP) is one of the most appealing 
severe plastic deformation (SPD) methods. The proposed equal channel multi 
angular pressing (ECMAP) process enhances the efficiency of traditional ECAP 
technique with decreasing the process time. In this study, a complete investigation 
was done by the design of experiment (DOE) by compound Taguchi-Grey technique. 
FEM was applied by ABAQUS software in order to achieve responses of proposed 
Taguchi tests. Die geometrical parameters together with an important process 
parameter were selected as input factors and strain characteristics and also, required 
process load were selected as responses. The relationships between responses and 
input factors were obtained by regression analysis. Then, an analysis of variance 
(ANOVA) was used to determine the influence of each input factor on responses. 
ANOVA analysis revealed that FC with contribution percentage of 87.21% has the 
most influential factor on RPL. Furthermore, it was inferred that among input 
factors, φ1with contribution percentage of 94.57% has the most effect on the PEEQ. 
Finally, a multi objective optimization study was done by grey relational analysis. It 
was concluded that among all input factors, die channel angle, friction coefficient 
(FC), and die corner angle with contribution percentages of 42.30%, 26.08% and 
14.84% are the first, second and third most influential factors on objectives, 
respectively.  
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1 INTRODUCTION 

Hall-petch equation indicates the fact that the strength of 

polycrystalline metals depends on the grain size. “Eq. 

(1)ˮ demonstrates that decreasing the average diameter 

of material grain leads to enhancing strength.  
 

(1) 
1/2

0y yK d     

 

In this equation, 𝑑 is the grain diameter of average size, 

𝜎
𝑦

 is the yield stress, 𝜎0 is the reference yield stress and 

𝐾𝑦 is the yield constant [1]. In order to transform the 

coarse-grained material to ultra-fine grained material, it 

is necessary to produce higher dislocation density that 

was obtained from applying too much strain. This 

process is done by SPD techniques that exert intense 

deformation to material without changing the initial 

geometry. ECAP is one of the most appealing SPD 

methods and the proposed ECMAP process enhances the 

efficiency of traditional ECAP technique with 

decreasing the process time. In order to raise the process 

efficiency, it is necessary to optimize the effective 

process parameters.  

Previous studies reveal that four different types of 

optimization were done to optimize the ECAP process. 

The first types of optimization works were done 

completely with FEM simulations. The series of 

numerical simulations were carried out by altering 

effective parameters and comparisons were performed 

between the results of different FEM analysis [2-5]. 

Aour et al. [2] considered the effects of input parameters 

on the strain homogeneity of thermoplastic polymer in 

the ECAP process. Back pressure, die geometrical 

parameters, process temperature, ram speed and process 

repetitions numbers were selected as the input 

parameters of FE simulations. The second types of 

optimization studies were done by experimental works. 

Several experimental works were done with various 

amounts of input parameters and the results for key 

parameters were extracted [6-9]. Purcek et al [6] 

experimentally studied the various existed routes in the 

ECAP process and investigated the effects of routes and 

aging on the electrical conductivity, ductility and 

strength of produced samples. The third types of ECAP 

optimization articles are the combination of both 

previous types e.g. FEM and experimental works [10-

12]. Sordi et al [10] investigated die geometrical 

parameters effects on the process load, die corner gap 

and strain homogeneity of produced final samples by 

both FEM and experiments. It was inferred that die outer 

corner radius and die channel angle have an inverse 

effect on process load and the amount of corner gap 

depends on the deformation homogeneity. The fourth 

and last types of ECAP optimization works are the 

application of optimization methods besides numerical 

simulations or practical works [13-15]. The optimization 

methods seldom were applied to ECAP works. 

Fereshteh-Saniee et al [13] used the neural network, FE 

and genetic algorithm to optimize the ECAP process. 

The magnitude and the amount of PEEQ were selected 

as objectives and die geometrical parameters were 

considered as input variables. It was inferred that, by 

adjusting some geometrical parameters, the dead metal 

region and buckling probability can be controlled. Wang 

et al [14] used grey theory as an optimization technique 

in the ECAP process. Die geometrical parameters were 

selected as input variables and strain homogeneity, 

maximum damage value and deformation uniformity 

were considered as output variables. It was observed that 

the damage is small and the material refining can be 

done by optimized values of geometrical parameters. 

