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1 INTRODUCTION 

The necessity of dynamic analysis of structures in 

industry in order to predict the response of structures 

under different loads is very high. Access to the dynamic 

characteristics of the structure is one of the most basic 

parts of dynamic analysis. Therefore, modal analysis has 

become a comprehensive knowledge with the aim of 

determining, improving and optimizing the dynamic 

characteristics of engineering structures [1]. The finite 

element method is a great step for analyzing the static 

and dynamic problems of highly complex structures. In 

order to increase the speed of solving many problems, 

instead of modeling the equations of a problem for the 

whole structure, another method can be used. The basic 

principle of this approach relies on the assumption that 

the entire structure consists of unique components such 

as beam, plate, and shell so that the model of the entire 

structure will be assembled of these components in the 

final stage. Therefore, some information is needed about 

the properties of its components in order to accurately 

analyze the structure, which is not available at the early 

stages of the design. As a result, the use of sub-

structuring methods has recently become commonplace 

for the modal analysis of large structures in various 

industries. The Component Mode Synthesis method 

(CMS) is one of the best and most accurate sub-

structuring techniques for the modal analysis of a 

structure. The main goal of using this method is to 

reduce the computational costs and conduct the modal 

test of large and multi-part structures. The entire 

structure response is obtained by assembling the analysis 

results of each of the substructures. CMS allows to 

modify a single subsystem without changing the full 

problem formulation [2]. The component mode 

synthesis can be used for vibrational analysis of the 

entire structure. In fact, it uses the eigenvalues and 

eigenvectors’ combinations to model the dynamic 

behavior of the components. This method is a two-part 

analytical method. In the first stage, the components are 

analyzed separately and their answers are obtained. In 

the next step, these responses are combined together 

with observing the condition of continuity between the 

interfaces and create an eigenvalue problem, using 

which, the eigenvalues and eigenvectors of the entire 

structure can be extracted. The analyzers can reduce the 

order of the substructures used in the entire structure. To 

do so, only the modes of components are considered that 

have an important effect on the overall structure 

response [3-4].  

The impedance coupling method is used for many 

dynamic problems. Extensive research has been done in 

this field [3-7]. Lutes and Heer [8] solved this problem 

by filtering the elements of the frequency response 

matrix. Other methods have been presented in the works 

of Ewins [9], Gleeson [10], and Robb [11], so that the 

inconsistency is resolved using the raw data modal 

analysis and then by employing the frequencies response 

rebuilt to retrieve and improve the data. The modal 

coupling method is another coupling approach. Its main 

basis is similar to previous methods; i.e., it uses the 

reduced-order components model to reduce the order of 

the matrices associated with the assembled structure. 

There are basically two modal coupling methods. These 

methods include fixed-interface and free-interface 

approaches. The elastic modes dependent on the fixed-

interfaces of components are examined in the fixed-

interface methods, while the modes are examined with 

the assumption of the freely-supported components 

vibration in the free-interface methods. The main idea 

behind the fixed-interface methods is based on the 

Przemieniecki static method [12]. Hurty [13] suggested 

the method of normal mode or the component mode 

synthesis. At this time, he was working on the dynamic 

systems and examining the elastic properties of the 

components along with their mass properties. Craig and 

Bampton [14] modified the Hurty method formulas by 

simplifying the selection of the modes for the 

transformation matrix. In the free interface method, the 

natural modes necessary for a transformation matrix are 

those obtained from the freely-supported vibrations of 

subsystems. However, the simplest conditions were used 

to simulate the test conditions, which involved an 

interesting combined method from theoretical and 

empirical analysis of the dynamic system. Gladwell and 

Goldman have used the free interface modes in their 

studies and called this method the branch-mode analysis 

method [15-16]. Some studies have explicitly pointed 

out that the use of free interface methods has less 

accuracy compared to the fixed interface methods [17-

21]. A number of researchers have also used the 

theoretical methods for coupling [22-26], while others 

have tried to use the experimental modal properties to 

formulate the motion equations of subsystems. After 

that, several studies have been presented with different 

ideas including identification of modal parameters for 

large and complex structures by numerical and 

experimental modal analysis approach [27-33]. Karpel 

and Ricci [34] have studied an experimental coupling 

technique in a large structure. The validation of this 

method was evaluated by applying two different sub-

structure. An and Lee [35] have improved a component 

mode synthesis method according to frequency response 

functions to solve a security problem consisting of two 

sub-structures. Yangui et. al [36] have used the 

experimental and numerical modal analysis to identify 

the eigenfrequencies first five of the blade by the Craig-

Bampton sub-structure theory. 

