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Abstract: The main aim of the vibration energy harvesters is to locally power 
autonomous devices such as wireless sensors. Generally, power levels are low and 
the environmental benefit of the technology is to replace batteries rather than 
saving energy per se. Piezoelectric vibrational energy harvesters are usually inertial 
mass based devices, where a cantilever beam with a piezoelectric outer layer is 
excited into resonance by a mechanical vibration source at the root of the 
cantilever beam. However, the geometry of a piezoelectric cantilever beam will 
greatly affect its vibration energy harvesting ability. This paper deduces a 
remarkably precise analytical formula for calculating the fundamental resonant 
frequency of unimorph V-shaped cantilevers using Rayleigh-Ritz method. This 
analytical formula, which is convenient for mechanical energy harvester design 
based on piezoelectric effect, is then validated by ABAQUS simulation. This 
formula raises a new perspective that, among all the unimorph V-shaped cantilever 
beams and in comparison with rectangular one, the simplest tapered cantilever can 
lead to highest resonant frequency and maximum sensitivity. 
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1 INTRODUCTION 

Energy harvesting is used to describe the scavenging of 

ambient energy in the environment that would 

otherwise be wasted. To feed the world’s needs for 

energy, macro scale energy harvesting technologies 

have successfully established. On the other hand, the 

lack of cables induces a constraint on power supply for 

each low powered wireless electronic sensors. Batteries 

wear out with time, thus regular replacement is an 

integral and inevitable part of maintenance. As the 

dense network is employed in structures, replacing 

batteries becomes a major time-consuming task that is 

uneconomical and unmanageable, ironically 

contradictory to the original objective of structural 

health monitoring. 

Scavenging energy from ambient vibrations, wind, heat 

or light could enable smart sensors to be functional 

indefinitely. Three mechanisms are available for 

vibration energy harvesting; using electrostatic devices, 

electromagnetic field and utilizing piezoelectric based 

materials. The flexibility associated with piezoelectric 

materials makes them very attractive for power 

scavenging. The performance of piezoelectric vibration 

energy harvesters is more often than other methods. 
Piezoelectric materials possess a large amount of 

mechanical energy that can be converted into electrical 

energy, and they can withstand large strain magnitude. 

Vibration from engines can stimulate piezoelectric 

materials, as can the heel of a shoe, or the pushing of a 

button. 

Compared to other structural forms of beams, a 

cantilever beam can obtain the maximum deformation 

and strain under the same conditions. The larger 

deflection leads to more stress, strain, and consequently 

a higher output voltage and power. Therefore the vast 

majority of piezoelectric vibration energy harvesting 

devices use a cantilever beam structure. [1-4]. A 

cantilever-type energy harvester has been intensively 

studied. The cantilever geometrical structure plays an 

important role in improving the harvester’s efficiency 

and a triangular tapered cantilever has been found to be 

the optimum design [5], [6], because it ensures a large 

constant strain in the piezoelectric layer resulting in 

higher power output compared with the rectangular 

beam with the width and length equal to the base and 

height of the corresponding triangular tapered 

cantilever beam. Most of the previous research works 

focused on designing a linear vibration resonator, which 

has maximum output power when reaching resonance 

frequency. Therefore the practical applications of these 

devices are limited due to narrow bandwidth as well as 

small power density. If the excitation frequency slightly 

shifts, the performance of the harvester will 

dramatically decrease. Since in the majority of practical 

cases, the vibration in the environment is frequency-

varying or totally random with the energy distributed in 

a wide spectrum, how to broaden the bandwidth of 

harvesters becomes one of the most challenging issues 

before their practical deployment. When a harvester 

operates in an environment with multi-frequency 

spectra, it is desirable to design the harvester with a 

tailorable operating frequency band [7]. In practice, the 

energy harvester is a multi-degree-of-freedom system or 

a distributed parameter system. Certain vibration mode 

can be excited when the driving frequency approaches 

one natural frequency of the harvester. To date, one of 

the most important strategies to widen the bandwidth 

includes using a generator array consisting of small 

generators with different resonant frequencies. Multiple 

cantilever energy harvesters with different resonant 

frequencies can be connected in series or parallel to 

widen the operating frequency bandwidth of a 

harvesting structure. If multiple vibration modes of the 

harvester structure are utilized, useful power can be 

harvested over multiple frequency spectra, that is, wider 

bandwidth can be covered for efficient energy 

harvesting. Rather than discrete bandwidth due to the 

multiple modes of a single beam, multiple cantilevers or 

cantilever array integrated in one energy harvesting 

device can provide continuous wide bandwidth, if the 

geometric parameters of the harvester are appropriately 

selected. Power spectrum of a generator array is a 

combination of the power spectra of each small 

generator [7-9]. Accordingly, by division of a triangular 

unimorph piezoelectric beam into some V-shaped 

unimorph beams with different dimensions and mass 

and hence different resonant frequencies, can be found 

in an array of beams that can cover a wider range of 

frequencies (Fig. 1) [10]. Also in a new design, pizza 

model can be used to make the array of energy 

harvesters. The main advantage of this scheme is 

optimum use of space and to create higher power 

density (Fig. 2).  

