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Abstract: In this research, the effect of different structural parameters on the 

dynamic behaviour of a thick plate with a smart attached mass, which is a mass 

embedded with the Shape Memory Alloy (SMA) fibers were investigated. The 

results showed that the inherent stiffness of the smart attached mass and the localized 

stiffness due to the effect of SMA fibers both play a significant role in the dynamic 

behaviour of the plate, and ignoring either of these parameters results in a 

considerable change in the system responses. The size and position of the smart 

attached mass were also found to be of particular importance, since the effect of the 

weight of SMA and attached mass and the forces induced by SMA transformation 

all have significant and sometimes conflicting effects on the system vibrations. The 

results also showed that the changes in the system parameters, and particularly the 

characteristics of the SMA fibers such as activation temperature, pre-strain, and 

volume fraction, result in the appearance of dynamic responses that cannot be 

neglected. 
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1 INTRODUCTION 

The importance of dynamic behavior of structures in all 

venues of the industry has encouraged constant research 

on new materials that may contribute to the 

improvement of this behavior. Given the unique 

behavior of Shape Memory Alloys (SMAs), they have 

found exponentially increasing applications in various 

fields of engineering. Hence, the behavior of these 

materials in interaction with other structural components 

is worthy of research. The unique features that make 

SMAs a viable option for many engineering applications 

include high damping, adaptive responses, shape 

memory, and super elasticity. Due to their wide 

application in industry, analysis of the effect of different 

characteristics of SMA and attached mass on the 

vibration behavior of thick plates with SMA-containing 

attached mass can be an interesting subject of research. 

There are various theories to model a plate for further 

analysis.  

The Classical Laminated-Plate Theory (CLPT), which is 

the basis of the plate analysis, ignores the effects of out-

of-plane stresses and strains and cannot be relied upon 

to serve as a comprehensive theory, as it brings about 

cross-sectional warping that is often too large to be 

ignored, especially in thick plates. Yang et al. [1] 

extended the Reissner and Mindlin’s First-Order Shear-

Deformation Theory (FSDT) to laminated plates. 

Nevertheless, the simplifying assumptions made in 

classical and first-order theories have a high rate of error, 

especially in thick plates. The Higher-Order Shear-

Deformation Theory (HOST), which includes a realistic 

parabolic variation of transverse shear stress along the 

laminate thickness and warping of the cross-section, is 

of great use for the analysis of plate problems, especially 

those with higher thicknesses. Kant et al. [2] were the 

first to provide a finite element formulation for the 

higher order bending theory. This theory incorporates 

the three-dimensional Hook’s law and the effect of 

transverse vertical strain as well as transverse shear 

deformations.  

Later, Reddy [3] proposed a higher order theory using a 

displacement field with cubic variations along thickness. 

This theory was then used by Reddy and Fan [4] to 

obtain closed-form solutions for the natural frequencies 

of elastic plates and by Khadir [5-6] to analyze the free 

vibrations of laminated plates. Kato [7-8] conducted 

extensive research on the dynamic behavior of 

homogeneous and laminated shells. Kant et al. [9] 

studied the free vibration characteristics of simply 

supported laminated cross-ply composite and sandwich 

shell panels by the use of several higher order theories 

and described the effects of vertical and transverse shear 

stresses and strains. Since the distribution of 

interlaminar shear stress over thickness is significantly 

influenced by the heterogeneity of the laminate, for 

composites in which laminates of high and low moduli 

are stacked together, a significant warping can be 

expected. 

In regard to the effect of attached mass, there have been 

many studies on the beams and rods that carry uniformly 

distributed masses. However, only a few studies have 

investigated the ones carrying distributed masses. 

Gorman [10] solved the problem of free vibration of a 

point supported plate with attached mass using the 

superposition principle. Rossi [11] solved the problem 

of vibration of a fully clamped plate with attached mass 

by combining the boundary element method with the 

finite element method. Kopmaz and Telli [12] studied 

the free vibration of a plate carrying a distributed mass 

using a mathematical model. They used the Galerkin 

method to solve the derived partial differential equation, 

and then obtained eigenvectors and frequencies 

accordingly. Wang [13] analyzed the free vibration of a 

simply supported rectangular plate carrying a distributed 

mass using the Rayleigh-Ritz method. Alibeiglu et al. 

[14] solved the problem of free vibration of a simply 

supported single-layer composite with a distributed 

attached mass using the Hamilton principle and a double 

Fourier series. Malekzadeh et al. [15] investigated the 

effect of attached mass on the vibration of a thick plate 

with the plate stiffness taken into consideration, and 

obtained significant results using the higher-order 

theory. 

Among the studies on the effects of SMAs on the 

structure, only a few works have discussed the free 

vibrations of the plate with the effects of SMAs or smart 

sandwich panels taken into consideration. Stakovich et 

al. [16] studied the effect of heat on the first natural 

frequency and the effect of SMAs on the critical 

buckling temperature of SMA-containing composite 

plate, and showed that an increase in pre-strain and 

temperature results in an increase in the critical buckling 

temperature of the plate. Lu et al. [17] studied the 

vibrational properties of the SMA-containing composite 

beam with different boundary conditions. Using the 

finite element method, they showed that increasing the 

temperature of the pre-tensioned SMA increases the 

natural frequency. They reported that to increase the 

damping ratio, the fibers must be embedded in the 

composite without pre-tension.  

Alimozaffari et al. [18] showed that the embedding an 

SMA into the laminates of a hybrid composite increases 

the natural frequency of the system. Zhang et al. [19] 

investigated the variations of natural frequency of an 

SMA-containing composite plate by the use of finite 

element method, and showed that adding SMA fibers 

and increasing the temperature increases the frequency 

of the system. Park et al. [20] examined the vibrational 

behavior of an SMA-containing composite plate in the 

post-buckling state using the finite element method and 

first-order shear-deformation theory. Their numerical 
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results showed that if we increase the SMA volume 

fraction and pre-strain, the natural frequency in the pre-

buckling state will initially increase, but with the plate’s 

thermal deflection gradually dominating the recovery 

stress, the frequency will decrease until buckling occurs. 

