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Abstract: An adaptive robust controller for nonlinear and coupling dynamic of 
aerial vehicle has been presented. In this paper an adaptive sliding mode controller 
(ASMC) is integrated to design the attitude control for the inner loops of nonlinear 
coupling dynamic of Unmanned Aerial Vehicle (UAV) in the presence of 
parametric uncertainties and disturbances. In the proposed scheme, the adaptation 
laws can estimate the unknown uncertain parameters and external disturbances, 
while the sliding mode control is used to ensure the fast response and robustify the 
control design against unmodeled dynamics with a small control effort. The 
synthesis of the adaptation laws is based on the positivity and Lyapunov design 
principle.  In comparison with other sliding mode approaches, the approach does 
not need the upper bound of parametric uncertainty and disturbances. The 
navigation outer loops of small UAV instead is based on PIDs to control altitude 
and heading. Simulation results demonstrate that the proposed controller can 
stabilize the nonlinear system and also it has stronger robustness with respect to 
the model uncertainties and gust disturbance. 
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1 INTRODUCTION 

An unmanned aerial vehicle (UAV) is a powered, aerial 

vehicle that does not carry a human operator, uses 

aerodynamic forces to provide vehicle lift, can fly 

autonomously or piloted remotely, and can carry 

payloads [1]. In recent years, micro and small UAVs 

have attracted many researchers and developers around 

the world since they had the potential to be used in 

military and civilian applications, e.g. traffic assistance, 

surveillance, mapping, inspection power lines, oil 

pipelines and etc. [2-3]. The attitude control system 

design of UAVs is a challenging task due to various 

difficulties faced when working with them. These 

systems are multi-input multi output (MIMO), 

nonlinear, coupled between the longitudinal and lateral 

dynamic, and very sensible to external disturbances [4]. 

Moreover, parametric uncertainties characteristics may 

also cause more complications during the design of 

such attitude control systems.  

In the last few decades, much research effort has been 

devoted to the design or improvement of the controller 

of uncertain systems. The author of [5] proposed an 1L  

adaptive controller as autopilot inner loop controller 

candidate. Navigation outer loop parameters are 

regulated via PID control method. The paper 

demonstrates that, if an 1L  algorithm is considered for 

the inner loop, no retuning or gain scheduling is 

required, even if a nonlinear complete system is 

considered. A robust adaptive terminal sliding mode 

control law with adaptive algorithms in [6] is presented 

to solve the six-degree-of-freedom tracking control 

problem of the leader-follower spacecraft formation. 

The proposed control law is proved to be able to drive 

the relative translational and rotational motion to the 

desired trajectory in finite time despite the presence of 

model uncertainties and external disturbances.  

The results show that using the presented controllers, 

the desired tracking performance in the investigated 

problem can be achieved. In [7] an adaptive 

backstepping design for a class unmanned helicopters 

with parametric uncertainties. The control objective is 

to let the helicopter track some pre-defined position and 

yaw trajectories. The proposed controller combines the 

backstepping method with online parameter update 

laws to achieve the control objective. Numerical 

simulations demonstrate that the controller can achieve 

good tracking performance in the presence of the 

parametric uncertainties. In [8], the fuzzy sliding mode 

control is proposed to design the altitude hold mode 

autopilot for a UAV which is non-minimum phase, and 

its model includes both parametric uncertainties and 

unmodeled nonlinear dynamics. In [9] the authors 

presented an adaptive neural network controller using 

backstepping technique for autonomous flight. The 

main feature of [9] is that the adaptive controller is 

designed assuming that all of the nonlinear functions of 

the system have uncertainties and the neural network 

weights are adjusted adaptively via Lyapunov theory.  