In this research, the free interface component mode 

synthesis method has been used for modal analysis of 

beams, plates and cylindrical shells. In order to 

investigate this method, first the modal analysis of the 
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discrete system has been performed. In this analysis, the 

discrete system was divided into several parts, and 

assuming the full use of all the modes, the modal 

analysis was done. Then, this method was used to 

examine the continuous systems. It is not possible to 

access all modes in the continuous systems. Therefore, 

the reduction in the number of modes shape was studied 

in this section. After examining the beam model, the 

plate model was studied. Finally, this method was 

implemented on a cylindrical shell sample and the error 

rate of this method was assessed. For validation, the 

results obtained from component mode synthesis 

method were compared with the modal results of the 

integrated structure in each of stages (beam, plate and 

cylinder) and the resulting error was investigated. 

2 GOVERNING EQUATIONS 

2.1. The Free Interface Component Mode Synthesis 

Method 

The methods, in which, the normal free interface modes 

are used for moving from physical to modal space, are 

known as free interface methods. In this section, the free 

interface method proposed by Hou [37] is described 

assuming that the systems are non-damping and rigidly 

connected [38]. In the free interface method, the shape 

of the modes of each substructure was initially extracted. 

Using the degrees of freedom of the interfaces of this 

form of modes, the required transformation functions 

were extracted followed by obtaining the matrices of 

mass and stiffness equivalent to the original system. By 

solving the eigenvalue of these matrices, the mode 

shapes and natural frequencies of the main system can 

be obtained. Finally, using the inverse transformation, 

the mode shapes were obtained in the main modal 

coordinates for the main structure. Consider two non-

damping substructures of A and B that are rigidly 

connected to each other. The degrees of freedom of each 

substructure were classified into internal degrees of 

freedom of 𝑖 and boundary degrees of freedom of c. The 

equilibrium equation of any substructure in the physical 

domain, assuming that no force is applied to the internal 

degrees of freedom, is as follows: 
 

..

..

0

M M K Kx xii ic ii ici i

M M K Kcc ccci cix xc c

fc

+ =

         
      
            

 
 
 

 
(1) 

 

For each substructure, the normal modes were calculated 

by placing the boundary forces of fc equal to zero and 

solving the following eigenvalue equation: 

       2
( ) 0M K x− + =  (2) 

 

Assuming that the modes are normalized according to 

the mass and due to their perpendicularity feature toward 

mass and stiffness, it is concluded: 

 

      
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Any vector of displacement in the physical space can be 

transferred to the modal space by this form of orthogonal 

modes. The new coordinates are referred to as modal 

coordinates or generalized coordinates and their 

components are the coefficients of the form constituting 

the linear composition of the displacement vector: 
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 (4) 

 
If "m" is the number of all modes, “Eq. (4)ˮ is perfectly 

accurate. However, if the first k modes are considered, 

the answer for each substructure will be approximately 

as follows: 

 

   
x iki p p

k k k
xc ck





= =
  

     
    

 (5) 

 
Therefore, the equation of motion of the entire structure 

can be written as follows for two separate substructures 

A and B: 
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(6) 

 
By writing the force equilibrium and displacement 

conditions, the two substructures can be connected 

together. These conditions include: 

 

   

   

f fc cBA

X Xc cBA

= −

=

 (7) 

 
In the modal space, it can be stated as follows: 
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    ... 0
PA k S pBA ck ck PB k
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 (8) 

 
Then, for further reduction, the matrix S is classified into 

two parts: 

 