In addition, the natural frequency of an SMA-containing 

plate is always lower than the natural frequency of the 

same plate without SMA (at the reference temperature). 

This is because of the plate’s increased weight and 

decreased thermal deflection due to the presence of 

SMA.  

In a dynamic mechanical analysis conducted by Kingni 

et al. [21], they investigated the stiffness and vibrational 

properties of SMA-containing composite beams. This 

analysis showed that the addition of SMA affects the 

properties that depend on the vibrational temperature 

and dynamic mechanical characteristics, thus leading to 

reduced natural frequency. Zhang studied the SMA-

containing composite beams under thermal and 

mechanical loads. This study showed that the 

compressive recovery stresses dominating the heat-

induced tensile stresses leads to reduced natural 

frequency of the beam. Hariri et al. [23] investigated the 

variations of natural frequency of SMA-containing 

composite structures.  

In this study, the governing equations were derived 

through a strain energy perturbation analysis and solved 

by the Rayleigh-Ritz analytical method. The results 

showed a slight decrease in the natural frequency of the 

system after the stimulation of SMA. Shokuhfar et al. 

[24] analyzed and optimized a hybrid composite plate 

under low velocity impact. They reported that after the 

symmetrical placement of tensioned SMA in different 

laminae at a temperature below the reference 

temperature, one can generate compressive stress by 

applying heat up to the activation temperature. Finally, 

they used the Navier’s analytical method for dynamic 

analysis of the above plate. Hisham Hamed Ibrahim et 

al. at the University of Seoul studied the aero-thermo-

mechanical characteristics of an SMA-containing 

composite plate. For this purpose, the finite element 

model was used to examine the static and dynamic 

behavior of the plate under the combined effect of 

thermal, mechanical and aerodynamic loads. They 

showed that in the pre-buckling region, as temperature 

increases, the natural frequency initially increases, but 

the thermal and aerodynamic loads gradually dominate 

the SMA-induced recovery stress and the natural 

frequency starts to decrease.  

Yauko et al. [26] studied the effect of SMAs on the 

buckling of a composite plate using the finite element 

method. This study showed that the tensile recovery 

stress induced by the SMA pre-strain increases the 

buckling load and, consequently, the natural frequency 

of the system. Malekzadeh et al. [27] studied the free 

vibration response of SMA-containing composite plates. 

In this study, the effects of geometric, physical, and 

material properties on the response of the composite 

plate were investigated. The first order shear 

deformation theory was used to derive the governing 

equations for the simply supported hybrid composite 

plate, which were then solved using the Navier method. 

For the first time in this research, the dynamic behavior 

of a thick plate that contains both Shape Memory Alloy 

(SMA) and a smart flexible attached mass was studied. 

The local distributed stiffness of attached mass was 

considered in dynamic simulation of the plate, 

simultaneously. In addition to the effects of different 

parameters such as activation temperature, pre-strain, 

and volume fraction were investigated. The results 

showed that these parameters are important and cannot 

be neglected. 

2 THEORETICAL FORMULATION 

2.1. Geometric Description 

Figure 1 illustrates a thick plate of uniform thickness 

with a distributed attached mass on its upper surface. 

The Cartesian coordinates are represented by (X, Y, Z), 

where X and Y are positioned in the mid-plane of the 

plate, and Z is normal to these axes according to the 

right-hand rule. 

 

 

Fig. 1 Diagram of thick composite plate. 

2.2. Displacement Field 

In this study, we use the 12-variable displacement field 

proposed by Garg and Kant [9]. This displacement field 

can give better approximations of the plate state than 

CLPD and FSDT (particularly for thick plates), does not 

require shear correction factor, and can provide a more 

accurate representation of the interlaminar stress 

distribution. These features give this field an advantage 

over other higher-order displacement fields, especially 

for thick plates. 
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With the extension of displacements to the cubic term in 

the thickness coordinates, the following equations are 

derived: 

 

{
U = ∑ ziui

3
i=0 , V = ∑ zivi

3
i=0

W = ∑ ziwi
3
i=0

           

 

    (1) 

 

Where, W, V, and U, are the displacement components 

of a general point in the plate. The terms 

(u1, v1, w1)، (u2, v2, w2) و (u3, v3, w3) are the functions 

defined in the mid-plane as follows: 

 

{
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∂u

∂z
)
z=0
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∂v
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z=0

        , w1 = (
∂w

∂z
)
z=0
  

2u2 = (
∂2u
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)
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)
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∂3v

∂z3
)
z=0

, 6w3 = (
∂3w

∂z3
)
z=0

 

                                                                                    (2) 

 

Where, u1 and v1 represent the rotation of the reference 

plane normal vector around the X and Y axes, and the 

functions w1وu2, v2, w2, u3, v3, w3 are the high order 

terms of Taylor series expansion and represent the high 

order modes of deformation in cross-section. 

2.3. Plate Kinematics 

The shear and normal linear strains in the Cartesian 

coordinate system are defined as follows (M.H.Sadd, 

1993): 

 

εx =
∂U

∂y
 γxy =

∂U

∂y
+

∂V

∂x
  , εY =

∂V

∂y
  

 γxZ =
∂U

∂z
+

∂W

∂x
 εz =

∂W

∂z
   , γyz =

∂V

∂z

∂W

∂y
 

(3) 

 

Substituting “Eq. (1) into Eq. (3)ˮ gives the linear strains 

in terms of displacements in the mid-plane of the plate. 