 

 

Fig. 1   Division of a triangular beam into some V-shaped 

beams [10] 

 

A systematic procedure for designing mechanical band-

pass filters to meet a desired frequency bandwidth is 

given in [11]. Such a research about rectangular shapes 

shows that by using some cantilevers in series 

https://en.wikipedia.org/wiki/Internal_combustion_engine
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connection, not only the output power increases with 

the use of more cantilevers, but also the frequency band 

is widened [12]. 
 

 
Fig. 2   The Pizza model of semi-triangular cantilever energy 

harvesters 

 

The geometry of a piezoelectric cantilever beam will 

greatly affect its vibration energy harvesting ability. 

The sensitivity of resonant cantilever piezoelectric 

energy harvesters is directly proportional to the 

resonant frequency. So far, the calculation of resonant 

frequency of unimorph V-shaped cantilevers has not 

been reported in the literature and the calculations are 

only for a simple V-shaped cantilever beam [13]. In 

order to calculate the resonant frequency of V-shaped 

cantilevers, this paper deduces a highly precise 

analytical formula using Rayleigh-Ritz method, and 

then introduces the optimization method for enhancing 

the resonant frequency with this formula. This useful 

analytical formula is confirmed by simulation results in 

ABAQUS 14.1 software, and presents a strong potential 

to be used in the design and optimization of triangular 

V-shaped cantilever unimorph piezoelectric energy 

harvesters. It is noteworthy that a cantilever beam can 

have many different modes of vibration with a different 

resonant frequency. The first mode of vibration has the 

lowest resonant frequency, and typically provides the 

most deflection and therefore electrical energy. 

Accordingly, energy harvesters are generally designed 

to operate in the first resonant mode. This research 

proposes a new design for a cantilever-type unimorph 

piezoelectric energy harvester called V-shaped 

cantilever and the main focus of this paper is to study 

the resonant frequency of the new design in 

piezoelectric mechanical energy harvester.  

2 THEORETICAL ANALYSIS 

2.1. Deflection Function of Rectangular Unimorph 

Cantilevers 

Fig. 3 shows the structure of unimorph piezoelectric 

rectangular cantilever with length L, width W, density 

ρ1 and ρ2, thickness H1 and H2, and Young's modulus E1 

and E2 for substrate and piezoelectric layers, 

respectively. Also the total cross-sectional area moment 

of inertia is zI . 

 

 
Fig. 3   The schematic drawing of a cantilever beam 

 

For beam cross-sections that are not symmetric about 

the z-axis with regard to either geometry or the 

variation of elasticity modulus (E), a convenient 

method for treating bending problems is provided by 

the concept of the transformed section. If we choose a 

certain value of E as a reference value and call it Eref, 

then we can define a transformed section and 

transformed width nW, where 
1 2/n E E . In the case 

we assume that Eref=E2. The line of action of an axial 

force produces purely axial deformation, therefore 

passes through the centroid of the transformed section. 

In the case of bending with no axial force, the neutral 

axis also passes through this point. In this case we 

assume that the location of the effective centroid is 

determined by h (Fig. 4 and Fig. 5) [14]. 

 

 
Fig. 4   The cross section of unimorph cantilever beam 

 

 
Fig. 5   The transformed section of unomorph cantilever bram 

 
h determines the neutral axis location and can be 

expressed as; 
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Also the total cross-sectional area moment of inertia 

relation is; 

 
3
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                                           (2) 

 

When applying a normal force F at the free end of the 

cantilever, the differential equation of the cantilever can 

be expressed as [15]; 

 
2

2

2

( ) ( ) ( )d z x F L x F L x

EIdx E I
                                       (3) 

 

Where x is the distance from the fixed end. 

As one end of the cantilever is fixed, the corresponding 

boundary conditions are; 

 

(0) 0z                                                                        (4) 

 

and 

 

0

( )
0

x

dz x

dx

                                                            (5) 

 

The solution of (3)- (5) can be expressed as; 

 
2

2

2

2 (3 )
( ) (3 )

6

Fx L x
z x Ax L x

E I

                                (6) 

 

This is the deflection function along the length direction 

where A is a constant. 