 ... 0
P
d

S S
d i P

i

=
      
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 (9) 

 
Where, 𝑆𝑑 is a non-singular square matrix and 𝑆𝑖 is the 

remainder of the matrix S. Then, one can write: 

 

    
1PP S SdA d i p T q

iP P IB i

−
−

= = =
       

    
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 (10) 

2.2. Selection of The Acceptable Coordinates for 

Connecting Points 

During the coupling process, especially when the 

matrices are inverted, the numerical problems are seen 

better and clearer in the inversion process. Otherwise, 

the numerical error due to these problems still remains 

in methods of coupling that do not need the inversion 

stage. In the inversion process during the coupling 

process, when the matrix is singular or close to singular, 

the predicted dynamic properties for the final structure 

are meaningless and have a large error. In general, the 

more redundancy in the coordinates participated in the 

coupling process, more unfavorable the answers 

become, which will ultimately become totally 

meaningless. The extra degrees of freedom must be 

eliminated before the coupling process to solve this 

numerical problem. However, this may cause error as 

well since the degrees of freedom may be removed from 

the connection points, which has a greater and more 

important effect and the coupling results with those 

degrees of freedom become more accurate. To this end, 

a powerful algorithm should be used to categorize and 

select the degrees of freedom in order of priority. One of 

the important tools used for this purpose is the 

decomposition of the singular value that not only 

determines the order of a matrix but also can be used to 

reverse the matrix whether it is singular or not [38]. 

2.2.1. The Order and Inverse of a Matrix 

2.2.1.1. The Singular-Value Decomposition (SVD) 

and The Invertible Matrix 

Here, this tool is used to obtain the right coordinates (or 

to detect the additional coordinates) as well as to 

calculate the inverse of an incomplete matrix [38]. The 

singular-value decomposition of a real matrix such as 

[A] results in three matrices, which are related to each 

other as follows: 

 

   

0

A
m n

T
U V

m m n n

m n

=



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
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  
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  
  
  
 
 

 
(11) 

 
By performing SVD on any of the FRF or modal 

matrices, [U] and [V] will gain the following properties: 

 U m m , the left singular vectors, represent the most 

appropriate coordinates for displaying the answer. Thus, 

the first singular vector, { 1u }, is the easiest direction 

that the system can change within. The second singular 

vector { 2u }, is the easiest next direction, and so on. 

 V n n , the right singular vectors, represent the most 

suitable coordinates for representing forces or modes. 

The first singular vector, { 1v }, represents a combination 

of forces (or modes) that have the greatest effect on the 

system. The { 2v } is the most effective next 

combination, and it goes on for the rest of the vectors. If 

the sides from “Eq. (11)ˮ are inversed, then, the pseudo-

inverse of matrix [A] is obtained, which is shown by 

 A m n
+

 . 

 

 

   

1

A
n m

T
V U

n n m m

n m

+
=



−


 



 
 
 
  

 (12) 

2.2.1.2. Rank Degeneracy 

The singular-vale decomposition is a reliable tool for 

numerical calculation of a matrix rank. For a matrix such 

as  A m n with a rank of ( )r n r , it is assumed 

that some of the elements may experience error. It is 

unlikely that after the error occurrence, the matrix r rank 

remains intact. In other words, with a slight change in 

some of the elements (due to the error), the matrix can 

turn into a full rank matrix. However, when the matrix 

A is undergone numerical algorithms, it shows a 

behavior like incomplete order matrices. Therefore, to 

fix this problem, a range should be assigned for 

determining the rank. In fact, a contractual parameter 

such as δ must be defined, that according to which, if the
 

i  applies to the following conditions, then, the rank of 

the matrix will be r. 
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... ...1 2 1r nr           +  (13) 

 

Globe and Van Lewin proposed the δ as follows: 

 

2
10 A
−

=
  (14) 

 

The ‖A‖_∞ is the infinite norm of a matrix. This criterion 

is appropriate when there is no precise separation 

between small and large values in the eigenvalues. 