Assuming the main material axes as (1, 2, 3) and lamina 

axes as (x, y, z), the stress-strain relations are obtained 

as follows: 

 

{σij}
L
= [Cij]

L
{εij}

L
 (4) 

 

Where, C components are as given in (A.K.Garg, 

R.K.Khare, T.Kant, 2006). Transforming the 

constitutive relations from the lamina axes (1, 2, 3) to 

the reference axes results in the following equation: 
 

σ = Q ε (5) 
 

Where, the components of the matrix Q are the reduced 

elastic constants of the orthotropic material in the L-th 

lamina. Integration of “Eq. (5)ˮ with respect to plate 

thickness gives: 

 

σ̅ = Dε̅ (6) 

 

(7) 

σ̅ = {
Nx, Ny, Nxy, Nx

∗ , Ny
∗ , Nxy

∗ , Nz, Nz
∗, Mx, My, Mxy,

Mx
∗ , My

∗ , Mxy
∗ , Mz, Qx, Qy, QX

∗ , QY
∗ , SX, SY, SX

∗ , SY
∗} 

ε̅ = {
εx0, εy0, εxy0, εx0

∗ , εy0
∗ , εxy0

∗ εz0, εz0
∗ , Xx, Xy, Xxy,

Xx
∗ , Xy

∗ , Xxy
∗ , Xz

∗, φx, φy, φx
∗ , φy

∗ , Xxz, Xyz, Xxz
∗ , Xyz

∗ } 

 

And D is defined as: 

 

D = [
DF 0
0 DS

]   (8) 

The components of the matrix D are available in 

(J.N.Reddy, 2004). Therefore, the stress resultant 

components for N laminae are defined as: 

[
 
 
 
 
 
Nxx    Nxx
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∗

Nyy    Nyy
∗     Myy   Myy

∗

Nzz    Nzz
∗     Mzz          0

Nxy    Nxy
∗     Mxy   Mxy

∗

Nyx    Nyx
∗     Myx   Myx

∗
]
 
 
 
 
 

=∑∫

{
 
 

 
 
σxx
σyy
σzz
τxy
τxy}

 
 

 
 

{1, z, z2, z3}dz
ZL+1

ZL

N

L=1

 

[
Qx     Qx

∗        Sx     Sx
∗

Qy     Qy
∗        Sy     Sy

∗]

=∑∫ {
τxz
τyz
} {1, z, z2, z3}dz

ZL+1

ZL

N

L=1

 

 (9) 

2.4. Equations of Motion 

The Hamilton principle is used to define the equations 

of motion in terms of displacement (“Eq. (1)ˮ) and 

strain-displacement field (“Eqs. (2) and (3)ˮ). The 

analytical form is expressed as follows: 

 

∫ δLdt
τ

0
≡ ∫ [δK − (δU − δV)]dt = 0

τ

0
  (10) 

 

Where, δK is the kinetic energy, δU is the strain energy, 

and δV is the potential energy due to the applied loads, 

each of which can be expanded using “Eqs. (1) to (3)ˮ. 

The kinetic energy variations are expressed as follows: 
 

δk = ∫ ρ
v
(U̇δU̇ + V̇δV̇ + ẆδẆ)dv  (11) 

 

Where, ρ is the mass density of the plate. After 

integration with respect to time T, the above equation 

transforms into: 
 

∫ δK dt
T

0
= −∫ [∫ ρ(ÜδU + V̈δV +

v

T

0

ẄδW)dv]dt + ∫ ρ(U̇δU̇ + V̇δV̇ +
V

ẆδẆ) |
t = T
t = t0

dv     

 

(12) 
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Setting the initial condition equal to zero results in the 

elimination of the second term. The most important part 

of obtaining the equations of motion is deriving the 

strain energy variation: 

 

δU = ∫σijδεijdv
v

 

= ∫∫ σijδεijA1A2dxdydz       i, j = 1,2,3
h/2

h/2

 

 

(13) 

 

 

Where, σi,j and εi,j are the stress and strain components, 

and the integration is made over the area of the mid-

plane of the plate. As shown in “Fig. 2ˮ, to add a smart 

attached mass, its energies must be added to the original 

system.  
 

 
Fig. 2 Position of the SMA-containing attached mass. 

 

It should be noted that these energies, which are 

associated with the attached mass, are only added to the 

surface where the attached mass is located. It is assumed 

that the attached mass does not prevent the plate from 

bending. In other words, the attached mass can take the 

form of the region of the plate on which it is positioned. 

Using the Heaviside functions, the following equations 

can be derived for the effect of the attached mass 

location: 

 

Ktotal
= Kplate + H(x, y, x, y, c, d)Kattached mass 

utotal
= Uplate + H(x, y, x, y, c, d)Uattached mass 

 (14) 

 

Where, x0 and y0 are the coordinates of the point on the 

attached mass that is closest to the origin, c and d are the 

width and length of the attached mass (see “Fig. 2ˮ), and 

H is a combination of Heaviside functions that is 

introduced by Kopmaz (Kompaz O, 2002) as follows: 

 

H(x, y, x0, y0, c, d)

= [H́(x − x0)H́(x − x0
− c)] ∗ 

[H́(y − y0) − H́(y − y0 − d)] 

 (15) 

Where, H ́ is the Heaviside function. The effect of H is 

expressed as follows: 

 

∫ ∫ Hf(x, y)dxdy =
a

0

b

0

∫ ∫ f(x, y)dxdy
x.+c

x.

y.+d

y.
  