Also, Keshtiban et al [15] used grey relational analysis 

to optimize the ECMAP process of pure Al. Die 

structure was considered as input variables and strain 

inhomogeneity and process load were selected as 

objectives. It was observed that the die channel angle is 

the most effective parameter between die geometrical 

parameters. 

Regression analysis with the aim of extracting the 

relationship between input and output variables, analysis 

of variance to obtain the contribution percentage of input 

parameters on output parameters along with grey 

relational analysis for process optimization in the 

ECMAP process of strip-type parts has not been done by 

researchers before. Thus, in this study, a complete 

investigation was done by DOE with compound 

Taguchi-grey technique. FEM was applied by ABAQUS 

software in order to achieve responses of proposed 

Taguchi tests. Die geometrical parameters together with 

an important process parameter were selected as input 

factors and strain inhomogeneity index (SII), equivalent 

plastic strain (PEEQ) and required process load (RPL) 

were selected as responses. The relationships between 

responses and input factors were obtained by regression 

analysis. Then, an analysis of variance (ANOVA) was 

used to determine the influence of each input factor on 

responses. Finally, multi objective optimization was 

done by grey relational analysis. 

2 FINITE ELEMENT, EXPERIMENTAL AND 

OPTIMIZATION PROCEDURES 

2.1. Finite Element and Experimental Procedures 

The numerical analysis is an attractive technique capable 

of predicting the mechanical and thermal behavior of 

processed material. This analysis saves money and time 

that would be necessary to carry out the extensive 

experiments. At this present study, in order to simulate 

the process, ABAQUS was used as the FE software [16]. 

Die schematic and related geometrical parameters were 

depicted in “Fig. 1ˮ.  
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Fig. 1 Schematic of ECMAP. 

 

It is evident that six angles explain all geometrical 

conditions in route C. Three angles are the die channel 

angles (Φi) and the other three are the die corner angles 

(ψi). The geometry of designed die revealed that three 

equal channel angular pressing occurs on each element 

of ECMAPed strips. Also, it should be noted that 

because of the symmetry in the inlet and outlet channels, 

three geometrical parameters were considered as the 

independent input parameters. 
All die components were taken as rigid bodies and 

coulomb friction law was considered between all 

contacting surfaces. Since the products are in the strip 

type, the plane strain condition was considered for 

simulations [17]. Since the strain rate is not significant, 

the isothermal condition was assumed [18]. From the 

obtained stress-strain graphs from tension tests, 

constants of work hardening relationship extracted “Eq. 

(2)ˮ. The subjected equation was set on the strength 

coefficient (k) of 432.46 GPa, strain hardening exponent 

(n) of 0.3506 and yield stress (y) of 100 MPa. Both die 

and punch were considered as rigid bodies and punch 

velocity was supposed to be 0.5 mm/s. 
 

nk y    (2) 
 

The commercially 5754 aluminum alloy with a chemical 

composition of (wt%) 0.085 Si, 0.247 Fe, 0.138 Mn, 

2.828 Mg, 0.011 Cu and balance Al was cut into 

rectangular strips of  60 mm× 20 mm× 3 mm in size. All 

samples were cut by wire-cut machine from 3 mm sheet 

(thickness). The FE simulation with subjected geometry 

was calibrated with experimental tests in our previous 

works [19], [20]. 

2.2. Taguchi Method 

With the aim of higher efficiency and with the aim of 

lowering production cost, adequate DOE should be 

selected. Taguchi method is one of the most popular and 

economical DOE methods that was used in this study.    

Process parameters and die geometrical parameters were 

selected as input variables in three levels (“Table 1ˮ) and 

strain characteristics and RPL were assumed as 

objectives. From the number of inspected variables and 

related levels, Taguchi L9 orthogonal array was selected 

(“Table 2ˮ). Mono-objective optimization was done by 

Taguchi method to find the conditions that both RPL and 

SII of products are minimized but the value of generated 

PEEQ is maximized. 

 
Table 1 Control variables and their levels. 

Code Control Parameters Level 1 Level 2 Level 3 

A FC 0.05 0.075 0.1 

B Ψ1 0 10 20 

C Ψ2 0 10 20 

D Φ1 150 155 160 

 
Table 2 Taguchi L9 orthogonal array. 

