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1 INTRODUCTION 

Nowadays, it is possible to manufacture infinitesimal 

structures and systems in the dimension of micro-to-

Nano due to recent developments in Nano 

manufacturing technologies [1]. Proceeding along this 

line, a new miniature structure known as Nano-

mechanical beams have emerged into nanotechnology 

applications such as Nano-resonators, Atomic Force 

Microscopes (AFM), bio-sensors, etc. [2-4]. The Nano 

implementations of the Nano-mechanical beams are 

originated from their novel features like low weight, 

small size, simple fabrication and high frequency 

operation [5].  

In addition, the Nano-mechanical beams are mostly used 

in vibration modes of operation. With respect to the 

extensive implementation of vibrating Nano-mechanical 

beams, their precise vibration modelling and study are 

essential to identify their operation. Thus, Nano-

researchers have focused on vibration analysis of the 

Nano-mechanical beams: Jiang et al. [6] investigated 

vibration modelling and analysis of a Nano-mechanical 

resonator. They presented a numerical solution to 

determine the vibration characteristics of the Nano-

mechanical beam for Nano-scale deformations. Taheri 

[7] studied dynamic modelling of an atomic force Nano-

mechanical beam in adjacent of a surface considering 

tip-sample interaction forces. Also they [8] studied 

dynamic modeling and simulation of a piezoelectric 

atomic force microscope. However, they modeled the 

system as a lumped mass which cannot be approved as 

an accurate model for a continuous beam especially in 

Nano scale. Souayeh et al. [9] presented a computational 

model for vibration of a carbon nanotube beam. 

Employing the Galerkin discretization method, they 

transformed the partial differential equation to a finite 

degrees of freedom system and solved it by the harmonic 

balance method.  

As it can be seen from literature, the recent studies are 

based on classical continuum models of the small size 

beams. However, the capability of this theory for 

dynamic modelling of such systems is challenged 

recently [10]. The key motivation is due to importance 

of material structures such as lattice spacing in the 

micro-to-nano scale. As experiments and atomistic 

simulations are difficult and computationally expensive, 

the size-dependent elasticity theories have been 

established for vibration analysis of the Nano-

mechanical beams. Jalali et al. [11] studied the free 

vibration of functionally graded micro-beams under 

thermal environment based on modified couple stress 

theory. They employed an approximate method to solve 

the eigenvalue problem for obtaining the natural 

frequencies of the beam. Also, in [12] the modified 

couple stress model of the Nano-mechanical beam was 

presented to investigate the size effects on the free 

vibration of the non-uniform beam. Demir et al. [13] 

studied response of Nano-beams resting on elastic 

foundations. They employed the finite element method 

for the analysis of Nano-beams under the Winkler 

foundation and the uniform load. Also, they considered 

the small-scale effect along with nonlocal elasticity 

theory to model the Nano-beam in the Nano-scale. 

Nazemizadeh and Bakhtiari-Nejad [14] presented the 

size-dependent free vibration of Nano-beams with 

piezoelectric-layered actuators. They studied the size 

effects on the linear vibration of the beam and reported 

that the non-local and dimensional parameters have 

significant effects on the free vibration of the beam. 

However, their study was limited by only changing one 

a parameter and keeping other parameters constant, 

simultaneously. Eftekhari et al. [15] investigated 

optimal vibration control of multi-layer micro-beams 

actuated by piezoelectric layer based on modified couple 

stress and surface stress elasticity theories. They 

analyzed effects of the independent material length scale 

on the resonant vibration characteristics of the structure. 

They indicate that the small material length scale plays 

a key role in the dynamic respond and vibration control 

of micro-beam integrated with piezoelectric layers. 

With respect to the literature review, there is a need to 

dynamic modelling and vibration analysis of the 

nanobeam with consideration of longitudinal 

discontinuities and nonlocal effects of the beam and 

piezoelectric layers. Furthermore, several input 

parameters including geometrical and size effect ones 

can be considered for the Nano-beam and the relative 

effectiveness of each parameter on the vibration 

characteristics should be determined. The sensitivity 

analysis methods are known as a powerful instrument to 

investigate the effects of changing all parameters 

simultaneously and detect the relative effects of 

parameters on vibration behaviour of the beam. 

