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Abstract: This paper presents a novel formulation and numerical solutions for adhesively 
bonded composite joints with non-linear (softening) adhesive behaviour. The presented 
approach has the capability of choosing arbitrary loadings and boundary conditions. In this 
model adherends are orthotropic laminates that obey classical lamination theory. The 
stacking sequences can be either symmetric or asymmetric. Adhesive layer(s) is (are) 
homogenous and isotropic material. They are modeled as continuously distributed non-
linear (softening) tension/compression and shear springs. In this method by employing 
constitutive, kinematics and equilibrium equations, sets of differential equations for each 
inside and outside of overlap zones are derived. In the inside of overlap zone, the set of 
differential equations is non-linear, that is solved numerically. By solving these equations, 
shear and peel stresses in adhesive layer(s) as well as deflections, stress resultants and 
moment resultants in the adherends are determined. Most of adhesives have non-linear 
behavior, therefore unlike previous methods, in which the adhesive layers are modeled as 
linear materials, in the presented approach the non-linear behavior is assumed for the 
adhesive layer and can be used to analyze the most of adhesive joints. The numerical 
results reveal that in the inside of overlap zone, magnitudes of shear forces are considerably 
large due to high rate of variation in the bending moments. The developed results are 
successfully compared with those obtained by finite element analysis using ANSYS. The 
comparisons demonstrate the accuracy and effectiveness of the aforementioned methods.  
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1 INTRODUCTION 

Wide existing and potential applications of composite 

materials such as: light weight, high specific strength and 

stiffness, vibration damping, corrosion resistance, impact 

resistance and ease of fabrication, maintenance and repair 

leads to use them intensively over recent decades in various 

sectors of industries. Joining different parts of composite 

structures can be achieved by using, bolted or bonded joints. 

Despite the fact that bolted joints, often suffer from high 

stress concentration and tendency of tearing through the 

holes. Since adhesive joints offer significant advantages 

over traditional fastening joining methods such as: 

improving the stress distribution, capability of joining and 

sealing simultaneously, and providing bonding wide range 

of different thicknesses of adherends, they are the most 

suitable joints for composite structures. Performances of 

adhesive joints are influenced severely by types of joints. 

Some of popular types of adhesive joints are: single lap, 

double lap, double strap and single scarf [1].  

The first attempt for analyzing adhesive joints was carried 

out by Volkersen [2], He studied an adhesively bonded 

single-lap joint, in which the adhesive layer was modeled as 

continuous shear springs. In his model, the effects of 

bending moment caused due to eccentricity of loading axes 

were ignored. This model was modified by Goland et al. 

[3]. They described adhesive layer in terms of uniformly 

distributed transverse normal and shear springs. Most 

research on the analysis of adhesive joints has been 

performed by Hart-Smith [4] to [6] who presented some 

methods to investigate the structural responses of various 

types of adhesive bonded joints.  

In all researches mentioned above, adherends are 

homogeneous and isotropic materials. Mortensen et al. [7] 

analyzed the single lap adhesive joint with generally 

orthotropic laminates. In this model adhesive layer is 

continuously has distributed the linear tension/ compression 

and shear springs. This model solved numerically. Selahi et 

al. [8] to [12] investigated some common and uncommon 

adhesively bonded composite joints, and studied the 

influences of geometrical dimensions and the spew fillets at 

boundaries of the joint. All of these models assumed to have 

linear behavior. These models are solved analytically. 

Most of adhesives have non-linear behavior and the 

problem of adhesive joints with non-linear material 

behavior is a fundamental problem in joining analysis. 

Therefore the aforementioned review motivated us to 

present an efficient non-linear method for analyzing 

composite adhesive joint with non-linear behavior in their 

adhesive layer(s) subjected to in-plane loadings. 

2 THEORETICAL DEVELOPMENT 

Non-linear mathematical modeling of adhesive joints is 

obtained by adopting sets of restrictive assumptions for 

description the behavior of bonded joints. Based on these 

assumptions, constitutive and kinematics relations for each 

of adherends and constitutive relations for adhesive layer(s) 

are obtained. By combining these relations and equations, 

governing equations in the form of a system of differential 

equations, for each zone (inside and outside of overlap 

zone) are obtained. In the inside of overlap zone, the 

governing equations are non-linear. Assumptions for the 

adherends, adhesive layers, loading and boundary 

conditions are as follows: 

 Adherends: 

 Adherends are modelled as wide beams. 