 

2.2.1.3. Orthogonality in The Continuous Systems 

For discrete systems, when speaking of orthogonality, 

the displacement of any degree of freedom is included in 

the mode shape. If X, is considered as the displacement 

of each degree of freedom, the orthogonality relationship 

between the two modes “a” and “b” is as follows for an 

n-degree of freedom system: 

 

0
1

n a b
m X X a b

i i ii
= 

=
 (15) 

 
For a continuous system, the orthogonality relationship 

must be written for each component. For example, the 

orthogonality relationship for two modes “a” and “b” in 

the beam is as follows: 

 

1
( ) ( ) 0 ,0 x x dx a b

b
  =   (16) 

 
The  is the mass of the unit of length. As can be seen, 

the mode shape is defined for each point of the beam and 

is a function of the longitudinal variable of the beam (x). 

For a continuous system like the plate, which 

components are expanded in two directions, the 

orthogonality relation for the two modes “a” and ‘b” is 

written as follows: 

 

( , ) ( , ) 0 ,x y x y dxdy a ba b
  =    (17) 

3 EXAMINING A DISCRETE SAMPLE WITH 

SEVERAL COMMON DEGREES OF FREEDOM 

Figure 1 shows an asymmetric structure with 4 degrees 

of freedom, which consists of two substructures of 4 and 

3 degrees of freedom. The unit of masses is kg and the 

unit of hardness is KN/m, and the connection between 

the common degrees of freedom is rigid. 

 

 
Fig. 1 An asymmetric sample model with 4 degrees of 

freedom. 

 

For the model presented in “Fig. 1ˮ, the matrices of the 

mode shape of the two substructures are as follows: 

 

0.242 0.375 0.306 0.200

0.242 0.273 0.078 0.927

0.242 0.070 0.315 0.057

0.242 0.260 0.128 0.002

0.242 0.281 0.068

0.242 0.105 0.424

0.242 0.258 0.203

left

rightt





−

=
− −

−

−

= −

 
 
   
 
 
 

 
  

   
  

 

 

In the mode shape matrix, each row represents a degree 

of freedom and each column represents a mode shape. 

The last three rows of the mode shape matrix of the left 

substructure and all the rows of the mode shape matrix 

of the right substructure are related to the degrees of 

freedom of the interfaces. Using this, the matrices S and 

T are formed as follows. 

 

 

 

0.242 0.273 0.078 0.927 0.242 0.281 0.068

0.242 0.0702 0.315 0.057 0.242 0.105 0.424

0.242 0.260 0.128 0.002 0.242 0.258 0.203

1.212 1 0.167 0.001

1.876 0 1.053 0.131

1.530 0 0.440 1.315

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

S

T

− − −

= − − − −

− − − −

−

− − −
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=
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 
 
 
 
 
 
 
 
 
 

 

 

The first element of matrix S forms the square section, 

i.e., the Sd, and the remaining elements generate the 

matrix Si. The T transformation matrix affects a state of 

the equation of motion, in which, only the modal 

properties of the system exist.  
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The graph of the point frequency response function for 

two main system modes and the coupling of the two 

substructures by the free interface method for the degree 

of freedom 2 (masses of 1 and 7 kg) are shown in “Fig. 

2ˮ. 

 
Fig. 2 Comparing the point frequency response function 

of the degree of freedom 2 by two Exact and CMS methods. 

4 MODELING AND EXAMINING THE 

CONTINUOUS SYSTEMS 

In this section, the performance of component mode 

synthesis method in continuous systems is investigated. 

The major difference between discrete and continuous 

systems is in the degrees of freedom used in the 

computing. Thus, the component mode synthesis 

method is expected to involve error after discrete-

making of a continuous system since it cannot use the 

finite mode shapes in its calculations. 