Sliding mode control has been suggested as a powerful 

approach for control systems with nonlinearities, 

uncertain dynamics and bounded input disturbances 

[10]. The most distinguished feature of SMC is its 

ability to provide fast error convergence and strong 

robustness for control systems in the sense that the 

closed loop systems are completely insensitive to 

nonlinearities and uncertain dynamics [11]. However, 

the bounds of system uncertainties are required for 

sliding mode control and this drawback attenuates the 

control system performance [12]. The combined 

adaptive sliding mode controllers (robust adaptive 

controllers) have been studied in [7-13-14-15] as a 

method to overcome the drawbacks of adaptive control 

and SMC. The idea is to use the adaptive control to 

estimate the unknown parameters of the dynamical 

system and to use the SMC to overcome the un-

modelled dynamics and external disturbances. Adaptive 

sliding mode control (ASMC), the combination of 

adaptive control method and SMC approach, is more 

flexible and convenient in controller design than SMC. 

In [16] an adaptive robust nonlinear controller is 

developed and applied to a quadrotor to attenuate the 

chattering effects and to achieve finite time 

convergence and robustness aims. In [17] adaptive 

sliding mode control has been used for trajectory 

following underground effects.  

In this paper, a sliding mode control approach based on 

adaptive control is investigated for nonlinear coupling 

dynamic of the inner loop fixed wing UAV in the 

presence of different parametric uncertainties and 

disturbances caused by the environment. The 

contribution of the present paper is the validation of the 

controller parameters when a nonlinear complete 

aircraft model is considered (both longitudinal and 

latero planes), including model uncertainties and 

unmodeled dynamics. In the proposed scheme, sliding 

mode control law parameters due to uncertainty are 

assumed to be unknown and are estimated via 

adaptation laws. The global asymptotical stability of 

the closed-loop system is proved by a Lyapunov based 

stability analysis. Furthermore, navigation outer loop 

parameters are regulated via PID controllers.  

In comparison with other control approaches, the 

proposed method benefits from high robustness in 

presence of different parametric uncertainties, i.e. 

aerodynamic coefficients, inertia moment and 

configuration parameters uncertainties and disturbances 

caused by the environment such as wind. Furthermore, 

the chattering phenomenon in sliding mode control is 

avoided by using saturation function [18]. The paper is 

organized as follows: In section 2, dynamic and 
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kinematic equations of small fixed wing UAV for 

dynamic modelling are introduced. In section 3, the 

control strategy for nonlinear dynamics of UAV and 

the adaptive sliding mode controller theory is 

presented.  Simulation results are analyzed in section 4. 

Finally, conclusions are presented in section 5. 

2 MODELING FOR UAV'S MOTION 

The air vehicle is modelled as a standard system with 

the main assumptions that UAV is a rigid body with a 

symmetric geometry and center of UAV mass position 

is fixed [19]. The Earth-fixed  E E EX Y Z  and the 

body-fixed  B B BX Y Z  are two reference coordinate 

frames most frequently used to describe the motion of 

an air vehicle, as shown in Fig. 1. The Body-fixed 

frame is attached to the vehicle. Its origin is normally at 

the centre of gravity. The motion of the Body-fixed 

frame is described relative to the Earth-fixed frame. In 

order to describe the motion of an UAV in 6 DOF, six 

independent coordinates representing position and 

attitude are necessary. The kinematics can be described 

by its position, orientation, linear and angular velocity 

over time. The position vector is given by  , ,x y z in 

Earth frame, with x pointing to true north, y  pointing 

east and z  pointing downwards. Velocities are 

described in body axes with linear velocity [ , , ]u v w , 

where u  is the longitudinal velocity, v  is the lateral 

velocity and w  is the vertical velocity. The major 

attitude tracking variables are described by Euler 

angles  , ,   , with roll angle, pitch angle and yaw 

angle respectively. The angular velocity is given 

by  , ,p q r , where p , q  and r is the roll, pitch and 

yaw angular velocity, respectively. 

 

 

Fig. 1 The Earth-fixed and the Body-fixed  

coordinate systems [20]  

Air vehicle equations of motion are derived from 

Newton-Euler formulation. They basically describe the 

air vehicle as a rigid body moving through the space. 