Set No. FC Ψ1 Ψ2 Φ1 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

3 RESULTS AND DISCUSSION 

3.1. Regression Analysis 

The relationship between dependent and independent 

variables were achieved by regression analysis. Two 

equations usually are used to achieve the subjected 

relationship (“Eqs. (3-4)ˮ). “Eq. (3)ˮ shows the general 

form of first degree polynomial between each objective 

and input variables. “Eq. (4)ˮ can be used when 

interactions between input parameters have a high effect 

on objectives. 
  

0

1

k

i i

i

y x e 


    (3) 

0 ,

1 2

k k k

i i i j i j

i i j

y x x x e  
  

      (4) 

Where ꞵ is the coefficient of each term, K is the number 

of each independent variable and e is the related error.  

The accuracy check of first degree model was done by 

R2 ratio with “Eq. (5)ˮ. 

 Die Punch Sheet 
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2 Sum squared error (SSE)
1

Sum squared total (SST)
R    (5) 

 

In this study, all die geometrical angles (Ψ1, Ψ2, Φ1) and 

FC were supposed to be input parameters. RPL, SII and 

PEEQ were chosen as output parameters. Then, three 

first degree models were achieved for three outputs 

(“Eqs. (6-8)ˮ).  

 

(6) 

 

1

2 1

1 2 1 2

2 2

   9972.26  233847   172.424  

1414.37  106.255  3159.19

   15508.8  27.31 

3212.43     97.38%     79.05%

    

   

     

 





RPL FC

FC FC

S R R adj

 

  

(7) 

 

1

2 1 1

2 1 2

2 2

    1.09852  2.52608   0.00512536 

0.025631  0.00902844 0.0706627 

 0.27223  0.00061223 

 0.0165325    97.84%     82.73%

    

    

   

  



SII FC

FC

FC

S R R adj

 

  

(8) 

 

1

2 1 1

2 1 2

2 2

   9.22821  5.20087   0.0380555 

0.012077  0.0500078 0.534139 

 0.167859  0.000341509 

 0.0133653    99.98%      99.80%

    

    

    





 

PEEQ FC

FC

FC

S R R adj

 

 

SSE values for RPL, SII and PEEQ are 10319675, 

0.0002733 and 0.000179 respectively. Also, SST values 

for mentioned parameters are 394072258, 0.0126591 

and 0.723940, correspondingly. R2 values were 

calculated by “Eq. (5)ˮ. “Fig. 2ˮ illustrates the simulated 

and predicted conditions for “Eqs. (6-8)ˮ, respectively. 

It can be inferred that the subjected equations for RPL, 

PEEQ and SII are suitable for prediction. 

 

3.2. S/N Ratio Analysis 

Signal to noise (S/N) ratio was used to determine the 

effects of uncontrollable factors on optimum parameters. 

This ratio represents the sensitivity of the investigated 

parameter to environmental effects that could not be 

controlled. The higher S/N ratio shows that controllable 

parameters have more effectiveness. The term "Signal" 

indicates a desirable effect for each output and the term 

"Noise" shows unfavorable effects on outputs. The 

process objectives indicate the optimization of S/N 

ratios procedure. When the objective for the special 

variable is “the smaller is better”, “Eq. (9)ˮ is used. Also, 

“Eq. (10)ˮ is used when the aim is “larger is better”. In 

this study “Eq. (9)ˮ was used to obtain the minimum 

amounts of both RPL and SII. Also, “Eq. (10)ˮ was used 

to achieve the maximum value of PEEQ. 

 

 
a 

 
b 

 
c 

Fig. 2 Comparison of measured-predicted values for:    

(a): RPL, (b): PEEQ and (c): SII. 
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10 2
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n y

  
    

   
  (10) 

 

Where 
iy is the measured response in ith simulation and 

n is the repetition number of simulations. “Table 3ˮ lists 

simulation results and calculated S/N ratios. 
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Table 3 The simulation and S/N results. 

Set No. RPL (N) 

Result S/N (dB) 
 

PEEQ 

Result S/N (dB) 
 

SII 

Result S/N (dB) 
 

1 5440.210 -74.7123 1.468 3.33565 0.128 17.8579 

2 3971.015 -71.9780 1.091 0.75856 0.111 19.0566 

3 2812.474 -68.9818 0.804 -1.89419 0.191 14.3834 

4 6853.245 -76.7179 0.847 -1.44452 0.099 20.1272 

5 10220.606 -80.1895 1.440 3.16930 0.080 21.9042 

6 8606.246 -78.6963 1.132 1.07539 0.109 19.2493 

7 20190.186 -86.1028 1.049 0.41314 0.083 21.6115 

8 15493.606 -83.8031 0.858 -1.32943 0.116 18.7275 

9 21948.377 -86.8280 1.627 4.22846 0.183 14.7383 

 

 

Main effects plots for all objectives were illustrated in 

“Figs. (3-5)ˮ. The highest values of S/N ratios indicate 

the favorable levels that were shown by red circles. 