 Adherends are orthotropic laminates that obey 

special case of classical lamination theory. 

 The laminates are assumed to obey linear elastic 

constitutive laws. 

 Strains are small and rotations are very small. 

 Adhesive layers: 

 Adhesive layer(s) is (are) assumed to behave as 

homogenous, isotropic and non-linear elastic 

material(s). Adhesive layer(s) are modelled as 

continuously distributed non-linear (softening) 

tension\compression and shear springs. 

 Loading and boundary condition: 

 Loading and boundary conditions are arbitrary. 

In Figs. 1 to 4, single lap, double lap, double strap and 

single scarf adhesive joints models that are subjected to 

different loadings at the ends are shown as follows: 

  xN : Extensional resultant force 

  :xQ  Shear resultant force 

  xM : Bending resultant force 

 
Fig. 1 Single lap adhesive joint 
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Fig. 2 Double lap adhesive joint 

 
Fig. 3 Double strap adhesive joint 

 
Fig. 4 Single Scarf adhesive joint 

The thicknesses of adherends in the single lap, double lap 

and double strap joints, are constant as follows: 
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In the single scarf joint, the thickness of adherends are 

variable and defined as Eq. (2): 

x
L

tt
txt

x
L

ett
txt

e
e

22
22

11
11

)(

)(







                     (2) 

In the modelling of adherends as wide beams, the transverse 

displacement is ignored. Also in the classical lamination 

theory, z   is assumed to be zero [13], so that displacement 

vectors are only functions of horizontal coordinate, (x). 
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Where: 
iu0  is a mid-plane axial displacement and 

iw  is a 

through thickness displacement in i-th layer (i=1, 2 or 3). So 

that classical lamination theory is simplified to [1]: 
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Also kinematic relations for adherends are as Eq. (5) [1]: 
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By considering Eqs. (4) and (5), Eqs. (6) and (7) are derived 

as follow [8]: 
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In this paper, adhesive layer(s) are modelled as 

continuously distributed non-linear (softening) 

tension\compression and shear springs. In this modelling, 

shear and peel stresses in the adhesive layer(s) is (are) 

determined by Eqs. (8) and (9). 
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Equilibrium equations in the adhesive joints are different in 

the outside and inside of overlap zones. General forms of 

equilibrium equations, in the outside of overlap zones are 

the same for all types of adhesive joints. In Fig. 5, an 

equilibrium element in the outside of overlap zone is shown. 

 

Fig. 5 Equilibrium element in the outside of overlap zones 

 

So that the equilibrium equations in the outside of overlap 

zone are as follows [9]: 

ConstNN i

x

i

xx  0,                     (10) 
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ConstQQ i

x

i

xx  0,                    (11) 

ConstxQMQM i

x

i

x

i

x

i

xx ,                (12) 

Equilibrium equations in the inside of overlap zone are 

different for each type of adhesive joints. In this modelling, 

each equilibrium element in the inside of overlap zone 

consists of an element of adherend with half thickness of 

adhesive layer(s). In Fig. 6, equilibrium elements in the 

inside of overlap zone for single lap adhesive joint are 

shown. 

 

Fig. 6 Equilibrium elements in the inside of overlap zone for 

single lap joint 

 

 

Fig. 7 Equilibrium elements in the inside of overlap zone for 

single scarf joint 

So that: for this joint, equilibrium equations in the inside of 

overlap zone are as Eq. (13) [7]. 
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In Fig. 7, equilibrium elements in the inside of overlap zone 

for single scarf adhesive joint are shownSo that: for this 

joint, equilibrium equations in the inside of overlap zone are 

as Eq. (14) [10]. 
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In Fig. 8, equilibrium elements in the inside of overlap zone 

for double lap and double strap adhesive joints are shown. 

 

   Fig. 8 Equilibrium elements in the inside of overlap zone for 

double lap and double strap joints 
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So that: for these joints, equilibrium equations in the inside 

of overlap zone are shown as Eq. (15) [8]. 
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By combining constitutive and kinematic relations in 

adherends and adhesive layer(s) with equilibrium equations 

in the inside and outside of overlap zones, sets of 

differential equations are derived. In the outside of overlap 

zone, the governing equations are six differential equations 

as follows [9]: 
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In modelling of adhesive layer(s) in the forms of non-linear 

(softening) springs, the governing equations in the inside of 

overlap zone are sets of nonlinear differential equations. 