(16) 

 

Integration of the kinetic energy vitiations with respect 

to time gives: 

 

∫ δKtotaldt     
T

0

= −∫

[
 
 
 ∫ρ(Uï δU + VïδV +Wi

̈ δW)dv
V

+H∫ρ̅(Uï δU + VïδV +Wi
̈ δW)dv̅

V̅ ]
 
 
 

dt
T

0

 

 

(17) 

 

Where, v̅  and  ρ̅ represent the volume and density of the 

attached mass, respectively. The strain energy variations 

are given by: 

 

δUtotal = ∫ σijεijdv + H∫σ̅ijε̅ijdv
vv

 (18) 

 

There are two ways for modeling the effect of SMA 

components on the structures: Active Property Tuning 

(APT) and Active Strain Energy Tuning (ASET). In the 

APT, structural stiffness is realized using the super 

elasticity of the embedded SMA or the variations of its 

elastic modulus with the temperature. In the ASET, the 

SMA elements, which are first placed under the strain 

(before embedding), are heated to produce a large 

recovery stress in the structure. In the present work, 

SMA is applied using the ASET technique. Since the 

effect of SMA is analyzed as an external load, the 

variations of potential energy should be reconsidered. In 

accordance with the method used in (S.Yao Kuo, 

L.C.Shiau , K.H.Chen, 2009), it is assumed that there is 

no thermal transfer between the attached mass and the 

SMA, and the micro-mechanic properties of SMA are 

ignored. According to (S.Yao Kuo, L.C.Shiau , 

K.H.Chen, 2009),  Nr , i.e. the recovery force applied on 

the attached mass due to the temperature-induced 

stimulation of SMA, can be expressed as follows: 

 

Nr = ∬
Aw

[ε0 − αs(T − T0)]EsdAw =

σrhs Vs  
(19) 

 

Where, Es, αs, Aw , hs ,Vs , T0, and T are, respectively, 

the modulus of elasticity, thermal expansion coefficient, 

cross-sectional area, and thickness of the SMA-

containing lamina, the volume fraction of SMA, the 

reference temperature, and the ambient temperature, and 

ε0 is the SMA pre-strain. The effect of SMA on the 

system can be modeled by applying the force  Nr to the 
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system energy and integrating the resultants terms with 

respect to components and collecting the coefficients. 

2.5. Solution of Equations 

Adding an SMA-containing attached mass to the plate 

makes the Navier solution method inapplicable. 

Therefore, this study uses the Galerkin method. To solve 

the equations of motion, they must be transformed into 

displacement coefficients. This can be done by applying 

“Eqs. (1), (3) and (9)ˮ to the equations of motion. In this 

study, boundary conditions are considered to be of the 

simply supported type. The next step is to apply the 

equations resulting from boundary conditions to the 

equations of motion in terms of displacement 

coefficients. Then, the shape functions of the equations 

must be multiplied by their respective equation of 

motion and then integrated over the area of the plate. 

Ultimately, this results in the equations to appear in the 

form of the following matrix: 

 

{[A] − ω2[B]}{C} = {0} (20) 
 

Where, {C} is the displacement vector obtained by 

collecting the coefficients in the previous step, when 

they are sorted in ascending order. [A] is the stiff matrix 

and [B] is the mass matrix. 

3 NUMERICAL RESULTS AND DISCUSSION 

A program is developed in MATLAB to facilitate 

calculations. The validity and novelty of the approach 

are investigated by studying the instances of plate 

vibration problems in the existing literature. In some 

cases, the programs based on the FSDT and CLPT 

formulations are also used to better illustrate the 

accuracy of the present theory. 

3.1. Validation 

3.1.1. The nondimensionalized natural frequencies 

for three plate thickness-to-side ratios 

The main plate is considered to be a simply supported 

square composite plate with (0/90)s orthogonal stacking 

and the specifications given in “Table 1ˮ. 

 
Table 1 Specifications of the main plate 

=252/E1E 3=E2E 2=0.5E13=G12G 2=0.2E23G 
= 12v

0.25 

 

Attached to the main plate is a distributed mass with the 

specifications given in “Table 2ˮ. The attached mass is 

isotropic and placed at the center of the plate. 

 
Table 2 Specifications of the attached mas 

2=EaE v=0.33 c=0.2a d=0.2a =10ρhahaρ 

∆𝑇 = (𝑇 − 𝑇0) = 100     ,   𝜀0 = 1%  ,     𝑉𝑠 = 0.1 

“Table 3ˮ shows the nondimensionalized natural 

frequencies of the described system for three plate 

thickness-to-side ratios. The nondimensionalization 

factor is considered to be as follows: 

 

�̅� = 𝜔(
𝑎𝜌

𝐸2ℎ
2
)
1
2⁄  

 

The results reported in “Table 3ˮ are for four states: (i) 

the plate without the distributed attached mass, (ii) the 

plate with the distributed attached mass but without the 

effect of the stiffness of the attached mass and SMA was 

considered, (iii) the plate with the distributed attached 

mass with only the effect of stiffness of the attached 

mass (not SMA) was considered, and (iv) the plate with 

the distributed attached mass with the effect of stiffness 

of the attached mass and SMA both was considered. The 

results obtained in this section are validated against the 

results of Malekzadeh et al. (K.Malekzadeh, S.Tafazoli, 

S.M.R.Khalili, 2010). As shown in “Table 3ˮ, the 

maximum difference between the results of the present 

work and those of (K.Malekzadeh, S.Tafazoli, 

S.M.R.Khalili, 2010 ) is approximately 0.5%, which can 

be caused by the approximations or differences in the 

modeling procedure. Nevertheless, it can be claimed that 

the computed results have a good accuracy. 

 
 

Table 3 Nondimensionalized natural frequencies of the 

composite plate for three plate thickness-to-side ratios in four 

states 

case rd4 case rd3  nd2

case 

case st1 Source h/a 

--- 12.6385 9.5775 15.1381 HOST 

[15] 

0.01 

12.9545 12.6252 9.5526 15.1078 Present 

--- 9.7923 7.4333 11.7131 HOST 

[15] 

0.1 

 

10.0371 9.7469 7.3263 11.6756 Present 

--- 5.8102 4.5153 7.1798 HOST 

[15] 

0.25 

5.9554 5.7916 4.4906 7.1466 Present 

 

As “Table 3ˮ indicates, incorporation of the effect of the 

attached mass can have a significant impact on the 

dynamic responses of the system. For example, in the 

solutions listed in the first row (h / a = 0.01), ignoring 

this effect, by itself, results in about 32.2% difference in 

the responses. Regarding the impact of the presence of 

SMA in the attached mass, it can be seen that depending 

on the specifications of SMA, it can increase the 

frequency of the system. As shown in the third and 

fourth states, the presence of SMA with stated 

specifications improve the dynamic performance of the 

system by approximately 2.8%. Overall, these 

differences indicate the importance of incorporation of 
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the effect of the stiffness of the attached mass and SMA 

for obtaining high-quality results. 