Higher deviation form horizontal lines show more 

effectiveness of parameters on responses.    

It is inferred from “Fig. 3ˮ that the optimum levels for 

RPL are A1B3C3D3. This means that optimum values 

of parameters are as follows: FC= 0.05, Ψ1=20°, Ψ2=20°, 

and Φ1 = 160°. Also, it is concluded that compared with 

other parameters, FC effects more on RPL than other 

parameters.  

“Fig. 4ˮ depicts that the optimum levels for 

inhomogeneity index are A2B2C3D2. So, for obtaining 

optimum condition, FC, Ψ1, Ψ2 and Φ1 should be set on 

0.075, 10°, 20° and 155°, respectively. Also, it can be 

concluded that Ψ2 has less effect on inhomogeneity. 

Also, “Fig. 5ˮ reveals S/N ratios for PEEQ. From this 

figure it is evident that, the best levels for subjected 

variables are A3B3C2D1, correspondingly. In this case 

the values of FC, Ψ1, Ψ2 and Φ1 are 1, 20°, 10° and 150°, 

respectively. Moreover, Φ1 is the most effective 

parameter when PEEQ is selected as a response 

parameter. 

Response surface methodology was used to indicate the 

simultaneous effects of two input factors on each 

response. 3D surface plots for RPL, SII and PEEQ 

according to input factors were indicated in “Figs. (6-

8)ˮ. “Fig. 6ˮ reveals that higher FC values lead to an 

increase of RPL [19], [21].  

On the contrary, the lower values of φ1 cause to increase 

of RPL which was also reported by researchers [22]. It 

is evident from “Fig. 7ˮ that, when Ψ1 is more, SII will 

also be more. “Fig. 8ˮ shows the influence of input 

factors on PEEQ. It is obvious that increasing Φ1leads to 

decreasing PEEQ. Also, it is inferred that FC, Ψ1and Ψ2 

do not have a significant effect on PEEQ. The results are 

in good agreement with S/N results.  

 

 

 
Fig. 3 Main effects plot of S/N ratios for RPL (N). 
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Fig. 4 Main effects plot of S/N ratios for SII. 

 

 

 
Fig. 5 Main effects plot of S/N ratios for PEEQ. 
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Fig. 6 3D surface plots for the effects of factors on RPL(N). 

 

 

a 

 

b 
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d 

 
Fig. 7 3D surface plots for the effects of factors on SII. 
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a 

 

b 

 

c 

 

d 

 

Fig. 8 3D surface plots for the effects of factors on PEEQ. 

 

3.3. ANOVA 

ANOVA is one of the important statistical methods for 

analysis of factors effectiveness when just one response 

is considered. The values for contribution reveal the 

effectiveness of each parameter on responses. ANOVA 

results for three responses were listed on “Tables (4-6)ˮ.   

“Table 4ˮ shows the effectiveness amounts of all input 

parameters on RPL. FC has more effect on load by the 

effectiveness of 87.21%[23]. The ANOVA analysis 

indicates that other parameters have less influence. Also, 

analysis of this table reveals that, the value of P for FC 

is less than 0.05, so this factor has physical and statistical 

importance. The level of confidence is 95% for analyses 

(The significance level is 5%). 

 
Table 4 ANOVA results for RPL (N). 

Factors DF Seq SS Adj SS Adj MS F P Contribution (%) 

FC 1 343654865 343654865 343654865 61.94 0.001 87.21 

Ψ1 1 130082 130082 130082 0.02 0.886 0.03 

Ψ2 1 2260998 2260998 2260998 0.41 0.558 0.57 

Φ1 1 25833203 25833203 25833203 4.66 0.097 6.56 

Error 4 22193110 22193110 5548278   5.63 

Total 8 394072258     100 

 

 

