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Abstract: This paper focuses on using the recently developed extended finite 

element model for buckling analysis of edge cracked columns under concentric 

axial load. The effect of crack depth and its location on the carrying capacity of 

columns is studied. The effect of different boundary conditions is also 

investigated. Numerical examples are offered to show the efficiency and 

effectiveness of the proposed method. The presented results are compared with 

analytical and experimental works available in the literature. Good agreement 

with experiments is shown, although the difference with analytical results is 

considerable for columns with deeper cracks. The reason of this difference is 

discussed.  It is shown that the proposed method is more accurate than the 

analytical methods which are developed based on rotational spring models.  
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1 INTRODUCTION 

Stability is one of the main problems in solid mechanics 

and losing it can cause catastrophic and dangerous 

collapse in structures. Buckling is one of the most 

important forms of instabilities. This phenomenon often 

occurs in slender columns. Buckling of perfect columns 

under different boundary conditions and loads has been 

studied by many researchers. A comprehensive study 

can be found in the work established by Timoshenko 

and Gere [1]. However, Compression members usually 

contain various kinds of imperfections like edge cracks 

and flaws. These imperfections can significantly reduce 

carrying capacity of columns. Therefore, their effects 

should be certainly taken into account in the stability 

analysis of structures.  

Many researchers have focused on studying the effect of 

crack existence on the vibration and stability of 

structures. For example Vanderveldt and Liebowitz [2] 

presented analytical and experimental solution for single 

and double edge cracked columns with concentric and 

eccentric compressive loads. The experimental and 

theoretical results were found to agree to within less 

than 5 percent.  

One of the most popular analytical methods used in 

structural analysis of edge cracked slender members is 

the local flexibility method. In this method it is assumed 

that a crack divides a column into two intact parts which 

are connected together with a massless rotational spring 

in the location of crack. This method has widely 

implemented by researchers to study cracked slim 

structures. For example, Ke et al. [3] studied post 

buckling response of beams made of functionally graded 

materials (FGMs) containing an open edge crack. Their 

method was based on Timoshenko beam theory and the 

concept of local flexibility. The effect of a crack on the 

buckling behavior of beam-columns is investigated by 

Challamel and Xiang [4]. Attar illustrates an analytical 

approach to investigate natural frequencies and mode 

shapes of a stepped beam with an arbitrary number of 

transverse cracks and general form of boundary 

conditions [5]. Gruel and Kisa [6] used the combination 

of transfer matrix method and fundamental solution of 

intact columns for determining the buckling load of 

cracked columns with rectangular cross sections. Later 

Gurel [7] expanded this work to study the stability of 

cracked columns with circular cross section. In these 

mentioned works, the flexibility of massless rotational 

spring, that represents an edge crack, was considered as 

a function of crack depth. The attempts have been   

focused on developing more accurate local flexibility 

function of a spring. For example Yazdchi and Gowhari 

[8] developed new spring flexibility functions based on 

two different methods (finite element and J-integral 

approaches) to study the buckling of prismatic edge 

cracked columns with circular and rectangular cross 

sections.  

Almost all of the mentioned methods were based on 

analytical solution of governing equations. Therefore, 

they can be applied just for special cases with a simple 

geometry and boundary conditions. In fact, these 

methods cannot deal with most practical engineering 

problems which are geometrically complicated. 

Moreover, it is shown in this paper that, the results of 

rotational spring models are reasonable just for short 

cracks. In fact when the length of crack is considerable 

compared to the thickness of the column, rotational 

spring methods cannot model the problem with good 

accuracy.     