Therefore, the presented paper studies the vibration 

sensitivity analysis of the Nano-mechanical piezo-

laminated beam with consideration of size effects. The 

sensitivity analysis includes the natural frequencies and 

the vibration amplitudes at the first two modes. At first, 

the vibration governing equation of the stepped Nano-

mechanical piezo-laminated beam is derived employing 

the nonlocal elasticity theory. The nonlocal formulation 

is considered for both of the beam and the piezoelectric 

layer and the obtained equation is solved analytically. 

Then, the Sobol sensitivity analysis is employed to 

investigate the effects of different parameters on the 

vibration characteristics of the beam. Five parameters of 

the Nano-mechanical piezo-laminated beam are 

analyzed to investigate the relative effectiveness of each 

parameter on the natural frequency and the resonant 

amplitude. The parameters are chosen as the length of 

the piezoelectric layer, the length of the middle section 

of the beam (uncovered by piezoelectric layer), the 
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length of the tip section of the beam (with narrower 

width), the thickness ratio of the piezoelectric layer to 

the beam and the nonlocal term. The obtained results 

show that the length and the thickness of the 

piezoelectric layer have prominent effects on the 

resonant amplitude of the beam. Also, it is indicated that 

nonlocal parameter effect on the resonant amplitudes is 

more than resonant frequency. Moreover, the effect of 

the nonlocal term increases with increment of the 

resonant mode of vibration. The rest of the paper is 

organized as follows: in section 2, the Sobol sensitivity 

formulation is presented. The governing equation of the 

piezo-laminated Nano-mechanical beam is developed in 

section 3. The simulation is presented in section 4 and 

then the paper is concluded.   

2 SOBOL SENSETIVITY METHOD 

The sensitivity analysis is known as an important tool 

for forming and understanding mathematical models in 

various forms. It affords assured information about the 

system with regards to the behaviour achieved from the 

simulation. In general, the sensitivity analysis is applied 

to wide ranges of applications such as model 

identification, model simplification and construction. If 

the purpose is to compare and evaluate the relative 

effects of several input parameters on a given output, the 

sensitivity analysis methods are used. Using the 

sensitivity analysis method, one can study the effect and 

relative importance of each defined input on the system 

output. The Sensitivity Analysis (SA) methods are 

classified into two groups: local SA and global SA. The 

local SA method estimates or approximates the partial 

derivatives of model outputs with respect to model 

inputs at some nominal settings. On the other hand, in 

contrast to the local SA approaches, the global SA 

methods evaluate the effect of model outputs in the 

whole permitted ranges of inputs [16]. Therefore, the 

global sensitivity analysis approaches have achieved 

more importance. The main idea in the global methods 

is the estimation of variance components for inputs or a 

group of inputs. The Sobol sensitivity analysis is a global 

and statistical SA approach. The Sobol sensitivity 

analysis method is recognized as a useful 

implementation for studying complex and multivariate 

systems.  

In order to express the Sobol SA method, the input 

parameter range   is defined as [17]: 
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Where, 
0f  is a constant value and is equal to: 
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Moreover, Sobol proved the other terms of “Eq. (2)ˮ are 

constant and the flowing relations are expressed: 
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Where, 
idX −
 indicates an integral on all variables 

except the variable ix  and 
ijdX −

expresses the integral 

on all variables except the variables ix  and ix . Also, in 

the Sobol statistical method, variance sensitivity index is 

expressed as: 
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And the partial variances are as: 
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Where, kii s  ...1 1  and the total variance is 

given as: 
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Therefore, the sensitivity index is obtained by dividing 

the variance of each variable into the total variance: 
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Where, 
iS  is the first-order sensitivity index and states 

the effect of the input ix  on the output. 
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3 VIBRATION FORMULATION 

To sensitivity analysis of the piezo-laminated Nano-

mechanical beam, a cantilever is coated by a 

piezoelectric layer on its top surface based on the 

nonlocal elasticity theory. The main feature of the 

nonlocal continuum mechanics is that the nonlocal stress 

tensor at a reference point depends not only on strain 

tensor of the same coordinate but also on all other points 

of the body. Eringen presented the nonlocal stress 

formulation as an integral and proposed an alternative 

differential equation as [18]:  

 

( ) klijklij c  =− 221  (10) 

 

In which, 
ij  is the nonlocal stress tensor, 

ij  is the 

strain tensor, 2  is the Laplacian operator, and   is a 

scale coefficient that interprets the size-dependent 

nonlocal effects.  