Here for the sake of brevity, only single lap adhesive joint is 

investigated. Governing equation in the inside of single lap 

adhesive joint is a set of 12 non-linear coupled differential 

equations as Eq. (22): 
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3 NUMERICAL RESULTS AND DISCUSSIONS 

In this section an example of single lap adhesive joint with 

fixed boundary condition in one side and the free boundary 

condition in the other side is considered. In plane, normal 

stress resultant )101( 4

m

N
N x   is applied at the free end, as 

shown in Fig. 9. 

 

Fig. 9 Loading and boundary condition in the sample 

Dimensions of the specimen are coincided from ASTM 

D1002, standard test sample, which are shown in Fig. 10. 

The laminas of adherends are uni-directional 

fiberglass/epoxy. The adhesive layer is Epoxy DP 490. It 

behaves as a non-linear elastic material. Properties of this 

lamina are shown in table 1. The stacking sequences of both 

adherends are: 
Sym]90,45,45,0[   . 

 

Fig. 10 Dimensions of composite adhesive single lap joint in 

ASTM D1002 

Table 1 Properties of uni-directional fiberglass/epoxy lamina 

 Material Properties 

Plies 
Fiberglass/Epo

xy 

mmtMPaS

MpaYMPaX

GPaGGPaGG

GPaEEGPaE

2.0,72

,31,450

38.0,26.0

3,14.4

27.8,8.36

231312

231312

321
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At first step, two curves in the forms of 
3 ba   and 

3 dc   are fitted from peel stress-strain and shear 

stress-strain diagrams by linear regression. These curves are 

shown in Fig. 11. Poisons ratio for this adhesive is 0.4. At 

first the governing equations in the left outside of overlap 

zone are solved by using Eqs. (16) to (21) and by 

considering the boundary conditions in: mmx 5.63 .  

 

Fig. 11 Normal stress-strain and shear stress-strain curves for 

Epoxy Adhesive DP 490 

In the inside of overlap zone, the governing equations are 

non-linear Eq. set (22) and no analytic solution is existed. 

For solving these equations, a numerical method based on 

Runge Kutta 4
th

 order is employed. The initial conditions 

are:  

0

222222

0

111111

0 ],,,,,,,,,,,[ xMQNwuMQNwu   

Three of these parameters are unknown and the others are 

known. The unknowns can be determined by try and error 

with Newton numerical method. For selecting good first 

guesses, these numbers are selected from the answers of 

linear solution of the governing equations (assume  a  

and  c ). Then these first guesses are corrected by 

Newton Eq. (23). This try and error process is repeated until 

appropriate approximations are obtained. In Eq. (23), "i" 

subscript is used for these parameters at  0x  and "f" is 

used for the parameters at mx 0127.0 . 





















































































































































2

2

2

2

2

2

0

2

2

2

2

2

0

2

2

2

2

2

2

0

2

2

2

2

2

2

0

2

2

2

2

i

i

i

f

f

f

M

Q

N

w

u

w

MM

u

M

w

QQ

u

Q

w

NN

u

N

M

Q

N








                 (23) 

By solving governing equations in the inside of overlap 

zone ,,,,,,,,, 222

0

111111

0 wuMNQwu   22 ,QN  and 2M  in 

each point of inside overlap zone are determined. Then by 

using Eqs. (8) and (9), peel and shear stresses in each point 

of this zone are determined. Finally, the governing 

equations in the right outside of overlap zone are solved by 

using Eqs. (16)-(21) and by considering boundary 

conditions at: mmx 2.76 . 
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Due to the lack of similar solution concerning the problem 

under consideration in the available literature, the present 

formulation and method of solution are validated by similar 

modeling obtained by finite element (FE) analysis using 

ANSYS. The sample is modelled by using 4640, 2D solid 

elements. Each element consists of 8 nodes. 

In Fig. 12, the multi-linear stress-strain curve of the sample 

that is employed in the finite element modelling is shown. 

Each lamina of adherends is modelled by an orthotropic 

element through the thickness, and each adhesive layer is 

divided into two isotropic elements through the thickness. 