Classical finite element method is a very powerful tool 

for modeling complex solid mechanics problems. This 

method can be used as an alternative solution to avoid 

the mentioned analytical methods deficiencies. This 

method has been used by some researchers to study the 

stability analysis of cracked slim structures. For 

example, Shen and Pierre [9] studied the effect of crack 

existence one the natural frequencies of Euler-Bernoulli 

beams by using Eight-Node isoparametric finite 

element.  Although FEM is the most powerful numerical 

technique and a wide range of commercial FEM 

packages are currently used in industries and research 

centers, improving of its efficiency to model cracks and 

discontinuities has always been considered as a great 

challenge. Typically a very refined grid and a use of 

singular elements around a crack tip are necessary in 

order to obtain accurate solutions in fracture mechanics 

problems. If the crack is moving (for example in crack 

propagation problems) or is located within a complex 

geometry, an acceptable mesh generating could become 

extremely time consuming. 

The extended FEM (XFEM) is one of the most 

important refinements in standard FEM to study cracked 

domains with minimum computational efforts. The 

philosophy behind this method is the incorporation of 

special local enrichment functions into a standard FEM 

approximation. XFEM has been proposed by Belytschko 

and Black [10] employing the concept of partition of 

unity. Later mo ̈s et al. [11] improved this method to 

model crack propagation problems without regenerating 

the mesh around the discontinuity. Recently this method 

has been employed to solve the wide range of 

engineering problems. For example, linear buckling of 

cracked plates has been studied by Baiz et al. [12] using 

SFEM and XFEM. Bachene et al. [13] used XFEM for 

analyzing vibration of cracked plates. Natarajan et al. 



 

 

Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 1/ March - 2016          95 
  

© 2016 IAU, Majlesi Branch 

 

[14] studied the natural frequency of a FGM rectangular 

plate by XFEM. 

Although the extended finite element method is a 

developing approach and its implementation in different 

fields is rapidly increased, the use of this method in 

buckling analysis of cracked beam structures is not 

reported in the literature.     

 In this paper a special extended finite element model, 

which has been recently introduced by Shirazizadeh and 

Shahverdi [15], is used for buckling analysis of cracked 

columns under concentric vertical load. This element is 

capable to model carked beam columns with minimum 

computational cost. The effect of crack depth, crack 

location and different boundary conditions on the 

buckling load of columns is investigated. Presented 

results are compared with analytical and experimental 

results available in the literature. It is found that the 

presented results have a very good agreement with the 

experiment for a wide range of crack depths, though 

their disagreement is considerable with analytical results 

when deeper cracks are considered. The reason of this 

difference is discussed extensively. 

2 A SPECIAL EXTENDED FINITE ELEMENT MODEL 

FOR MODELING CRACKED COLUMNS 

Shirazizadeh and Shahverdi [15] developed a special 

XFEM for structural analysis of cracked beam columns 

with arbitrary cross-section. This element is developed 

based on combining Timoshenko beam element with 

only displacement degrees of freedom and partition of 

unity enrichment. The most important advantage of this 

model compared to available standard and extended 

finite element models is its computational efficiency in 

modeling edge cracked columns. The governing 

equations of this element are briefly discussed here.  

Fig. 1 shows the element and its degrees of freedom 

with and without crack. As evident, the element has two 

nodes located in two sides and each node has one degree 

of freedom in   direction    . Also each node has   

degrees of freedom in   direction    
 
  .     

Fig. 1 Timoshenko beam element with only displacement 

degrees of freedom a) without and b) with edge crack 

 

Therefore the displacement field for intact beam can be 

written as Eq. (1) [15]. 
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Where       and       are the element shape functions. 

The form of these shape functions are introduced as 

below: 
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In the above equations   and   are coordinates located 

in the middle of the element. It should be noted that, the 

form of      is depend on the selected number of 

degrees of freedom in   direction. These functions can 

easily be obtained in compliance with the standard finite 

element shape functions requirements. Eq. (3) shows the 

form of these functions for some of possible degrees of 

freedom [15]. The minimum number of required degrees 

of freedom in the axial direction ( ) for modeling edge 

crack depends on the geometry of cracked body. In 

general, deeper cracks cause more nonlinearity in the 

distribution of the axial displacement. Therefore, to 

model deeper cracks, more numbers of   should be 

considered. However, to find an appropriate grid for 

modeling an edge crack, a mesh study shall be done and 

a problem should be solved by different numbers of   . 