Furthermore, the nonlocal elasticity has been developed 

for the piezoelectric materials, recently. The nonlocal 

differential equation [19]:  
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Where, kE  and kije  are the electric field and 

piezoelectric constants. The above nonlocal constitutive 

relations can be rewritten in a one-dimensional form as: 
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Where, 
1,xx  and 

2,xx  are the nonlocal stress 

components in the beam and the piezoelectric layer 

along the x-direction.   

Now to utilize the nonlocal constitutive equations, a 

Nano-mechanical cantilever with a piezoelectric patch 

covered on its top surface is considered (“Fig. 1ˮ). The 

total length of the beam is l . The beam has three 

different sections along the length. The first section is 

designed until 
1l  with width and height of 1b and 1h , 

respectively. The piezoelectric patch is bonded along the 

x-direction in this section and the width and thickness of 

the piezoelectric layer are 
2b  and 

2h , respectively. The 

second section of the beam is from 
1l  until 

2l  with width 

and height of 
1b and 

1h . Also, the third section of the 

beam is from 
2l  until l  with narrower width and height 

of 3b and 3h .   

 
Fig. 1 A Nano-mechanical beam with a piezoelectric 

layer. 
 

It is considered that lateral displacement of the beam is 

parallel to z-axis. So, the longitudinal and lateral 

displacements of an arbitrary point in a beam section are: 
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So, the non-zero strain component xx  of the beam is: 
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Furthermore, to derive the vibration equation of the 

Nano-beam, the Hamilton’s principle is implemented. 

Therefore, the kinetic energy T of the piezo-laminated 

can be summarized as: 
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Where, 
1 and 

2  are the density of the beam and the 

piezoelectric layer, respectively. Also, )(xH  is the 

Heaviside function and 

)()()( jxHixHijH −−−=  is defined. 

Moreover, the potential energy of the piezoelectric 

laminated beam can be written as: 
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Now by substituting equation (15) into (12) and (13), 

and then submitting these equations into (17), the 

potential energy can be rewritten as: 
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In which the following relations are given: 
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Furthermore, the Hamilton’s principle states: 
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Where, ncW  is the work of non-conservative forces. 

Now, by substituting relations (16) and (18) into (21) 

and performing some mathematical calculations, the 

governing vibration equation of the piezo-laminated 

Nano-mechanical based on the elasticity theory is 

obtained as: 
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Where, the effective inertia of the system is given as: 
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Moreover, by integrating equations (12) and (13) on the 

cross-sectional areas of the Nano-mechanical beam and 

the piezoelectric layers, the nonlocal formulation will be 

achieved as: 
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Now, by substituting equation (22) into (24), it will be: 
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Where, 
pV  and kp are the piezoelectric voltage and  

coefficient of applied voltage, respectively. Therefore, 

by substituting equation (27) into equations (22), the 

governing equation of motion of the piezo-laminated 

Nano-mechanical beam can be summarized as: 
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And the boundary conditions are given as: 
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(29) 

4 FREQUENCY SOLUTION 

In section 2, governing equations and boundary 

conditions of a piezo-laminated Nano-mechanical beam 

are derived. For sensitivity analysis of the problem, at 

first the vibration equation is analytically solved. To do 

this, the Nano-mechanical beam is considered as three 

longitudinal sections. Therefore, the governing equation 

(28) can be rewritten as: 
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Moreover, the boundary conditions and compatibility 

conditions can be given as: 
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Therefore, the harmonic solution for the transverse 

vibration of the Nano-mechanical  beam in each section 

is in the form of ( ) tj

ii exWtxw )(, =  in which   is 

the natural frequencies of the beam. So, the harmonic 

solution substituted into “Eq. (30)ˮ results in: 

 

)sinh()cosh(

)sin()cos()(

,4,3

,2,1

xCxC

xCxCxW

iiii

iiiii





++

+=
 (35) 

 

Now, by substituting the boundary conditions into “Eq. 

(35)ˮ, a 1212  matrix is achieved that the natural 

frequencies of the system can be obtained from solution 

of its determinant. In addition, the natural frequency and 

the shape function of each resonance vibration mode of 

the Nano-mechanical beam are obtained. Then the 

response of the system is presumed as 

= )()(),( tqxWtxw iii
, and substituting the 

solution into the governing equation (28), the following 

equation is obtained: 

 

QqKqCqM
 =++  (36) 
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In which the indices of matrices are determined as: 
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In the next section, the natural frequency and resonant 

amplitude of the Nano-mechanical beam are obtained 

for a lot of data proposed by the Sobol’s method. 