1.00

1.25

150150

155

1.50

1.75

0

160

10

20

PEEQ

Ψ2

Φ1

1.00

1.25

0

10

1.50

1.75

0

20

10

20

PEEQ

Ψ1

Ψ2

1.00

1.25

150150

155

1.50

1.75

0

160

10

20

PEEQ

Ψ1

Φ1

1.00

1.25

150150

155

1.50

1.75

0.050
160

0.075

0.100

0.075

PEEQ

FC

Φ1



Int  J   Advanced Design and Manufacturing Technology, Vol. 13/ No. 1/ March – 2020                                         77 

 

© 2020 IAU, Majlesi Branch 
 

“Table 5ˮ shows the ANOVA results for SII as a 

response. It can be inferred that, Ψ1 has more 

contribution than others with the effectiveness of 

39.69%. Also, FC has 3.07% effectiveness as the second 

influential factor. 

The effectiveness of input factors on PEEQ was shown 

in “Table 6ˮ. It is obvious that, the highest value belongs 

to Φ1 with 94.57% of contribution. Also, with the zero P 

value, Φ1 has physical and statistical importance on 

PEEQ. 
 

 

Table 5 ANOVA results for SII. 

Factors DF Seq SS Adj SS Adj MS F P Contribution (%) 

FC 1 0.000388 0.000388 0.000388 0.22 0.667 3.07 

Ψ1 1 0.005024 0.005024 0.005024 2.79 0.17 39.69 

Ψ2 1 0 0 0 0 0.989 0.00 

Φ1 1 0.000031 0.000031 0.000031 0.02 0.902 0.24 

Error 4 0.007215 0.007215 0.001804   57.00 

Total 8 0.012659     100 

 

Table 6 ANOVA results for PEEQ. 

Factors DF Seq SS Adj SS Adj MS F P Contribution (%) 

FC 1 0.00484 0.00484 0.00484 0.83 0.414 0.67 

Ψ1 1 0.00662 0.00662 0.00662 1.13 0.347 0.91 

Ψ2 1 0.00453 0.00453 0.00453 0.78 0.428 0.63 

Φ1 1 0.68461 0.68461 0.68461 117.34 0 94.57 

Error 4 0.02334 0.02334 0.00583   3.22 

Total 8 0.72394     100 

 

3.4. Grey Multi Objective Optimization 

Multi objective optimization was done by grey relational 

analysis and all objectives were considered 

simultaneously here. Optimum values for levels of die 

geometrical parameters and FC obtained for different 

conditions of objectives: minimum values for RPL and 

SII and maximum values for PEEQ.  

3.4.1. Grey relational generating 

Objective parameters should be normalized firstly 

(“Table 7ˮ) and then grey relational coefficient and grey 

relational grade were calculated, subsequently. Based on 

the type of the optimization, normalizing of parameters 

will be done by “Eqs. (11-12)ˮ [24]. 

For objective parameters: 

When the objective is the minimum value, “Eq. (11)ˮ: 

 

(11) 

0 0

*

0 0
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Also, when the objective is the maximum value, “Eq. 

(12)ˮ will be used. 
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Where X*
i (k) is the value of the parameter after 

generation, X0 is the preferred value, max X0
i (k) and min 

X0
i (k) denote the maximum and minimum value of X0

i 

(k), respectively [25]. In this study, the optimum 

condition for both SII and RPL occurs in minimum value 

therefore, “Eq. (11)ˮ was employed. Also, “Eq. (12)ˮ 

was used to find the maximum value of PEEQ. 

3.4.2. Grey relational coefficient 

Grey relational coefficient calculated for each objective 

parameter by “Eq. (13)ˮ and results are listed in “Table 

7ˮ. This coefficient is the number between zero and one. 

For each objective parameter, grey relational coefficient 

demonstrates the amount of closeness from optimum 

value [26-27]. 

 

(13) 
max0

maxmin

)(
)(











k
k
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In which Δmin and Δmax reveal the minimum and 

maximum difference between values after grey analysis 

correspondingly, Δ0i (k) demonstrates data value for ith 

response and kth test after grey analysis and ξi(k) is the 

grey relational coefficient. Each parameter in “Eq. (13)ˮ 

can be calculated from “Eqs. (14-16)ˮ. 
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(14) )()()( **
00 kXkXk ii   

  

(15) )()(maxmax **
0max kXkX i  

  

(16) )()(minmin **
0min kXkX i  

 

Grey relational coefficient is a number between zero and 

one as stated by [28] and optimal grey coefficients are 
usually selected as average (0.33). 