The detailed of these equations is given in many text 

books and other studies such as [21-22]. The 

mathematical model of an UAV’s translational and 

rotational motion can be expressed as follows, 

Translational equations of motion: 
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Rotational equations of motion: 
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WhereT is the UAV thrust force, g is the gravitational 

acceleration, m  is the UAV mass,  , ,X Y Z are the 

aerodynamic forces and  , ,L M N  are the aerodynamic 

moments. Additionally, i can be expressed as, 
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Where ijI  represents the inertia moments. The 

aerodynamic forces and moments are functions of all 

the considered states. Aerodynamic forces and 

moments can be calculated by means of aerodynamic 

coefficients as, 
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Where 2 2 2V u v w    is the airspeed and wing 

surface area S , the wingspan b , the mean 

aerodynamic cord c  and the air density  , are 

considered constant parameters. In general, the 
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aerodynamic coefficients are under look-up table from 

wind tunnel data measurements [23]. The 

dimensionless coefficients in the force/moment 

expressions can be decomposed in the following set of 

equations [24], 
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Where the lift  LC  and the drag  DC  coefficients are 

calculated using the following equations, 
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Where ,   are the attack and the sideslip angles, e  is 

the Oswalds efficient number and AR  is the aspect 

ratio calculated as 
2

2
bAR   [24]. The conventional 

aerodynamic control surface deflection variable are 

defined by aileron  a , elevator  e  and rudder  r  

which respectively are caused by rolling moment, 

pitching moment and yawing moment. It is also 

prudent to include a throttle variable, denoted by  T , 

that is related to the output magnitude of  the UAV 

thrust. Euler angles are one of the standard 

specifications used for expressing the orientation of the 

body-fixed frame relative to the Earth-fixed frame. 

Kinematical relationship between Euler angles and 

body-fixed angular rates are given as, 
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Another set of equations, navigation equations which 

relate translational velocity components in body-fixed 

axes to Earth-fixed axes components are given as, 
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3 CONTROL SYSTEM DESIGN 

In this section, the control objective is to design a 

control strategy that permits the small UAV to track its 

desired trajectory. As illustrated in Fig. 2, the 

multivariable dynamic control system for a fixed wing 

UAV is divided into longitudinal and lateral plans. The 

longitudinal plane controls the pitch angle in the inner 

loop and the altitude h in the outer loop by elevator 

control surface e and controls the speed by throttle t . 

The lateral planes controls the roll angle  in the inner 

loop and heads angle  in the outer loop by aileron 

control surface a  [25]. In classical SMC approach, the 

control effort is designed on the basis of the upper 

bounds of system uncertainties, which can guarantee 

the reachability of sliding mode, but a conservative 

high gain control effort is used in the whole control 

process while uncertainties may rarely run on the bonds 

in practical [26].  

In this paper, the uncertain parameters are estimated 

with properly designed adaptive law and the robust 

control items related to SMC is used to ensure the fast 

response and robustify the control design against 

unmodeled dynamics with a small control effort. The 

control problem is to design the control input, making 

the attitude motion track the command attitude angles 

effectively and precisely in the presence of parameter 

uncertainty and external disturbance. In this paper, the 

adaptive sliding mode controller is chosen to control 

the inner navigation loops, those need a faster response 

and are more prone to be affected by model 

uncertainties due to platform geometric and external 

disturbances. Altitude and heading outer navigation 

loops are instead controlled by simple PIDs. It should 

be noted that although no rudder is used, the response 

on the heading angles is still satisfying with aileron 

control. 
 

 

Fig. 2 The control scheme of Small UAV 
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3.1. Sliding Mode Controller Design  
In general, sliding mode controller design is divided 

into two steps. The first step is to define the sliding 

surface. The second step is to determine a reaching law 

such that the system will get to and maintain on the 

intersection of the sliding surface [26]. The suitable 

sliding surface for inner loops of longitudinal and 

lateral planes can be described as, 

 

1( )longS t e c q 
                                                        (8) 

 

2( )latS t e c p 
                                                         (9) 

 

Where 1 2,c c  are positive design parameters, 

( ) ( )de t t    and ( ) ( )de t t    are the pitch and 

roll angle tracking error respectively and also d and 

d  are the desired pitch and roll angle respectively. 