 

2.2. Resonant Frequency of Cantilevers with 

Arbitrary Shapes 

When considering the resonant behavior of a unimorph 

cantilever beam with an arbitrary shape whose width 

function is W(x), the deflection function of (6) can be 

used as the mode shape, and the vibration displacement 

at each position can be written as [10]; 

 
2( , ) (3 )sin( )z x t Ax L x t                                (7) 

 
Where A and α are constants, t is the time, and ω=2πf is 

the angular frequency. 

The kinetic energy of the system is [16]; 
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So the maximum kinetic energy of the system is; 
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The potential energy of the system is [16]; 
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Accordingly; 
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Therefore, the maximum potential energy of the system 

is; 
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According to conservation law of mechanical energy; 

 

max maxT V                                                                  (14) 

 

Hence, the resonant frequency can be obtained as; 
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In particular, for the case of a rectangular cantilever 

with length L1 and width W1, the resonant frequency can 

be deduced from (15); 
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2.3. Resonant Frequency of unimorph triangular V-

shaped Cantilevers 

Fig. 6(a) shows that a typical unimorph triangular V-

shaped cantilever can be treated as the difference 

between two unimorph triangular cantilevers, with 

lengths L0 and L1, and with widths W0 and W1 

respectively. It can be easily confirmed by (15), that 

due to the mirror symmetry of unimorph triangular V-

shaped cantilever, we need only analyze half of it, 

which is a quadrilateral cantilever as shown in Fig. 6(b). 

 

 

Fig. 6   Shape and dimension of (a) unimorph V-shaped 

cantilever (b) half of the unimorph V-shaped cantilever (c) 

triangular tapered cantilever [10] 

 

Obviously, the width function of the quadrilateral 

cantilever is a piecewise-continuous function of x, that 

is; 
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                      (17) 

 
For calculation convenience, it is reasonable to define 

the width ratio u and the length ratio v of the two 

unimorph tapered cantilevers; 

 

0 0

1 1

,
W L

u v
W L

                                                            (18) 

 
Substituting (17) and (18) into (15), the resonant 

frequency formula of the quadrilateral cantilever (just 

the resonant frequency of unimorph triangular V-

shaped cantilever) is obtained. 
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In order to represent the relationship between the 

resonant frequency and the two ratios u and v, we can 

define a characteristic function; 
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Thus, the resonant frequency of V-shaped cantilever is; 

 

2

1

3 3 3 3

1 1 1 2 1 2 2 1

1 1 2 2

70
( ( )) ( , )

( ) ( ) ( )

f W x g u v
L

E H h E h E H H h E H h

H H

                    (21) 

 

As shown in Fig. 7, g(u,v) reaches the maximum value 

3
0.2474

7
, when v=0 or v=1 or u=0. That means 

unimorph V-shaped cantilever achieves maximum 

resonant frequency only when L0=0 or L0=L1 or W0=0. 

Apparently, when L0=0 or W0=0, the V-shaped 

cantilever turns into a tapered cantilever as shown in 

Fig. 6(c). When L0=L1, the unimorph V-shaped 

cantilever turns into two side by side unimorph 

triangular tapered cantilevers, however, this peculiar 

shape is difficult to carry out in practice. 

Anyway, triangular tapered cantilever, a special kind of 

V-shaped cantilever and easy for micro-fabrication, can 

reach the maximum resonant frequency and thus the 

highest sensitivity. 

 

 
Fig. 7   The function image of g(u,v) 

3 VERIFICATION BY SIMULATION RESULTS 

In order to assess the accuracy of (21), relative error δ 

is introduced to compare the calculation results using 

this formula with the corresponding simulation results. 

 
f f

f
                                                                 (22) 

 
Where f refers to the calculation results with (21), and 

f’ refers to simulation results with ABAQUS modal 

analysis. 

Consider a unimorph rectangular cantilever beam, 

assuming ρ1=8740 kg/m
3
, ρ2=7800 kg/m

3
, E1=9.7×10

10 

Pa, E2=6.6×10
10

Pa, H1=1mm, H2=1mm, W1=80mm and 

L1=100mm. The frequency calculation according to 

(16) is 6.34 Hz and the corresponding simulation result 

with ABAQUS is 6.30 Hz. Hence the relative error is 

only 0.66% and an excellent agreement is obtained 

between the calculation results and the simulation 

results, yielding little relative error. The simulated 

shape is shown in Fig. 8. 