3.1.2. The effect of ratios of elasticity moduli of the 

distributed attached mass to plate on the natural 

frequencies of the system with respect to various h/a 

ratios 

In this section, we investigate the effects of the elasticity 

modulus of the SMA-containing attached mass. In this 

example, the specifications are the same as given in 

“Tables 1 and 2ˮ, and the nondimensionalization factor 

is �̅� = 𝜔 (
𝑎𝜌

𝐸2ℎ
2)
1
2⁄

. 

To investigate the exclusive impact of the stiffness of the 

attached mass, we consider the first moment of mass. 

Although the used higher-order theory has 7 moment of 

mass terms, its dominant term is the first moment of 

mass. The natural frequency values obtained for 

different elasticity modulus and thickness ratios are 

presented in “Table 4ˮ. For validation, these results are 

compared with the results provided in (K.Malekzadeh, 

S.Tafazoli, S.M.R.Khalili, 2010). The elastic modulus of 

the attached mass can be increased not only by changing 

the structure but also by adding the effect of SMA. In 

“Tables 3 and 4ˮ, this effect is applied. The slight 

difference (maximum 3%) between these results and the 

results provided in (K.Malekzadeh, S.Tafazoli, 

S.M.R.Khalili, 2010) is due to the effect of SMA on the 

system. It should, however, be noted that the magnitude 

of this effect may vary with the characteristics of the 

SMA embedded. 

 
Table 4 Nondimensionalized natural frequencies of the 

composite plate for different elastic modulus and thickness 

ratios 
h/a Source =11/EaE =21/EaE =41/EaE =61/EaE 

0.01 

 

HOST 

[15] 
12.6385 14.9224 18.3182 20.8310 

Present 12.9626 15.3286 18.8323 21.3752 

0.1 

HOST 
[15] 

9.7923 11.6001 14.3722 16.4985 

Present 10.0693 11.9140 14.7546 16.9426 

 

0.25 

HOST 

[15] 
5.8102 6.8222 8.3978 9.6237 

Present 5.9606 7.0052 8.6320 9.9003 

 

As can be seen, increasing the elastic modulus and using 

SMA both increase the stiffness of the distributed 

attached mass, thereby increasing the natural 

frequencies of the system. The results listed in “Table 4ˮ 

are plotted in “Fig. 3ˮ. As illustrated in this plot, the 

changes in the elastic modulus of the distributed attached 

mass cause incremental changes in the fundamental 

frequencies of the system. Moreover, the slope of the 

lines plotted in “Fig. 3ˮ indicate that the stiffness of the 

attached mass has a more pronounced effect on thick 

plates than on thin plates. 

 
Fig. 2 The effect of ratios of elasticity moduli of the 

distributed attached mass to plate on the natural frequencies. 

3.1.3. Effect of the ratio of distributed attached mass 

height to plate thickness for two plate thickness-to-

side ratios 

This section discusses the effect of the ratio of mass 

height to plate thickness for different plate thicknesses-

to-side ratios for the case where mass and plate have the 

same elastic modulus (Ea/E1=1). The system is assumed 

to have the same specifications as the system analyzed 

in Section (3.1.1) and a constant first moment of mass. 

The results obtained for different ratios of mass height 

to plate thickness and plate thicknesses-to-side ratios are 

given in “Table 5ˮ. The results obtained in this section 

are validated against the results of Malekzadeh et al. 

(K.Malekzadeh, S.Tafazoli, S.M.R.Khalili, 2010). As 

before, the nondimensionalization factor is considered to 

be �̅� = 𝜔 (
𝑎𝜌

𝐸2ℎ
2)
1
2⁄

. 

 
Table 5 Nondimensionalized natural frequencies of the 

composite plate for different ratios of distributed attached 

mass height to plate thickness and plate thicknesses-to-side 

ratios 

h/a Source /h=0.1ah /h=0.2ah /h=0.4ah /h=0.6ah 

0.01 
 

HOST 

[15] 
12.6385 14.8805 18.0544 20.1403 

Present 12.9089 15.4504 18.8704 21.3487 

0.1 

HOST 

[15] 
9.7923 11.5641 14.1222 15.8111 

Present 9.9587 11.7954 14.4753 16.3803 

 

With the first moment of mass assumed constant, 

increasing the thickness results in increased stiffness of 

the attached mass and consequently increased natural 

frequency of the system. As can be seen, the maximum 
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difference between these results and the ones provided 

in [15] is 7.1%, which is mostly due to the presence of 

SMA in the system. The greatest deviation in the results 

is seen in the case with ha/h=0.8, where the greater 

thickness of the attached mass leads to the increased 

effect of SMA due to its association with the alloy’s 

volume fraction. 

3.1.4. Isotropic plate carrying a distributed attached 

mass without stiffness effect 

This section is dedicated to the validation of the results 

obtained in the present work against the results of 

Kopmaz et al. [12] and Malekzadeh et al. [15] for a 

simply supported isotropic plate with a distributed 

attached mass at its center. To prevent inconsistency 

with the above references and make the results 

comparable, the effect of the stiffness of the attached 

mass is ignored. Properties and dimensions of the main 

plate and the attached mass are given in “Tables 6 and 

7ˮ. 
 