The sliding surfaces can then be differentiated with 

respect to time as : 
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2( )latS t e c p 
                                                       (11) 

 

Substituting (5) into (4) and then (4) into (2) and also 

substituting q  and p from (2) into (10) and (11) 

respectively yields : 
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Where, 
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Another form for the expression of longS  and ( )latS t is: 
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Where vectors  , 1,2,3,4,5,6i i i    are given as 

follows : 
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The output signal of the sliding mode controller is 

composed of two terms as, eq swu u u  ,Where equ is 

the signal of the equivalent part and swu is the signal of 

the switching part. The switching part of sliding mode 

control takes the form sgn( )k s , in which sgn( )s  is a 

sign function and k is a positive constant. Now, 

consider a sliding mode controller described as : 
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The stability of the sliding mode control laws will be 

reviewed in the following. 

 

Theorem 1. Consider the rotational dynamic of a small 

UAV in equations (2) with sliding surfaces given by 

equation (8) and (9) .If the control laws of (18) and 

(19) are implemented, the closed-loop system will be 

globally and asymptotically stable and the tracking 
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error of attitude UAV converge to zero, i.e. 

lim lim 0
t t

e e
 

  . 

 

 

Proof 1. A candidate Lyapunov positive definite 

function V is defined as : 
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Then, if 0V  , asymptotic Lyapunov stability will be 

guaranteed. In view of (13) and (14), calculating the 

derivative of V yields ; 
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By substituting the control laws (17) and (18) 

into e and a respectively and simplifying the equations 

(20), we obtain : 
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                                    (21) 

 

Obviously, 0V  . Hence, based on the Lyapunov 

stability theory, the theorem is proved. 

 

3.2. SMC with Adaptive Method  
It is assumed that the components of vectors   and   

due to different parametric uncertainties, i.e. 

aerodynamic coefficients, inertia moment and 

configuration parameters uncertainties are unknown. 

Therefore, the sliding mode control laws that were 

designed in the previous section are improved by 

means of adaptive laws. Consider adaptive sliding 

mode control laws as : 
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2ˆ sgn( )T
lat latu k s                                                 (23) 

 

Let ̂  and ̂  be the estimation for and respectively 

which are updated using the following adaptation laws : 

 
2

1

1

    1: 6i long i

cV
S t i


                                     (24) 

 
2

2

1

     1: 6i lat i

c V
S t i


                                      (25) 

 

Where   and   are positive design parameters, i  

and i  are the ith elements of the vectors  ,   and 

also   and   are defined as : 

 

ˆ ,     ˆ                                                       (26) 

 

Note that   and   are the estimated value of   and   

respectively, and also   and   can be represented as 

̂  and ̂  with an assumption that   and   changes 

slowly. According to the above analysis, the following 

theorem can be proposed. 

 

Theorem 2. Consider rotational dynamic of a small 

UAV described by equation (2) with unknown 

parameters. If control laws are designed as equations 

(22) and (23) with the adaptation laws (24) and (25), 

the trajectory of the system will track the desired 

trajectory and the system is globally asymptotically 

stable in finite time under the presence of uncertainties 

and disturbances. 