When the results become independent mesh and they 

converge to the particular value, the mesh grid would be 

considered as a suitable one. 
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For modeling the edge cracks within the element the 

extended finite element enrichment is used. The 

extended finite element method is based on adding some 

special enrichment functions in to the standard finite 

element approximation for elements which are directly 

involved with the tip and the side of a crack. Therefore, 

the displacement field in the element containing an edge 

crack shown in Fig. 1 is expressed as Eq. (4) [15].  

 

In the above equation,   
 
 are the enriched degrees of 

freedom associated with the shifted Heaviside function  

 ̃    and    
 

 are the enriched degrees of freedom 

associated with the shifted elastic asymptotic crack tip 

functions  ̃        . As mentioned in Ref. [15], the 

existence of edge cracks is only effective on the 

distribution of        and would not affect     . That 

is why the special enrichment functions are just added to 

the axial displacement approximation in Eq. (4) [15]. 

The shifted enrichment functions in Eq. (4) are defined 

as follows: 

 ̃            (  
 
)                                                        

 ̃                   (  
 
   

 
)                                      

The application of these shifted functions is useful to 

eliminate the influence of the enrichment on the 

displacement of the nodes located on the crack tip and 

sides for ease of imposing boundary conditions [15]. 

In Eq. (5), the Heaviside function is defined by Eq. (7). 

     {
             
             

                                                        

Also  (  
 
) is the numerical value of this function in the 

   
  degree of freedom. For modeling the structural 

discontinuity, due to the presence of crack, the shifted 

Heaviside function is added to the displacement field of 

the nodes located on the crack sides (degrees of freedom 

are represented by square in Fig. 1). Also         in Eq. 

(6) is defined as Eq. (8) [15].  

 

 

Also   (  
 
   

 
) are the numerical values of this function 

in the    
  degree of freedom. In the above equations, 

(   ) are the polar coordinates located at the crack tip. 

In similar analogy to the application of   ̃     , 

 ̃         is added to the displacement field of the crack 

tip nodes (degrees of freedom are represented by 

triangle in Fig. 1). 

 

3   STABILITY ANALYSIS OF STRUCTURES 

The buckling problem of elastic structures is formulated 

by the following eigenvalue equation [16]. 

([ ]    [  ]){  }  { }                                                    

Where,  [ ] is the structure flexural stiffness matrix, 

[  ] is the structure stability matrix or geometrical 

stiffness matrix,    is the j
th

 eigenvalue of the system of 

Eq. (9) and {  } is related buckling mode shape in terms 

of the displacement of the computational nodes. As is 

well known, for a structure with   degrees of freedom 

there would be   solutions to the eigenvalue problem 

yielding   different   and their associated displacement 

patterns { }. However, in stability problems the lowest 

value of   is of concern which corresponds to the lowest 

load factor that would cause the system to be unstable. 

To solve the eigenvalue problem of Eq. (9), [ ] and 

[  ] should be measured for the mentioned element. By 

using standard finite element procedure these structural 

matrixes can be found as follows [15]. 
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[ ]   ∫∫∫[ ]  [ ]  [ ]                                         

 

Where [ ] and [ ] are defined as Eq. (11) and Eq. (12) 

[15]. In these equations,   is the elastic modulus,   is 

the shear modulus, and   is the shear correction factor. 

The element geometric stiffness matrix is also 

introduced by Eq. (13) [15]. In Eq. (13),    
 and      

 

are the axial and the shear pre-stresses in an elastic 

body. In addition the other parameters can be found as 

follows [15]. 

 

 

4 NUMERICAL RESULTS AND DISCUSSION 

Three examples are presented to illustrate the 

effectiveness and the efficiency of the proposed method. 