Table 6 Specifications of the main plate 

b=1.5a a/h=0.01 3=E2E =252/E1E 
 

Table 7 Specifications of the attached mass 

2=EaE ʋ=0.33 c=0.1a d=0.15a =10ρhahaρ 

∆𝑇 = (𝑇 − 𝑇0) = 100     ,   𝜀0 = 1%  ,     𝑉𝑠 = 0.1 

 

In these tables, a and b are the width and length of the 

plate, the subscript a represents the attached mass, ρ is 

the density and h is the thickness of the plate, c and d are 

the width and length of the attached mass, and D is the 

flexural strength of the plate, which is defined as 

follows: 

𝐷 =
𝐸ℎ3

12(1 − 𝜗2)
 

 

Where, E and ʋ are the elastic modulus and the Poisson's 

ratio of the plate, respectively. The nondimensionalized 

form of the first four natural frequencies obtained in this 

work and the results given in [15] and [12] for isotropic 

plates with the attached mass are listed in “Table 8ˮ. 

Here, the nondimensionalization factor is considered to 

be �̅� = 𝜔 (
𝐷

𝜌𝑎4
)
−1

2 . 

As can be seen, the obtained results have a good 

consistency with the results of cited references, and their 

maximum difference remains below 5%. This difference 

is caused by the difference in how the inertia of the 

attached mass is analyzed and also the effect of SMA. 

From the above comparisons, it can be concluded that 

the adopted method is of acceptable precision, and can, 

therefore, be used for more extensive analysis in the 

search for novel and interesting results. 

 

Table 8 Non-dimensional frequencies of a simply-supported 

isotropic plate carrying a distributed mass 

on the width of the original plate 

Present Method 
Malekzade 

[15] 

Kopmaz   

[12] 

With SMA 
Without 

SMA 
  

13.0088 12.7039 12.6785 12.0092 

29.0665 28.5273 28.3854 27.2403 

48.7589 47.5697 47.2860 43.2103 

61.6909 59.9057 59.7623 56.9853 

 

3.2. Novel Results 

3.2.1. Effect of temperature 

Given the temperature dependent variations in SMA’s 

properties and recovery force that it applies to the 

lamina, the properties of the lamina embedded with 

SMA (Nickel.Titanium: NiTiNOL) wires may 

significantly vary with the temperature. Therefore, here 

we assess the dynamic behavior of a simply supported 

composite plate with SMA-containing (smart) attached 

mass in response to the changes in the temperature. The 

laminate stacking, geometric, and stiffness properties of 

the plate are given in “Tables 9 and 10ˮ. Here, SMA is 

assumed to be embedded in the middle lamina of the 

attached mass and along the x-axis. 

 
Table 9 Specifications of the composite plate 

Modulus 

of 

elasticity 

Shear 

modulus 
angles 

Poisso

n's 

ratio 

Dimensio

nless 

coefficient 

=252/E1E 

3=E2E 

=.13=G12G

205E 

2=.05E23G 

s)90°/0°( 
=0.212v

5 

ω̅=

ωa2 (ρE2)
1 2⁄ h⁄ 

 
Table 10 Specifications of the distributed attached mass 

Modulus 

of 

elasticit

y 

Poisson'

s ratio 

Dimensio

ns of 

attached 

mass 

Density 

Dimensio

ns of the 

main 

sheet 

E=E1 

(of 

panel) 

v=0.33 
c=0.2a 

d=0.2b 
ρaha
= 10ρh 

a=2 , b=1 

 

In “Fig. 4ˮ, the variations in the natural frequencies of 

the SMA-containing system with the specifications 

listed in “Tables 9 and 10ˮ are plotted in terms of 

variations in the SMA temperature. In “Fig. 5ˮ, the first 

natural frequency of the system is plotted against the 

temperature of Nitinol. As can be seen, the increase in 

the temperature of SMA wires leads to an increase in the 
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natural frequency of the system. The first reason behind 

this association is that according to the aforementioned 

APT technique, the stiffness of SMA increases 

proportionally to temperature. Depending on the volume 

fraction of SMA wires, this stiffening leads to a degree 

of increase in the stiffness of the attached mass, and thus 

an increase in the overall frequency of the system. 

However, this stiffening makes at most 2% contribution 

to the increase in the natural frequency. The second 

cause lies in the ASET technique, since depending on 

the temperature and pre-strain of Nitinol wires, a 

compressive recovery stress will be applied and stiffen 

the structure. This phenomenon can also improve other 

dynamic behaviors of the structure. The results 

regarding the first natural frequency indicate its 

dependence on the temperature of SMA and the 

corresponding recovery stress. In this diagram (“Fig. 

5ˮ), the behavior of the natural frequency of the system 

in response to temperature variations of SMA is 

illustrated. Here, one can clearly see that as the recovery 

stress increase, so does the natural frequency of the 

system. Therefore, it is possible to control the system 

vibration by controlling the temperature applied to the 

SMA component. This diagram also indicates that the 

highest rate of increase in this frequency occurs in the 

temperature range of the inverse martensitic 

transformation in SMA. 

 

 
Fig. 4 Variations in the first five frequencies of the 

composite plate with a smart attached mass in term of 

variations in the SMA temperature. 

 

Figure 6 shows the relative changes of the first five 

natural frequencies of the system with the specification 

listed in “Tables 9 and 10ˮ in terms of variations in SMA 

temperature. In this diagram, ω̅n denotes the natural 

frequencies of the system when the SMA is not 

stimulated, and ωn denotes the frequencies obtained 

with the effects of SMA stimulation considered. This 

figure also shows that the greatest change in the natural 

frequency occurs in the range of inverse martensitic 

transformation start and finish temperature. These 

results show that as temperature increases, SMA exhibits 

a stronger positive impact on the frequencies, but on 

some frequencies - the fifth frequency (ω5) for example 

– the effect is not desirable. 

From the design perspective, it is interesting that the use 

of SMA in the attached mass most strongly affect the 

third frequency (ω3), and the temperature increase leads 

to increased transverse stiffness of the structure. Overall, 

it can be stated that for the use of SMA to yield desirable 

results, system temperature should be raised above the 

temperature of martensitic transformation, otherwise the 

weight of the alloy will reduce the frequency of the 

system. 