 

Proof 2. To prove the robustness and stability of the 

proposed controller and to derive the estimation laws 

for the unknown parameters, the following Lyapunov 

functions are considered : 

 
6

2 2
1

1

1 1
( )     

2 2
l g i

i
onV S t 

 

  
                                      (27) 

 
6

2 2
2

1

1 1
( )     

2 2
il

i
atV S t 

 

  
                                       (28) 

 

At first consider stability for ASMC method of 

longitudinal plane. Therefore calculating the derivative 

of  1V  along the system (13) yields : 

 

   

 
2 2 2

1
2

6

32 2

1

1

1

1

(

long long

lo

i i
i

ng

V S t S t

cV pr p r
S t e

V V









 




 

 
  


                   (29) 

6

4 5 6
1

1
)e i i

i

q

V
     

 


     

  
 

Substituting (22) into the expression e  in (29), we 

obtain : 
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 



2
1

1 22 2
1 1

2 2

3 4 5 6 1

1

2 2
1

2 2

2 3 4 62 2

6

1

1

5ˆ ˆ ˆ ˆ ˆ

)

ˆ

1
(

long

long i i

i

ecV pr
V S t

cV V

ep r q

VV cV

pr p r q

VV V

k sgn S







    

     













  
  

 
 

 
      

 
 


    

 


                (30) 

 

Regarding expression (26) as the estimated value of  , 

we can rewrite the Eq. (30) as follows : 
 

 



2
1

1 22 2
1 1

2 2

3 4 5 62

6

1

1
1

1
( )

long

long i i
i

ecV pr
V S t

cV V

p r q

VV

k sgn S

 

    










  
   

 
 
















                  (31) 

 

By substituting the adaptation laws (24) into the above 

equation, we have : 
 

 



 

2
1

1 22 2
1 1

2 2

3 4 5 62

2
1

1 1 2 2 3 3 4 4 5 5 6 6
1

1

1 ( )

1

long

long

long

ecV pr
V S t

cV V

p r q
k sgn S

VV

cV
S

 

    







     


          

  
   

 
 





 
 







 







 

 

Substituting i from (20) into (31), we obtain : 

 

 



2
1

1 22 2
1 1

2 2

3 4 5 62

2 2 2
1

1 2 3 4 5 62 2 2
1

1

1

1

( )

1

long

long

long

ecV pr
V S t

cV V

p r q
k sgn S

VV

ecV pr p r q
S

VcV V V








    



    


 

     





 
 
 


  
   

 
 


   

 
 
 
 

 

 

Finally, by simplifying the above equation yields : 
 

   

 

2
1

1 1
1

2
1

1 1
1

sgn( )long long

long

Vc
V k S t S t

V
V k S t

c





 

 

                            (32) 

The term 
2

1

1

cV


 on the right hand side of this equation 

is positive. Hence 1 0V  , and on account of the 

Lyapunov stability theory, the theorem is proved. 

Similarly, the derivative of 2V along the system (14) is 

then calculated as : 
 

   

 

6

1

2
2

2 3 42 2
1

6

5 6

1

2

1

1

i

a

lat lat i i

lat

i i

i

S t S t

c V pq qr
S t e

V V

r

V V

V

p



 


   

    








 

 
     

   








                  (33) 

 

By substituting (23) into the expression 
a
  in (29), we 

have : 
 

 
2

2
1 2 32 2 2

1 2

4 5 6 1 22 2
2

2

ˆ ˆ

lat

ec V pq qr
S t

c V V V

ep r pq

V V c

V

V V





 

   



 



  


 
 
 
 

 
 





   


 

             (34) 

3 4 5 6 22

6

1

ˆ ˆ ˆ ˆ sgn( )

1

lat

i

i

i

qr p r
k S

V VV
    

 








    

 
 

 

Considering expression (26) as the estimated value of 

 , we can express the equation (34) as follows : 
 

 
2

2
1 2 32 2 2

1 2

2 lat

ec V pq qr
S t

c V V
V

V




 

 
  

 


 





 



       (35) 

6

4 5 6 2
1

1
sgn( )t

i
ila i

p r
k S

V V
     






   


 

 

With substituting the adaptation laws (25) yields : 
 

 
2

2
1 2 32 2 2

1 2

2 lat

ec V pq qr
S t

c V V
V

V




 

 
  

 


 





 



 