 

 

Fig. 8   Deformed shaped for the first vibration mode of 

unimorph piezoelectric cantilever 

 
Also consider a series of V-shaped cantilevers with 

different shapes, assuming, ρ1=8740 kg/m
3
, ρ2=7800 

kg/m
3
, E1=9.7×10

10
 Pa, E2=6.6×10

10
 Pa, H1=0.6 mm, 

H2=0.4 mm, W1=80 mm , W0=40mm, L1=100mm and 

changing L0, the calculation according to (21) and the 

corresponding simulation results with ABAQUS are 

listed in Table 1. 
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Table 1 The comparison between the calculation results and 

the simulation results of the resonant frequencies of unimorph 

triangular V-shaped cantilevers 

L0(mm) f (Hz) f’ (Hz) δ 

0 101.68 93.49 8.05 

10 96.81 89.8 7.24 

20 92.39 85.83 7.10 

30 88.46 83.12 6.04 

40 85.14 79.85 6.21 

50 82.58 78.86 4.50 

60 81.04 77.714 4.10 

70 80.9 76.09 5.95 

80 82.85 78.19 5.62 

90 88.38 83.28 5.77 

100 101.68 94.03 7.52 

 

It can be seen from Table 1 that, a very good agreement 

is obtained between the calculation results and the 

simulation results, yielding little relative error (less than 

8.1%). When L0=70mm, the simulated shape is shown 

in Fig. 9. 

 

 

Fig. 9   Deformed shaped for the first vibration mode of 

unimorph piezoelectric cantilever 

4 APPLICATION 

The resonant frequency formula presented in this paper 

is useful for many applications. First, this simple 

formula can be effectively used to determine the 

resonant frequency of unimorph triangular V-shaped 

cantilevers of any dimensions and material properties. 

Another significant application is the optimization of 

unimorph V-shaped cantilever vibration energy 

harvesters. The sensitivity of resonant cantilever 

vibration energy harvesters is directly proportional to 

the resonant frequency, and the resonant frequency is a 

key parameter to design a mechanical energy harvester. 

As mentioned above, with given length L1, given width 

W1, given thickness H1 and H2 and given material 

properties E1, E2, ρ1 and ρ2, triangular tapered 

cantilever-a special kind of V-shaped cantilevers can 

reach the maximum resonant frequency and highest 

sensitivity. 

For a triangular tapered cantilever, substituting v =0 

into (21), the maximum resonant frequency is obtained. 
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             (23) 

 

Apparently, the resonant frequency of a unimorph 

tapered cantilever is unrelated to its width W1. It is 

necessary to point out that, for a tapered cantilever, 

when increasing W1 and keeping other parameters 

fixed, its resonant frequency will remain constant. It is 

worth comparing (16) and (23), and we can get the 

resonant frequency ratio of unimorph tapered cantilever 

and unimorph rectangular cantilever. 
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Hence, the unimorph tapered cantilevers can lead to 

much higher resonant frequency and higher sensitivity 

than that of unimorph rectangular cantilevers. 

5 CONCLUSION 

Energy harvesters provide a very small amount of 

power for low-energy electronics. Vibration energy 

harvesters are generally designed to operate in the first 

resonant mode. The piezoelectric effect converts 

mechanical vibration strain into electric current or 

voltage. This paper deduces a highly precise explicit 

formula to calculate the fundamental resonant 

frequency of unimorph V-shaped piezoelectric 

cantilever beams based on Rayleigh-Ritz method. With 

this analytical formula, the calculation results are in 

perfect agreement with the simulation results, yielding 

little relative error (less than 8.1%). This error for a 

https://en.wikipedia.org/wiki/Piezoelectric_effect
https://en.wikipedia.org/wiki/Strain_(materials_science)
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unimorph rectangular cantilever reduces to only 0.66%. 

Triangular tapered cantilever, a special kind of V-

shaped cantilever and easy for micro-fabrication, can 

reach the maximum resonant frequency and thus the 

highest sensitivity. In the first mode of vibration, the 

exact shape of the cantilever is not identical to the static 

deflection profile. Accordingly the velocity distribution 

is not exactly proportional to the static deflection 

profile. This is why the natural frequency estimates are 

slightly different from the simulation values. Because of 

simplicity of the derived formula, it is an easily learned 

and easily applied procedure for approximately 

calculating or recalling some value, or for making some 

determination. Finally, an application for calculating 

frequency of unimorph V-shaped cantilever energy 

harvesters, is presented with this formula in order to 

achieve a Multi-Modal energy harvester. This formula 

can be commonly used in the design and optimization 

of vibration energy harvesters. Experimental analysis 

can validate the results and expand the research for 

output voltage and power density. 
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