 

 
Fig. 5 Variations of the plate’s first natural frequency in 

terms of temperature for different SMA pre-strains. 

 

 
Fig. 6 The ratio of the first five frequencies of the plate 

with smart attached mass to the same frequencies without the 

stimulation of SMA in terms of SMA temperature. 
 

3.2.2. Effect of the smart attached mass location 

Here, we investigate the dynamical behavior of the 

simply supported composite plate in terms of the 

location of the attached mass. The stacking and 

geometric and stiffness properties of SMA are given 

“Tables 11, 12 and 13ˮ. As before, SMA wires are 

assumed to be embedded in the middle lamina of the 

attached mass along the x-axis. 
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Table 11 Specifications of the composite plate 

Modulus of 
elasticity 

Shear modulus angles 
Poisson'
s ratio 

Dimensionless 
coefficient 

=252/E1E 

3=E2E 
2=.05E13=G12G 

2=.02E23G 
s)°90/0°( 

=0.12v

25 

�̅�=

𝜔𝑎2 (𝜌𝐸2)
1 2⁄ ℎ⁄ 

 

Table 12 Specifications of the distributed attached mass 

Modulus 

of 

elasticity 

Poisson's 

ratio 

Dimensi

ons of 

attached 

mass 

Density 

Dimensi

ons of 

the main 

sheet 

E=E1 

(of panel) 
v=0.33 

c=0.2a 

d=0.2b 
𝜌𝑎ℎ𝑎
= 10𝜌ℎ 

a=2 , 

b=1 

 
Table 13 Specifications of SMA 

Ks = 10 %                  ε.= 5% 
∆T = 100 

 

Figure 7 shows the variations in the first five natural 

frequencies of the smart system in terms of the position 

of the attached mass on the diameter of the original plate. 

Note that all dimensions discussed in this section are 

dimensionless. As can be seen, the first natural 

frequency has reached a minimum at the point (0.4a, 

0.2b); these results could be of use for the design of the 

structure. Another notable result observed in “Fig. 7ˮ is 

the unique behavior of the third frequency of the system. 

 

 
Fig. 7 Variations in the first five natural frequencies of the 

system in terms of the position of the attached mass on the 

diameter of the original plate. 
 

In “Fig. 8ˮ, the first five natural frequencies of the smart 

system are plotted in terms of the position of the attached 

mass on the length of the plate (from the transverse 

perspective, the attached mass is positioned at the 

middle of the plate). 

As can be seen, the fourth and fifth frequencies have 

relatively large variations that cannot be neglected. 

Again, the third frequency exhibits an interesting 

behavior, especially when the attached mass is placed in 

the middle of the plate. The observed variations can be 

of great use for the system and facilitate more desirable 

behavior. The other interesting observation made in this 

diagram is that the first frequency behaves 

symmetrically relative to the center of the plate. As can 

be seen, the first frequency is smallest when the attached 

mass is positioned between the center of the plate and 

the support. 

 

 
Fig. 8 Variations in the first five natural frequencies of the 

system in terms of the position of the attached mass on the 

length of the original plate. 

 

 
Fig. 9 Variations in the first five natural frequencies of the 

system in terms of the position of the attached mass on the 

width of the original plate. 

 

Figure 9 shows the variations of the first five natural 

frequencies of the smart system in terms of the position 

of the attached mass on the width of the plate (from the 

longitudinal perspective, the attached mass is positioned 

at the middle of the plate).  As can be seen, the third 

frequency again exhibits an interesting behavior. The 
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almost completely uniform behavior of the first 

frequency across the spectrum is also notable. The third 

interesting observation is the lower variations of 

frequencies in this chart as compared to others. 

3.2.3. Effect of SMA pre-strain  

This section examines the effects of SMA pre-strain on 

the system frequencies. The specifications of the system 

in this section are given in “Tables 11 and 12ˮ. In “Fig. 

10ˮ, the effects of different SMA pre-strain on frequency 

variations are plotted in terms of SMA volume fraction. 

It can be seen that, at the temperature of 100°C (the 

inverse transformation finish temperature), as the SMA 

volume fraction increases, the first, second and fifth 

natural frequencies of the system increase. This effect is 

more pronounced in larger pre-strains. In other words, 

the larger is the pre-strain, the greater is the effect of 

volume fraction on the first five frequencies. 

 

 
Fig. 10 Effect of SMA pre-strain on the natural frequencies 

in terms of SMA volume fraction. 
 

 

 
Fig. 11 Effect of SMA pre-strain on the natural frequencies 

in terms of Nitinol volume fraction at 50°C and 100°C. 

 

Figure 11 illustrates the variations in natural vibrations 

of the system with the specifications of “Tables 11 and 

12ˮ and with different SMA pre-strains and volume 

fractions at two different temperatures. As mentioned 

earlier, as the SMA volume fraction increases, the 

temperature-dependent tensile recovery stress of fibers 

leads to an increase in the geometric stiffness of the 

system and thus an increase in its natural frequency. This 

figure also shows that at 50°C, 3% SMA pre-strain has 

the greatest impact on the natural vibration of the 

system. This is clearly because SMA has the greatest 

recovery stress at 50°C and 3% pre-strain. 

 

 
Fig. 12 Effect of volume fraction of Nitinol fibers on the 

first five frequencies of the system at 40°C. 

 

 
Fig. 13 Effect of SMA volume fraction on the variations of 

first natural frequency in terms of SMA temperature. 

 

3.2.4. Effect of SMA volume fraction 

The following diagrams illustrate the effects of SMA 

volume fraction on the system frequency for different 

SMA pre-strains. As before, these diagrams are plotted 

for the system with the specifications given in “Tables 

11 and 12ˮ. Figure 12 shows that for the pre-strain of ɛ0 

= 5% and at the temperature of 40°C (below the 
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martensitic transformation finish temperature), as the 

volume fraction of Nitinol fibers increases, the first five 

natural frequencies of the system decrease. This inverse 

relation can be attributed to the increase in the mass of 

the system. 