   1 2 2 3 3 4

4 5 6 2

2
2

1 4
1

5 5 6 6

sgn( )

1
l

t

a

l

t

a

p r
k S

V V

c V
S t



   

      


       




 

  


 
  

 
 



 

 

Substituting i from (21) into (35), we obtain : 

 

 
2

2
1 2 32 2 2

1 2

2 lat

ec V pq qr
S t

c V V
V

V




 

 
  

 


 





 


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 

4 5 6 2

2
2

1 2 2 2
1

2 3 6

2

4 5

sgn( )

1

l

t

at

la
c

p r
k S

V V

ec V pq qr p r
S t

V VV V V



   

      
 




   



  
   

  
  

  

 

 

Finally, by simplifying the above equation, we have : 
 

   

 

2
2

2 2
1

2
2

2 2
1

sgn( )lat lat

lat

c V
SV k t tS

S
c V

V k t





 

 

                               (36) 

Similarly, as 
2

2

1

c V


is positive, 2 0V  . Therefore, based 

on the Lyapunov stability theory, the theorem is 

proved. 

 

Remark 1. In order to avoid the chattering 

phenomenon due to the imperfect implementation of 

the sign function in the control laws (22) and (23), the 

following saturation function is replaced [27] : 
 

 

1      S  

sat S S     S ε 

1      S  








 


                                                  (37) 

 

In which   is a small constant. 

4 SIMULATION RESULT AND DISCUSSION 

In this section, we present results of applying the 

proposed control scheme to a full 6 degree of freedom 

model of UAV. A mathematical model of a small fixed 

wing UAV has been derived from [22] and 

implemented in Matlab Simulink environment.  

 
Table 1 The Small fixed wing UAV parameters [24] 

Parameter Value Unit 

Weight 1.595 kg  

Span 1.27 m  

Wing surface 0.3097 2
m  

Mean aerodynamic chord 0.25 m  

Inertia moment I xx  0.0894 2kg.m  

Inertia moment I yy  0.1444 2kg.m  

Inertia moment I zz  0.1620 2kg.m  

Inertia moment I xz  0.014 2kg.m  

 

A summary of the UAV platform physical properties is 

given in Table 1. The initial conditions of the state 

variables are : 

         

     

0 100 , 0 0 0 0  , 0 17  /

0 0 0 0  /  

h m deg V m s

p q r deg s

      

  
 

 

In addition, the initial values applied in adaptive laws 

are,  ˆ 0 0.7*  ,  ˆ 0 0.7*  . In order to demonstrate 

the performance of the ASMC algorithm, another 

configuration based on the PID controllers, for both the 

inner and outer loops, is used in the nonlinear 

simulation model. Note that the PIDs gains are tuned 

by trial and error. As a means to clearly demonstrate 

the actual responses of the system variables and the 

tracking trajectory, we first simulate the situation 

without the disturbances. It is illustrated clearly in Figs. 

3 and 4 that the designed adaption laws using 

Lyapunov method had been able to estimate unknown 

parameters, according to initial values of parameters 

and gain of adaptation laws, which are defined by the 

operator.  

 

 

Fig. 3 Parameters estimation of the lateral plane (red line: real, 

blue line: estimated) 

 

 

Fig. 4 Parameters estimation of the longitudinal plane (red 

line: real, blue line: estimated) 
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Results of the ASMC and the PID algorithm for the 

inner loops control of small fixed wing UAV are 

depicted in Fig. 5. The ASMC controller outputs show 

an excellent tracking of the reference signals for the 

pitch and roll angles in comparison with the PID 

controller. Coupling effect of longitudinal and lateral 

plans results in an overshoot in the PID controller, 

while the proposed method in this article is free of 

these drawbacks. In addition, Fig. 6 shows that elevator 

and aileron deflections of both algorithms remain under 

the imposed command saturation limit of 20 degrees. 
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Fig. 5 Inner loops variables, PID and ASMC 

Confrontation 

 

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5


e
 (

d
e
g
)