4.1. Studying The Beam System 

In this section, the component mode synthesis method 

on the beam structure is implemented. Initially, the 

natural frequencies of this structure are extracted 

analytically and finite element method and compared 

with each other. After validation of the finite element 

method, the component mode synthesis method has been 

implemented on the beam and its performance in this 

system has been evaluated. The natural frequency of a 

Euler-Bernoulli beam in the general state is in 

accordance with the following equation: 

2 EI
 


=  (18) 

 

The first 10 first answers from “Eq. (18)ˮ for L  of a 

two free-end beam are given in “Table 1ˮ (L is the length 

of the beam). The answers vary to examine a system in 

the finite element method depending on the structure 

dividing into several elements. Usually the answer 

converges to its final value by increasing the number of 

elements. However, there may be a difference between 

the convergence value and the exact answer as well. On 

the other hand, there may also be errors due to the 

numerical calculations.  

The finite elements results are displayed for a 2-meter 

and two-dimensional beam in “Table 2ˮ, which natural 

frequencies are calculated once with 10 elements and 

again with 100 elements. Finally, their values were 

compared with the analytical results. The cross-section 

area of the examined beam and its moment of inertia are 

4 × 10−4  𝑚2 and 1.33 × 10−8  𝑚4, respectively. The 

beam is made of steel with a 200Gpa Young's Modulus 

and a density of 7800 𝑘𝑔 𝑚3⁄ .  

As can be seen, the discrepancy (difference rate) has 

declined by increasing the number of elements, which 

indicates the proper function of the finite elements code. 

The beam information was used as a continuous system 

for the substructures. It was assumed in the first sample 

that two 1-meter beams with a square cross-section of 2-

Cm side are connected at a point in a rigid form in 

accordance with “Fig. 3ˮ. It should be noted that the 

shape of the modes must be normalized relative to the 

mass before using in the coupling process.  

Different scenarios can be imagined depending on the 

number of participating modes from each substructure in 

the coupling process. “Table 3ˮ shows the comparison 

of the first five natural frequencies generated by the 

coupling of two subsystems of “Fig. 3ˮ with the 

substructure modal analysis results. In the three cases 

studied, 5, 10, and 15 first elastic modes (other than rigid 

body motions) of each substructure are included in the 

coupling process. The information related to the mode 

shape in each substructure is read at 10 points with equal 

distances from each other. As can be seen, the disparity 

rate is negligible with the component mode synthesis 

method. 

 

 

Table 1 Ten first responses of “Eq. (18)ˮ 

10 9 8 7 6 5 4 3 2 1 Row 

32.987 29.845 26.703 23.562 20.420 17.278 14.137 10.996 7.853 4.73 βL 
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Table 2 Comparison of the natural frequency resulting from the finite element of two different elements with analytical results in 

Hz 

Number of 

modes 
Analytical results 10 elements 

Difference 

percentage 
100 elements 

Difference 

percentage 

1 26.022 26.023 0.003 26.022 0.0003 

2 71.731 71.748 0.024 71.731 0 

3 140.621 140.750 0.092 140.621 0.0002 

4 232.452 233.012 0.241 232.454 0.001 

5 347.244 349.008 0.5082 347.246 0.0008 

6 484.997 489.476 0.923 484.997 0.0001 

7 645.706 655.295 1.485 645.707 0.0002 

 

 
Fig. 3 Two one-meter beams connected together. 

 

 
Table 3 Comparison of natural frequency obtained from the component mode synthesis method with the results of numerical 

analysis in Hz 

Number of 

modes 
Results of numerical analysis 

Component mode synthesis with 3 

elements in each part Difference percentage 

1 6.51 6.507 0.044 

2 17.93 17.963 0.184 
3 35.16 35.356 0.559 

4 58.11 58.846 1.267 

5 86.81 87.810 1.152 

 

 
4.2. Examining the Plate System 

The number of points of interfaces is the main difference 

between the plate and the beam. The number of points 

increases in the plate, which increases the error of the 

component mode synthesis methods. Thus, some 

methods are used to reduce the error of this method. The 

results of this numerical method for a plate with a distant 

joint were compared with the natural frequencies 

extracted from the analytical method and the accuracy of 

the numerical method was investigated. Finally, the free 

interface method was implemented on the plate. The 

plate modeling results were compared with the 

analytical solution of the plate to examine the suitable 

number of elements. The natural frequencies of a 

rectangular plate with the length of “a” and width of “b” 

with simply support boundary conditions around are 

represented by “Eq. (19)ˮ. 