The general applicability of the method is evident from 

the variety of the offered examples.  

 
4.1 A Prismatic column with a single edge crack 

This example is taken from paper published by Yazdchi 

and Gowhari [8]. Here, it is treated by the proposed 

method and the two results are compared. A column 

with rectangular cross section with a following data is 

considered.          ,        ,   
                   . The effect of crack depth and 

crack location for 3 different boundary conditions of the 

column is investigated. To compare the computational 

efficiency of the presented method with available 

standard finite elements models, a sensitivity analysis is 

carried out to find appropriate mesh density for 

modeling the problem. A center cracked column with 

Fixed-Free boundary condition is considered for this 

analysis. Also the crack length is assumed to be 

         . The results can be found in table 1. 

It should be noted that the results are presented in non-

dimensional form by dividing the measured buckling 

load of cracked column by the Euler buckling load of 

the intact column. As it is evident from the table 1, the 

results are converged with much less number of DOFs 

in comparison with classical FEM results. It shows that 

the presented Extended Finite Element is a very 

powerful tool to model problems with a few 

computational efforts. Figures 2 to 10 show the results 

of proposed method and Ref. [8]. In these figures     is 

the buckling load of cracked column. To show the 

results in non-dimensional form, this load is divided to 

the buckling load of intact column    . Also    is the 
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position of edge crack which is divided to column 

length. In addition   is the crack length and   is the 

width of column. As expected the deeper cracks causes 

the larger decreasing in the buckling capacity. The crack 

location has different effects depending on the column 

boundary conditions. 

 
Table 1 Convergence of measured buckling load for cracked 

column 

 

 
 

Fig. 2 Variation of        versus, the dimensionless crack 

location for         and Pinned- Pinned column   

 

 
 

Fig. 3 Variation of        versus, the dimensionless crack 

location for         and Pinned-Pinned column   

It is well-known that, the strain energy stored in an 

elastic body under bending is directly related to the 

magnitude of the bending moment. Therefore, for a 

constant crack depth, a crack located in the section of 

maximum bending moment causes the largest decrease 

in the critical buckling load. In addition a crack located 

in the inflexion points (moment zero points) has no 

effect on the critical buckling load. Comparison shows 

good agreement between the results of two works, 

although the difference between the results is more 

significant for the cracks with larger dimensionless 

depth. The reason of this phenomenon will be discussed 

later. 
 

 

Fig. 4 Variation of        versus, the dimensionless crack 

location for         and Pinned- Pinned column   

 

 

 

Fig. 5 Variation of        versus, the dimensionless crack 

location for         and Fixed- Free column 

   

 

Fig. 6 Variation of        versus, the dimensionless crack 

location for         and Fixed- Free column  

  

 
 

Fig. 7 Variation of        versus, the dimensionless crack 

location for         and Fixed- Free column 
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Fig. 8 Variation of        versus, the dimensionless crack 

location for         and Fixed- Pinned column  

  

 
 

Fig. 9 Variation of        versus the dimensionless crack 

location for         and Fixed- Pinned column   

 

 
 

Fig. 10 Variation of        versus, the dimensionless crack 

location for         and Fixed- Pinned column   

4.2 A column with a single and double edge crack  

In this example, a rectangular column with a single and 

double edge crack having pinned-pinned and fixed-free 

boundary conditions with two different dimensionless 

crack depth (         and         ) is 

investigated. A column is considered with the following 

data.  

                   ,                      
    

 
 

Fig. 11 Variation of         versus, the crack location for a 

column having a single edge crack with          

 

Figs. 11 to 14 show the obtained results. The proposed 

results are compared with the results of Ref. [8]. The 

difference between two works is less than 1 percent for a 

column with the dimensionless crack depth of 0.15 for 

both single and double edge cracked column (Figs. 11 

and 12). When      is increased to 0.45, the results are 

more different for a single cracked column, tough the 

biggest difference is still less than 8 percent (Fig. 13). 