(a) t (sec)

 

 

ASMC

PID

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

15

20


a
 (

d
e
g
)

(b) t(sec)

 

 

ASMC

PID

 
Fig. 6 Inner loops control surfaces, PID and ASMC 

confrontation 
 

The comparison of the results of the inner loops system 

with the ASMC and the PID algorithms in the presence 

of 30% and 20% uncertainties in the aerodynamic 

coefficients and the Inertia moment, respectively, are 

illustrated in Fig 7. In addition, the disturbances are 

represented by wind external currents in x, y directions 

with a magnitude of 5 m/s at t =8s. The control inputs 

are shown in Fig 8.  
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Fig. 7 Inner loops variables under uncertainties and 

disturbance, PID and ASMC algorithm confrontation 
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Fig. 8 Inner loops control surfaces under uncertainties and 

disturbance, PID and ASMC algorithms confrontation 
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Fig. 9 Nonlinear model variables, PID and ASMC 

algorithms confrontation 
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Fig. 10   Nonlinear model angular rates, PID and ASMC 

algorithms confrontation 
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Fig. 11   Nonlinear model control surfaces, PID and ASMC 

algorithms confrontation 
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Fig. 12   Nonlinear model variables under uncertainties and 

disturbance, PID and ASMC algorithms confrontation 
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Fig. 13   Nonlinear model angular rates under uncertainties 

and disturbance, PID and ASMC algorithms confrontation 
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Fig. 14   Nonlinear model control surfaces under uncertainties 

and disturbance, PID and ASMC algorithms confrontation 
 

It can be concluded that the ASMC controller provides 

a more robust closed loop system against the 

uncertainties and disturbances. Fig. 9 illustrates the full 

nonlinear dynamic responses of the UAV for the 

applied hybrid ASMC algorithm in comparison with 

the PID controller. According to this figure, both 

controllers are able to track the desired trajectories. As 

far as the stability of the angular rates, the elevator and 

aileron control surfaces for both controllers in Figs. 10 

and 11 confirm this fact. However, the PID controller 

shows a poor performance on reference changes due to 

the coupling effect of longitudinal and lateral plans, 

while the ASMC hybrid model acts better with a more 

robust inner loop. To verify the proposed method, the 

UAV is tested in the presence of 20% uncertainties and 

wind disturbances with a magnitude of 5m/s at t=8s in 

x direction. As in Fig. 12 can be seen, the adaptive 

sliding mode control acting on the UAV results an 
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increase in the robustness of the system against 

uncertainties and disturbances, while the poor 

performance of the PID linear controller caused the 

UAV to diverge from its path. The stability of the 

angular rates, the elevator and aileron control surfaces, 

presented in Fig. 13 and 14 for the ASMC method, 

compared to the PID method, confirm the obtained 

results. 

5 CONCLUSION 

In this paper, an adaptive sliding mode algorithm 

employed as the inner loops controller for longitudinal 

and lateral plans of small fixed wing UAV is analyzed. 

Firstly, the mathematical model of UAV’s attitude 

motion is derived from the Newton-Euler formulation, 

including the kinematics and dynamics equations. The 

modelling of UAV is then implemented in Matlab 

Simulink environment. In order to achieve the control 

objective, sliding mode control laws are designed and 

the unknown parameters of the corresponding 

controller are estimated through adaptive laws. The 

global asymptotical stability of the closed-loop system 

is proved by a Lyapunov based stability analysis. The 

ASMC algorithm is designed on the inner loops of the 

UAV dynamics which separates the longitudinal and 

lateral planes. The ASMC method is chosen for 

controlling the inner navigation loops. The control 

variables include the pitch angle   and roll angle  . 

Altitude h and heading outer navigation loops are 

instead controlled by simple PIDs.  The simulation 

results indicate that the attitude and altitude ASMC 

algorithm can achieve excellent tracking of the 

reference signals and strong robustness with respect to 

parametric uncertainties and external disturbance. 
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