 

ωmn = √
D

ρ
[(

mπ

a
)

2

+ (
nπ

b
)

2

] (19) 

Where, ρ is the density of the plate and D is the flexural 

strength of the plate (D =
Et3

12(1−υ2)
). Therefore, the 

natural frequencies of a square plate of steel with a 

thickness of 10 mm and a length of one meter were 

obtained. Considering a square plate with a length “a”, 

the natural frequency of the dimensionless plate was 

then defined in “Eq. (20)ˮ. Ultimately, the dimensionless 

natural frequencies of a simply support square plate were 

obtained. As shown in “Table 4ˮ, the numerical method 

used is acceptable and its results are very consistent with 

the analytical results. 

�̅� = 𝜔𝑚𝑛𝑎√
𝜌

𝐺
 (20) 
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Table 4 The dimensionless frequencies of a simply support square plate by a numerical method 

Analytical method Numerical method with 20×20 mesh N M Mode No. 

0.096 0.096 1 1 1 

0.240 0.243 1 2 2 

0.240 0.243 2 1 3 

0.384 0.389 2 2 4 

0.480 0.492 1 3 5 

0.480 0.492 3 1 6 

0.624 0.638 2 3 7 

0.624 0.638 3 2 8 

0.815 0.855 1 4 9 

0.815 0.855 4 1 10 

0.864 0.885 3 3 11 

0.959 0.999 2 4 12 

4.2.1. Component Mode Synthesis for the Plate  

An important point to note is that the matrix Sd must be 

inverted in the process of the free interface method. This 

matrix is often singular in the plates. This phenomenon 

causes the calculations error to increase significantly. 

The Singular-Value Decomposition (SVD) method was 

used to avoid this phenomenon. In this section, the 

examined sample was first considered as two square 

steel plates with a one-meter side and a thickness of 1 

mm in accordance with “Fig. 4ˮ.  

 

 
Fig. 4 Two square plates connected to each other. 

The component mode synthesis method was applied for 

modal analysis of each of the squares separately. Also, 

by using this method the modal analysis of two 

interconnected squares was performed. To verify the 

accuracy of the results, the modal analysis with a 2×1 

rectangular was performed and the results were 

compared with the component mode synthesis method. 

This was done with 21×21 meshing. 

4.2.1.1. 21×21 Meshing 

In this section, each square was meshed with 21× 21 

elements (Fig. 5). The results of this analysis are 

presented in Table (5). The results of the component 

mode synthesis method with two square plates were 

compared with the results of a rectangular integrated 

plate with 21×42 elements in Fig. 6. As can be seen, with 

the increase in the number of elements in the plate, the 

results of the component mode synthesis method 

become more accurate and all the modes are acceptable 

except for the mode No. 3. Therefore, the component 

mode synthesis method is a quite proper and practical 

method for the modal analysis in the plate.  

  

  
  

Fig. 5 Two square plates connected to each other with 21×21 elements. 
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Fig. 6 A rectangular plate with 21×42 elements. 

 
Table 5 Frequencies obtained from the CMS method and their comparison with the integrated rectangular plate mode 

Difference in percentage 

The natural frequency of solving the 

finite element of an integral sheet 

(Hz) 

The natural frequency of 

the CMS method (Hz) 
Rows 

0.791 227.356 229.154 1 

15.231 276.763 234.608 2 

7.989 320.907 346.547 3 

1.698 391.735 398.387 4 

1.453 403.025 408.881 5 

6.226 441.321 468.798 6 

4.3. Examining the Cylindrical Shell System 

In this section, the reduction of the modal rank as well 

as the reduction of the degrees of freedom were 

examined followed by studying the performance of the 

component mode synthesis method in the extraction of 

the frequency properties of cylindrical shells. In order to 

properly evaluate the CMS method, a single grid has 

been used in each step. Thus, the modal properties of the 

substructures and the entire structure were extracted 

from a certain grid. Hence, the difference between the 

component mode synthesis method and solving the 

integrated shell is merely due to the implementation of 

the component mode synthesis method. The main reason 

for choosing the shell is its extensive use in the industries 

as well as the difficulty of doing its modal test at large 

dimensions. 