But for the last situation, the double edge cracked 

column with     equal to 0.45, two results are 

completely different (Fig. 14). According to the Ref. [8] 

the largest decrease in the buckling load is 40 percent 

for a fixed-free column and it is 22 percent for a pinned-

pinned one.  
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Fig. 12 Variation of         versus, the crack location for a 

column having a double edge crack with          

 

 
Fig. 13 Variation of         versus, the crack location for a 

column having a single edge crack with          

 
Fig. 14 Variation of         versus the crack location for a 

column having a double edge crack with          

 

But the proposed results show that, the column lost 

almost all of its buckling capacity. Two previous 

examples show that, the two methods end in same 

results for short cracks with a     less than 0.3. But 

they make different results for deeper cracks especially 

for double edge cracked columns. It seems one or both 

methods cannot model the effect of deep cracks on the 

stability of columns. For more accurate judgment, two 

approaches must be evaluated by experimental results. It 

is done in the next example. 
 

4.3. A fixed-pinned edge cracked column  

Vanderveldt and Liebowitz [2] published some useful 

experimental data for the buckling of single and double 

notched fixed-pinned column. The crack was located in 

the middle of the column. These data are used here to 

compare with the rotational spring models and proposed 

numerical results. Fig. 15 shows the results for single 

edge cracked column. Two different analytical works 

those are published by Gruel and Kisa [6] and Yazdchi 

and Gowhari [8] have good agreement with proposed 

and experimental data when     is less than 0.3. But for 

deeper cracks the results are totally different. However, 

proposed results are close to the experiment for a wide 

range of crack dimensionless depth. 
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Fig. 15 Variation of         versus, the dimensionless crack 

depth for a pinned-fixed column having a single edge crack 

 

 
Fig. 16 Variation of         versus, the dimensionless crack 

depth for a pinned-fixed column having a double edge crack 

 

Fig. 16 shows the experimental and proposed results for 

double edge cracked column. Again the largest 

difference between two works is less than 8 percent. 

Unfortunately there is no analytical solution available 

for this case for comparing with the experimental and 

proposed results. However the difference between 

analytical and proposed methods for     more than 0.3 

in previous examples, concludes that, the analytical 

methods based on modeling cracks as a rotational spring 

which has been widely  used in the literature, cannot 

model deep cracks with     larger  than 0.3. Maybe it is 

because of the fact that, a suitable flexibility function for 

calculating the true reduced stiffness of a column is not 

available for large cracks yet. 

5 CONCLUSIONS 

The buckling analysis of slender prismatic cracked 

columns with rectangular section, subjected to 

concentrated vertical loads has been presented in this 

work using Extended Finite Element Method. 

The most important conclusions can be noted as follows: 

1. The effect of a crack on the buckling capacity of a 

column depends on the crack depth and its location. 

2. In columns under concentrated axial compression, 

the existence of cracks decreases the buckling load. 

As expected, the load carrying capacity decreases as 

the crack depth increase. Moreover, the effect of 

crack location for different boundary conditions of 

the column is different. The largest decrease of the 

buckling load occurs when the crack is located at the 

position with maximum curvature of the buckling 

mode shape of the column. If a crack is located just 

in the inflexion points of the column, its effect on the 

buckling load is negligible. 

3. The proposed results are in a very good agreement 

with analytical results based on rotational spring 

models available in the literature for     less than 

0.3. 

4. The available analytical methods based on modeling 

a crack as a massless rotational spring, end in a 

wrong results for cracks with dimensionless depth 

more than 0.3. 

5. The proposed results are in a good agreement with 

the experimental data for a wide range of 

dimensionless crack depth.  

6. The presented Extended Finite Element Model in 

Ref. [15] is an efficient and powerful method for 

analyzing the stability of cracked slender members.  
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