3.4.3. Grey relational grade 

Line with the values computed for obtaining grey 

relational coefficient for each objective, grey relational 

grade were calculated from “Eq. 17ˮ [29].  
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Where ωi is the weight percent of a parameter. γi is the 

grey relational grade for the ith experiment. The values 

of grey relational grade were listed in “Table 7ˮ.  

Both “Table 7 & Fig. 9ˮ show that the optimal condition 

occurs at simulation number 5. In this simulation, the 

grey relational grade equal to one, so optimization 

suggests that the geometry for this experiment is the best 

for achieving the minimum RPL and SII but, maximum 

PEEQ. 

 

 

Table 7 Normalized simulation results, Grey relational coefficients, Grade and its order. 

Experiment 

Number 

Normalized simulation results Grey relational coefficient Grade Order 

RPL (N) PEEQ SII RPL (N) PEEQ SII 

1 0.1373 0.1932 0.4324 0.7845 0.7213 0.5362 0.6807 2 

2 0.0605 0.6513 0.2793 0.8920 0.4343 0.6416 0.6560 3 

3 0.0000 1.0000 1.0000 1.0000 0.3333 0.3333 0.5556 8 

4 0.2112 0.9478 0.1712 0.7031 0.3454 0.7450 0.5978 4 

5 0.3871 0.2272 0.0000 0.5636 0.6876 1.0000 0.7504 1 

6 0.3028 0.6015 0.2613 0.6228 0.4539 0.6568 0.5779 5 

7 0.9081 0.7023 0.0270 0.3551 0.4159 0.9487 0.5732 6 

8 0.6627 0.9344 0.3243 0.4300 0.3486 0.6066 0.4617 9 

9 1.0000 0.0000 0.9279 0.3333 1.0000 0.3502 0.5612 7 

 

 
Fig. 9 Grey relational grade. 

 

It is inferred from “Fig. 9ˮ that the best result belongs to 

the set number 5. Since the highest value for the grey 

relational grade is better so “Eq. (12)ˮ was used for S/N 

analysis. The optimum values were shown with circles 

in “Fig. 10ˮ. Then, it is evident that the optimum levels 

are A3B3C1D3. This means that to reach the optimum 

results, FC, Ψ1, Ψ2 and Φ1 should be 0.1, 20°, 0° and 

160°, correspondingly. 
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Fig. 10 Main effects plot of S/N ratios for the grey relational grade. 

 

ANOVA analysis was done and results were listed on 

“Table 8ˮ. The contributions of FC, Ψ1, Ψ2 and Φ1 have 

26.08%, 7.33%, 7.51% and 42.3%, respectively. Results 

show that both FC and Φ1 have more effects on grey 

grade. The level of confidence is 95% for analyses (The 

significance level is 5%).  
 

Table 8 ANOVA: Analysis of Variance for grey. 

Factors DF Seq SS Adj SS Adj MS F P Contribution (%) 

FC 1 0.014622 0.014622 0.014622 6.22 0.067 26.08 

Ψ1 1 0.004108 0.004108 0.004108 1.75 0.257 7.33 

Ψ2 1 0.004208 0.004208 0.004208 1.79 0.252 7.51 

Φ1 1 0.023713 0.023713 0.023713 10.08 0.034 42.30 

Error 4 0.009408 0.009408 0.002352   16.78 

Total 8 0.05606     100 

 

4 CONCLUSION 

ECMAP process optimization in the production of 

ultrafine grained Al alloy was discussed in this study. A 

complete investigation was done by DOE with 

compound Taguchi-Grey technique. Die geometrical 

parameters and friction coefficient were considered as 

input factors and strain characteristics and required 

process load set as response factors. The following 

results obtained: 

1- Achieved relations for regression analysis shows that 

objectives can be predicted with good accuracy.   

2- S/N and ANOVA analysis revealed that FC with 

contribution percentage of 87.21% has the most 

influential factor on RPL. Also, it was achieved that all 

input factors have effect on SII. Furthermore, it was 

inferred that among input factors, Φ1with contribution 

percentage of 94.57% has the most effect on the PEEQ. 

3- The results of response surface methodology revealed 

that higher Φ1values lead to lower RPL and PEEQ. Also, 

higher FC causes higher RPL. 

4- Grey relational analysis was used as optimization 

method and the 5th set with Φ1 of 150° and FC of 0.075 

is the best one among simulations.  
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