4.3.1. The Component Mode Synthesis Method for 

The Cylindrical Shell 

What should be noted is that the matrix Sd needs to be 

inverted in the process of the free interface method. In 

the plates, this matrix is often singularized. This 

phenomenon causes the calculation error to increase 

significantly. The Singular-Value Decomposition 

(SVD) was used to avoid this phenomenon. In this study, 

two steel shells with a length of one meter, a thickness 

of 10 mm, and a radius of 10 cm were examined. To 

apply the CMS method, modal analysis each of the 

cylindrical shells was conducted separately. Also, by 

using the CMS method, the modal analysis of two 

interconnected cylindrical shells was performed. To 

verify the accuracy of the results, the modal analysis of 

a two-meter-long cylindrical shell was performed and 

compared with the results of the component mode 

synthesis method. This was done with two single and 

11×21 meshing. 

4.3.1.1. Single Meshing 

In this section, the cylindrical shell was meshed with an 

element along the cylinder (“Fig. 7ˮ). The nodes 13, 14, 

15, 16, 17, 18, 19, and 20 of the lower cylindrical shell 

are connected together with the nodes 1, 2, 3, 4, 5, 6, 7, 
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and 8 from the upper cylindrical shell. The results of the 

component mode synthesis method with two cylindrical 

shells (“Fig. 7ˮ) were compared with the results of the 

two-meter long cylindrical shell (“Fig. 8ˮ) in “Table 6ˮ. 

As can be seen, the results indicate the accuracy of the 

function of the component mode synthesis method and 

the difference between these two is due to singularity of 

the matrix 𝑆𝑑. The Singular-Value Decomposition 

(SVD) was used to compensate for the difference. 

 
Fig. 7 Two cylindrical shells connected together with 

one element. 

 

 
Fig. 8 A two-meter long cylindrical shell with two 

elements. 

 
Table 6 Investigation of the component mode synthesis method in a cylindrical shell with an element in length 

Difference in 

percentage 

Natural frequency from solving the finite 

element of the integrated cylindrical shell 

(kHz) 

Natural frequency of the component 

mode synthesis method (kHz) 
Row 

0.021 1.370 1.371 1 

1.269 2.127 2.154 2 

2.837 2.505 2.576 3 

3.138 3.014 2.92 4 

1.315 3.230 3.273 5 

4.3.1.2. The 11×12 Meshing 

The above process was meshed with an 11×12 matrix 

(Figs. 9 and 10). The results of this analysis are 

presented in “Table 7ˮ. It is observed that as the number 

of elements in the plate increases, the results of the 

component mode synthesis method become more 

accurate and all the modes are acceptable except for the 

mode No. 5. Therefore, the component mode synthesis 

method is a quite perfect and applied approach for modal 

analysis in the cylindrical shell. As can be seen, the error 

rate decreases in the component mode synthesis method 

with increasing number of the elements. This occurs 

since the number of modes used in this method increases 

with the increasing number of elements, and thus, the 

accuracy of this method enhances. To this end, the mean 

error rate of this method was provided for different 

numbers of elements in “Table 8ˮ. As can be seen, the 

average error rate decreases with the increased use of 

further longitudinal elements in the modes synthesis 

process. This phenomenon is applicable to each of the 

various shapes of modes. 

In general, these errors arise from the fact that a 

continuous system is simulated with a discrete system, 

and thus, the number of degrees of freedom, and 

consequently, the number of modes used in the modes 

synthesis calculations has been reduced from an infinite 

value to a very limited value. Therefore, the resulting 

error is related to the reduction in the number of modes 

used in the calculations. Then, the number of modes 

shape is expected to increase by the increased degree of 

freedom. This error decreases to the boundary of zero. 