To get more accuracy, in the inside of overlap zone, meshes 

are finer than outside of overlap zones. In Fig. 13, the FE 

mesh model of this sample is shown. 

 

Fig. 12 Multi-linear stress- strain curve 

 

Fig. 13 Multi-linear stress- strain curve 

In the Figs. 14 to 17 diagrams of deflections, stress 

resultants and moment resultants of upper and lower 

adherends ),,,,,,,,,,,( 222222

0

111111

0 MQNwuMNQwu   in 

each point of inside and outside of overlap zones are 

illustrated.  

Fig. 14 Distributions of the 11
0 ,u  and  1w  along the length of 

the overlap zone 
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Fig. 15 Distributions of the 
11,QN  and 

1M  along the length of 

the overlap zone 

 

Fig. 16 Distributions of the 22
0 ,u  and 2w  along the length of 

the overlap zone 
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Fig. 17 Distributions of the 
22 ,QN  and 

2M  along the length 

of the overlap zone 

In these figures it has been shown that: magnitudes of 
211 ,, ww   and 2  are considerably large. This is due to 

eccentricity in the geometry of single lap adhesive joint, that 

generate significant bending moment in the adherends. The 

magnitudes of 1N  and 2N  in the outside of overlap zones 

are remain constant. In the inside of overlap zone, by 

increasing the magnitude of x, magnitude of 1N  is 

decreased and magnitude of 2N  is increased. It is because 

of force transmission from upper adherend to lower 

adherend. 

It is seen that in the inside of overlap zone, it experience 

great magnitude of bending moment 1M  while the 

magnitude of bending moment 2M is negligible. This is due 

to, creation of significant external bending moment in the 

left side boundary of upper adherend. In the inside of 

overlap zone, magnitudes of 1Q  and 2Q  are considerably 

large. This is due to high rate of variation in the magnitudes 

of their bending moments. Also due to the lack of shear 

forces in the adhesive joint, the diagrams of 1Q  and 2Q  are 

become symmetric. Figs. 18 and 19, depict the variation of 

peel and shear stresses along the length of overlap zone in 

the adhesive layer, for both non-linear mathematical 

approach and FE modeling.  

By comparing between peel and shear stresses obtained 

from mathematical modelling and FE modelling, it is seen 

that the mathematical solutions shows a very good 

agreement with the results achieved from FE modeling that 

demonstrated the validity of the presented non-linear 

mathematical modelling. The loading path eccentricity in 

the single lap adhesive joints generates significant bending 

moment in the adherends that introduced high peel stress in 

the adhesive layer. Generally in the single lap adhesive joint 

and other asymmetric adhesive joints considerably high peel 

stresses are produced, that may cause failure in these 

adhesive joint types. The maximum peel and shear stresses 

in the adhesive layer are located at near the edges of overlap 

zone (x=0). This is due to high local bending moment in the 

upper adherend in this position. 

 

 

Fig. 18 Shear stress distribution in adhesive layer 
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Fig. 19 Peel stress distribution in adhesive layer 

4 CONCLUSION 

Due to importance of the non-linear modelling of adhesive 

joints, an efficient numerical method is presented. In this 

paper adhesives are modelled as continuously distributed 

non-linear (softening) tension/compression and shear 

springs. Adherends have arbitrary stacking sequences and 

obeyed the classical lamination theory. It is found that the 

presented non-linear modeling yields accurate results when 

they were compared with the solutions of ANSYS software. 

The numerical results of the present method reveal the 

following conclusions: 

a. In the single lap adhesive joints, magnitudes of slopes 

and deflections are considerably large. This is due to 

eccentricity in the geometry of this type of adhesive 

joint, which generates significant bending moment in 

the adherends. 

b. In the inside of overlap zone, due to high rate of 

variation in the bending moments, magnitudes of shear 

forces are considerably large.  

c. The loading path eccentricity in the single lap adhesive 

joints generates significant bending moment in the 

adherends that introduced high peel stress in the 

adhesive layer.  

Most of adhesives have non-linear behaviour in their stress-

strain curves. Therefore due to the high accuracy of the 

presented method, the developed results can be used as a 

benchmark for future researches of common types of 

adhesive joints that have non-linear behaviour in their 

adhesive layer(s). 
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