5 SENSITIVITY ANALYSIS RESULTS 

In common studies, the effect of various parameters on 

the vibration characteristics of the systems is 

investigated while other parameters are fixed. On the 

other hand, to improve performance of the system, 

determining of these parameters cannot be by trial and 

error. In spite, the sensitivity analysis can be an efficient 

procedure to study and optimize the system behavior 

which can change all parameters simultaneously and 

detect the effect of them on the systems. In the 

sensitivity analysis, the variation of input parameters 

versus an arbitrary output is determined. Moreover, the 

relative effect of each parameter on the output is 

obtained. The sensitivity analysis methods are widely 

applied to the complex systems with various input 

parameters such as micro-to-nano systems. Matviykiv et 

al. [20] studied the sensitivity analysis of MEMS 

cantilever sensors. They only modeled a uniform 

cantilever. Also, they did not consider size effects in 

their analysis which cannot be ignored in micro and 

Nano scales. Moreover, in [21], the sensitivity analysis 

of various adhesion and friction formulations on 

manipulation in Nano scale are presented.  

At first to validate the analytical solution of the problem, 

the non-dimensional first natural frequency of the 

present word is compared with Ref. [22] for a uniform 

nonlocal beam (“Table 1ˮ). 

 
Table 1 Comparison of the first natural frequency 

 natural frequency st1 

Nonlocal term Present work Ref. [22] 

0.1 1.8794 1.8792 

 

Furthermore, in this section, five parameters of the 

Nano-mechanical beam are analyzed to investigate the 

relative effectiveness of each parameter on the vibration 

characteristics. The parameters are chosen as the length 

of the piezoelectric layer, the length of the middle 

section of the beam (uncovered by piezoelectric), the 

length of the tip section of the beam (with narrower 

width), the thickness ratio of the piezoelectric layer to 

the beam and the nonlocal term. Using the Sobol’s 

sensitivity analysis, 3584 random data is generated in 

which the length parameters are chosen on the interval 

[200, 10000] nm, thickness ratio is chosen on the 

interval [0.2, 2] and the nonlocal term on the interval [0, 

0.1]. In “Fig. 2ˮ, the sensitivity analysis of the 

fundamental natural frequency (𝜔1) versus the input 

parameters is plotted. 

 

 
a  

 
b  

 
c   
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d  

 
e  

Fig. 2 The first frequency versus length of the: (a): first 

section, (b): middle section, and, the first frequency versus 

length of the: (c): tip section, (d): piezo thickness ratio, and 

(e): nonlocal term 

 

As it is seen in “Fig. 2ˮ, increment of each length 

parameter decreases the fundamental frequency of the 

beam because the length parameter is in denominator of 

the frequency equations. However, the effect of the tip 

section length is more prominent. The first frequency is 

increased by increment of the piezoelectric thickness 

ratio. Also, the nonlocal term has a little increasing 

effect on the first natural frequency. 

In “Fig. 3ˮ, the sensitivity analysis of the second natural 

frequency of the Nano-mechanical beam (𝜔2) is 

presented. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

Fig. 3 The second frequency versus length of the: (a): first 

section, (b): middle section, and, the second frequency versus 

length of the: (c): tip section, (d): piezo thickness ratio, and 

(e): nonlocal term 
 

According to “Fig. 3ˮ, the second natural frequency is 

reduced with increasing the length of each section. The 

thickness ratio increases the frequency. In addition, 
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increasing the nonlocal term leads to decrement of the 

second frequency. This reduction is related to decreasing 

of the Nano-mechanical beam stiffness and can be 

explained as the nonlocal elasticity theory which 

assumes that atoms are connected by an elastic matrix 

while the classic theory assumes that atoms are linked 

rigidly.  

In “Fig. 4ˮ, the sensitivity analysis of the first resonant 

amplitude of the beam tip A1 is presented. 

 

 
a    

 
b  

 
c 

 
d 

 
e 

Fig. 4 The first resonant amplitude versus length of the: 

(a): first section, (b): middle section, (c): tip section, and, the 

first resonant amplitude versus the: (d): piezo thickness ratio, 

(e): nonlocal term. 