However, in practical activities and where the results of 

the experimental mode shape are used, it is inevitable to 

use a limited number of mode shapes and the occurrence 

of such an error is inevitable. Some solutions to remove 

this error such as the use of residual have been suggested 

in the activities undertaken in recent years by researchers 

[39]. 
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Fig. 9 Two cylindrical shells connected to each other 

with 6×11 elements. 
Fig. 10 A cylindrical shell with 11×12 elements. 

 

Table 7 Examining the component mode synthesis method in the cylindrical shell with six elements in length 

Difference in 

percentage 

The natural frequency from solving finite 

element of the integrated cylindrical shell 

(kHz) 

The natural frequency of the 

component mode synthesis method 

(kHz) 
Row 

0.358 4.174 4.189 1 

0.116 4.198 4.203 2 

0.538 4.32 4.343 3 

0.027 4.723 4.722 4 

0.909 4.814 4.859 5 

 
Table 8 The error of the component mode synthesis method in terms of the number of elements used in the calculations 

Mean error (percent) Number of longitudinal elements Row 
1.7 Two elements 1 

1.05 Seven elements 2 
0.4 Twelve elements 3 
0.2 Fifteen elements 4 

5 CONCLUSIONS 

In this research, to achieve the technical knowledge of 

sub-structuring in the modal domain, it has been 

attempted to introduce the effective error resources 

including modal shear error (considering a limited 

number of modes) and the continuous systems 

overlapping error and their solution. As mentioned, the 

modal coupling methods often are recognized as 

Components Modes Synthesis or Components Modal 

Synthesis (CMS). To this end, the free interface 

component mode synthesis method was used for modal 

analysis of beams, plates and the cylindrical shells. The 

first employed the discrete system to implement this 

method and the free interface method was implemented 

in the discrete systems with multiple points of the fixed 

interface. Unlike the fixed interface method, this method 

is applied when the physical properties of finite elements 

model are not available and instead the modal properties 

of the system such as natural frequencies and its modes 

form are used as substructure data. If all data of the 

modal associated with all degrees of freedom of 

substructures is available, the modal coupling results are 

completely consistent with the accurate results. 

However, if the modal properties of a limited number of 

modes are available, the error arising from the 

deficiency will be observed in the coupling results. The 

fewer the available modes, the more error there will be 

in the coupling. The number of frequencies and the 

shape of modes resulting from the coupling method are 

equal to the sum of the modes extracted from each of the 

substructures minus the common degrees of freedom 

between the two substructures. Therefore, among the 

necessary conditions of this method is that the extracted 

modes of substructures are totally more than the number 

of degrees of freedom of interface.  
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Concerning the deficiency of the degrees of freedom, the 

most important point is that only the degrees of freedom 

of interfaces affect the results of coupling and lack of the 

data internal degrees of freedom has no effect on the 

coupling results. In the following, the continuous 

samples of beam, plate and cylindrical shell were 

studied. Further, the natural frequencies of the beam 

system were extracted analytically. Then, the modal 

analysis was done on two one-meter substructures by the 

components modes Synthesis, which results were 

compared with the modal analysis of an integrated two-

meter structure. The analysis results showed an 

acceptable accuracy rate.  

This method was also implemented on the plate. In this 

system, the number of connecting points increases and 

this phenomenon increases the method error rate. The 

Singular Value Decomposition (SVD) method was used 

to reduce the error of this method in the matrix inverting 

process. Finally, the components modes Synthesis was 

implemented on the cylindrical shell. According to the 

results of this research, the method of components 

modes Synthesis appears to be a reliable approach for 

implementation on various structures, including the 

cylindrical shell structure. However, by developing this 

method, the test costs will be reduced and the 

computational volume will be much lower.  Working out 

with the samples of plate and cylindrical shell, it was 

found that despite assumptions, increasing the number 

of degrees of freedom of the substructures interfaces in 

the coupling process leads to the increase of results error. 

For the reason, the process of choosing acceptable 

degrees of freedom for connection points was 

introduced. The main tool was Singular Value 

Decomposition (SVD) method. Results obtained from 

coupling have less error in the view of the provided 

criteria in this process. 
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