As shown in “Fig. 13ˮ, the higher is the volume fraction, 

the further affected is the natural frequency. In other 

words, it is possible to somewhat control the system 

frequencies by controlling the volume fraction of SMA 

fibers. In “Fig. 13ˮ, there is a turning point for the system 

vibrations, where all volume fractions have the same 

effect. At the temperature below this point, larger 

volume fractions lead to increasing frequency reduction, 

but at a higher temperature, larger volume fractions 

increase the system frequency. 

 

 
Fig. 14 Effect of SMA volume fraction on the variations of 

the fourth natural frequency in terms of SMA temperature. 
 

 
Fig. 15 Effect of SMA volume fraction on the variations of 

the fifth natural frequency in terms of SMA temperature. 
 

According to “Figs. 13, 14 and 15ˮ, before the 

completion of transformation phase, an increase in the 

SMA volume fraction reduces the natural frequency, but 

beyond the transformation finish temperature, the 

increase in volume fraction increases the frequency of 

the system. This is because before the completion of 

inverse transformation (at temperatures below the 

austenite phase finish temperature), the increased weight 

of the structure overshadows the increased SMA 

recovery stress due to increased Nitinol content, thus 

leading to a reduction in the frequency of the system. 

However, at a higher temperature, this compressive 

stress (Nitinol recovery stress) dominates the effects of 

weight gain, resulting in an increase in the frequency of 

the system. It should be reiterated that how the smart 

systems with different SMA pre-strains and volume 

fraction behave directly depends on the temperature of 

SMA wires. In other words, the dynamic behaviors of 

the system below the transformation temperature after 

the start of transformation are different. This is due to 

compressive recovery stress of the SMA fibers, which, 

once the transformation initiates, starts to stiffen the 

system. 

3.2.5. Effect of SMA and attached mass on the order 

and shapes the system modes 

Here, we examine the effect of smart attached mass on 

the mode shapes of the system with the specifications 

given in “Tables 11, 12 and 13ˮ, which undergo some 

changes following the variations in the system 

parameters. Here, the investigation is limited to the 

mode shapes of the system with smart attached mass 

with the stiffness of the attached mass considered. 

Given the specifications of the system in question the 

use of Galerkin method for analysis, it is possible to 

obtain the mode shapes in term of approximation 

parameters m and n. The mode shapes and order 

obtained for the system with given specifications and 

different m and n values are listed in “Table 14ˮ. 

 
Table 14 Order of the natural frequencies of the system for 

different m and n values 

Natural Fre. n m arrangement 

0.8597 3 3 1 

1.0993 2 3 2 

2.5712 3 2 3 

3.5271 1 3 4 

3.5381 3 1 5 

3.5649 2 1 6 

3.5764 2 2 7 

3.5926 1 2 8 

3.8704 1 1 9 

 

As shown in the “Table 14ˮ, the lowest natural 

frequency is obtained in the case where m and n are both 

3. Although, according to “Table 14ˮ, the order of 



Int  J   Advanced Design and Manufacturing Technology, Vol. 12/ No. 4/ December – 2019                                    79 

  

© 2019 IAU, Majlesi Branch 
 

natural frequencies and their relation to different m and 

n values does not follow a predictable trend. For 

example, as shown in “Table 14ˮ, the natural frequency 

obtained with m = 1 and n = 2 is lower than the one 

obtained with m = 2 and n = 2, but it cannot be stated 

that for the higher the m and n values, the natural 

frequency will not be necessarily lower. Therefore, 

when solving such problems, the choice of optimal m 

and n values is very important for the determination of 

mode shapes. To gain a better understanding of the issue, 

the mode shapes obtained for the above nine states are 

plotted in “Fig. 16ˮ. 
 

 

 

 

   

   

   
 

Fig. 16 The mode shape obtained with different m and n values. 
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4 CONCLUSION 

The results obtained in this study can be summarized as 

follows: 

 Examination of the effect of the thickness of the 

distrusted attached mass showed that with the first 

moment of mass considered constant, as this 

thickness increases so does the natural frequency of 

the system. In other words, a thicker attached mass 

leads to higher stiffness. 

 Even with of the effect of SMA ignored, the addition 

of the attached mass alters the natural frequencies of 

the system. There is an inverse relationship between 

the mass inertia of the attached mass and the natural 

frequencies, and a direct relationship between the 

stiffness of the attached mass and the natural 

frequencies of the system. 

 Dimensions of the distributed attached mass can 

affect the natural frequencies of the entire system. 

Using a thicker attached mass results in an increase in 

both the mass inertia and the stiffness. 

 With the effect of the stiffness of the attached mass 

ignored, the addition of the mass to the composite 

plate increases the plate deflection by an amount that 

depends on the density. 

 Stimulation of SMA fibers has a positive effect on the 

increase in natural frequencies. 

 The best rate of increase in the natural frequency due 

to the heating of SMA fibers was seen in the range of 

inverse transformation temperatures. 

 Addition of SMA fibers without increasing the 

temperature reduces the natural frequencies. 

 At a constant temperature below the transformation 

start temperature, increasing the SMA volume 

fraction increases the density of the attached mass and 

thus the transverse deformation of the plate. 

 At a given temperature, increasing the SMA pre-

strain increases the recovery stress, which results in 

an increase in the natural frequencies. 

 The system where the attached mass is positioned in 

the middle of the plate, does not necessarily have the 

lowest frequency. 

 The best rate of increase in the frequency occurs in 

the system where the attached mass is located above 

one of the supports. 

 The third frequency has an almost unpredictable 

behavior, which requires special attention from the 

designer. 

 When the attached mass was moved along the length 

of the plate, the changes in the first frequency 

exhibited symmetry relative to the center of the plate. 

 Incorporation of the parameters such as the 

frequencies into the choice of optimal values for the 

parameters m and n is of significant importance for 

the determination of mode shapes of the system.  
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