 

As it is seen in “Fig. 4”, the first resonance amplitude is 

increased by increment of the length of the piezoelectric 

layer. Also increasing the tip length and the piezo height 

ratio decreases the first resonance amplitude. Hence, the 

effects of the middle length and the nonlocal term are 

small, the effects of the length of the piezo layer and the 

thickness ratio are prominent, respectively. Also, the 

sensitivity analysis of the second resonant amplitude of 

the beam tip A2 is presented in “Fig. 5ˮ. 

  

 
a 
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b 

 
c 

 
d 

 
e 

Fig. 5 The second resonant amplitude versus length of the: 

(a): first section, (b): middle section, (c): tip section, and, the 

second resonant amplitude versus the: (d): piezo thickness 

ratio, (e): nonlocal term. 

As it is seen in “Fig. 5ˮ, the second resonance response 

is increased with increment of the length of the piezo 

layer, the middle and the tip sections and the nonlocal 

term. It is seen that the effect of nonlocal term on the 

second mode is more obvious. It can be explained by the 

reality that wavelengths are decreased for higher modes 

and the stronger interactions between atoms leads to 

increasing of the nonlocal elasticity effect. Moreover, 

increasing the thickness ratio decreases the second 

resonance response. This matter is originated from 

increasing of the Nano-mechanical beam stiffness. On 

the other hand, the relative effect of the input parameters 

on the natural frequency of the Nano-mechanical beam 

is reported in “Table 2ˮ. 

 
Table 2 Sensitivity analysis of the frequencies 

 Output parameter 

Input parameter 1 2 

piezo length 15.17 21.73 

middle length 32.16 29.25 

tip length 44.24 35.11 

piezo height 7.41 9.89 

nonlocal term 1.02 3.02 

 

According to “Table 2ˮ, the effect of the tip length is 

prominent and can be a crucial parameter in Nano-

mechanical resonators. Moreover, the relative effect of 

the nonlocal term and piezoelectric height increases by 

increment of the vibrating modes. 

Also, the relative effect of the input parameters on the 

resonant amplitudes of the Nano-mechanical beam is 

presented in “Table 3ˮ. 

 
Table 3 Sensitivity analysis of the resonant amplitudes 

 Output parameter 

Input parameter 1A 
2A 

piezo length 61.12 41.18 

middle length 3.73 17.42 

tip length 10.41 22.42 

piezo height 23.55 15.41 

nonlocal term 2.19 3.57 

 

As it is seen in “Table 3ˮ, the piezoelectric length has 

the most effect on the resonant response especially in the 

first mode. Also, the effect of the nonlocal parameter on 

the resonant amplitudes is more than the natural 

frequencies.  

6 CONCLUSION 

In the presented research, the vibration sensitivity 

analysis of the Nano-mechanical piezo-laminated beam 

has been investigated with consideration of size effects. 
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At first, the vibration governing equation of the beam is 

using the nonlocal elasticity theory. Then, the Sobol 

sensitivity analysis is utilized to analyze the effects of 

different parameters on the natural frequencies and the 

resonant amplitude of the beam. The input parameters 

are chosen as the length of the piezoelectric layer, the 

length of the middle section of the beam, the length of 

the tip section of the beam, the thickness ratio of the 

piezoelectric layer to the beam and the nonlocal term. 

Regarding to the sensitivity analysis, the following 

results can be highlighted: 

- The resonant frequencies and amplitudes of the Nano-

mechanical beam are sensitive to its geometrical 

characteristics and size effect. The relative effectiveness 

of each parameter can be an important attitude for other 

researches such as nano manufacturing, sensing 

applications, atomic force microscopy and etc. 

- The sensitivity analysis shows that the length and the 

thickness of the piezoelectric layer have prominent 

effects on the first resonant amplitude of the Nano-

mechanical beam. However, the length of the tip and 

middle sections has more effect on the first resonant 

frequency. 

- However, the nonlocal term has less effect on the 

vibration characteristics of the Nano-mechanical beam, 

its effect on the resonant amplitudes is more than 

resonant frequency. Moreover, the effect of the nonlocal 

term increases with increment of the resonant mode of 

vibration and cannot be neglected. 

- Although the length of the piezoelectric is the most 

effective parameter of the resonant amplitudes, but this 

relative effect decreases by increment of the mode 

number. Also, the length of the tip section has prominent 

effect on the resonant frequencies of the Nano-

mechanical beam, but the relative effectiveness 

decreases with increment of the mode vibration.   
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