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Abstract: Metal sheets play an important role in the mechanical design, particularly in the aerospace 

structures. Various parameters affect the quality of this operation. In this paper, optimization of the 

parameters contributing to the riveting quality in order to minimize the value of the maximum 

tangential stress in metal sheets is addressed. hence, the tolerance of the hole diameter in top and 

bottom sheets, the friction coefficient, and the tolerance of the rivet diameter and the rivet length 

were considered as the parameters influencing the riveting quality. A total of 64 models were 

obtained by permutations of the parameters, two at a time. The outputs were determined using finite 

element method. The objective function for optimization is the maximum tangential stress for which 

there is no analytical relation. Thus, three methods including the multivariable linear regression 

(MLR), the artificial neural network model of the radial basis function (RBF) type, and the hybrid 

model of the   artificial neural network and the genetic algorithm (ANN-GA) were employed to 

model this function. Further, the performance of the three models was compared and the most 

suitable one was selected to model the objective function. The regression model was used to model 

the values of the height and the diameter after riveting. The imperialist competitive algorithm is 

utilized to solve this optimization problem. The obtained value for the maximum tangential stress 

using the imperialist competitive algorithm is 16368 pounds per square inches. After modification, 

this value increased to 23440 pounds per square inches using the finite element method. After 

riveting, the height and diameter of the rivet were respectively measured to be 0.07689 inches and 

0.18524 inches. 

Keywords: ANN, FEM, GA, Imperialist competitive algorithm, Riveting 

Reference: Fadaei, A., Gorbanpour, A., Salarpour, A., ‘Optimizing Parameters Contributing to 

Riveting Quality Using Imperialist Competitive Algorithm and Predicting Objective Function via 

Three Models MLR, RBF, and ANN-GA’, Int J of Advanced Design and Manufacturing 

Technology, Vol. 9/No. 1, 2016, pp. 1–12. 

Biographical notes: A. Fadaei is Assistant Prof. at Mech. Eng. Dep., Bu_Ali Sina Univ., Hamedan, 

Iran. He received his MSc from Tehran Univ. in 1990, and his PhD in Applied Mech. Design from 

Bu_Ali Sina Univ. in 2008. A. Gorbanpour received his MSc in Mech. Eng. from Bu_ali Sina 

Univ. in 2013. His research interests include stress analysis, optimization methods and applied 

design. A. Salarpour is currently a PhD student at the Dep. of Computer Eng. in Bu_Ali Sina Univ. 

in the field artificial intelligence and robotics. 

 



             2                                                      Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 1/ March – 2016   
  

© 2016 IAU, Majlesi Branch 

 

1 INTRODUCTION 

Metal sheets play an important role in the mechanical 
design, particularly in the aerospace structures. The rivet 
connections are frequently used to connect these sheets. The 
riveting quality greatly influences the rupture of the rivet 
and the sheet. A number of factors affect the fatigue of rivet 
connections. The stress caused during the riveting is one of 
the factors which markedly influence the fatigue of the rivet 
connections. Moreover, it is a controllable factor and hence, 
it is of great interest [1]. 
In order to measure the tangential and radial stresses in 
sheets during riveting, the laboratory techniques were 
employed such as X-ray refraction method [2], the resistive 
strain gauge technique [3], the ultrasonic technique [4] and 
the photoelastic method [5]. Since these empirical methods 
have incurred high costs and had time-consuming, the 
numerical methods were also used by researchers. The finite 
element method is a powerful numerical method for 
simulating the complex deformations of materials. This 
method has been used for the simulation of the rivet 
connections since 1990 [3, 5, 6, 7, and 8]. The various 
parameters affect the value of these stresses and 
consequently the quality of rivet connections. The 
individual effect of some of these parameters on the values 
of the stresses caused during riveting was reported [9]. The 
genetic algorithm is a technique for solving the optimization 
problems which is inspired by the nature and its process is 
carried out based on the biological evolution. The genetic 
algorithm repeatedly changes a population in the single 
solutions of the problem. These changes are called 
evolution. In each step of the evolution, two members of the 
population were randomly chosen and their children were 
considered as the next generation. Thus, the population 
evolves toward an optimal solution. The researchers were 
used the genetic algorithm method in the recent years in 
order to optimize the weights of the artificial neural 
networks [10- 12]. Numerous efforts have been made so far 
to solve the general optimization problems. The main 
challenge of the general optimization problem is the fact 
that the problems which were optimized may have many 
local optimums. The great numbers of evolutionary 
algorithms were presented so far to solve the general 
optimization problem [13, 14]. In the evolutionary 
algorithms which were presented thus far, the efforts were 
made to find the optimal response for the optimization 
problem via modelling the natural evolution process. This is 
done through the evolution of a population of the potential 
solutions, similar to the biological population evolution 
process which can adapt to the environmental changes. The 
various evolutionary algorithms have been presented for the 
optimization such as the genetic algorithm [15, 16], the 
particle swarm optimization algorithm [17-19], and the 
metal cooling simulation [20- 23]. A new algorithm called 
the imperialist competitive algorithm [24, 25] has recently 
been investigated which is not inspired by the natural 
phenomenon; rather, by the social phenomenon involving 
humans. The dimensional specifications for the rivet and the 

sheet as well as the tolerances were selected from the 
riveting references and the standards in the present research 
[26, 27]. The axisymmetric finite element method was 
employed to simulate the riveting in this article. Through 
different permutations of the input parameters, the 64 
models were built for the simulations. The output of the 
models was determined to be the maximum tangential stress 
in the sheets. By using regression models as the 
conventional statistical technique, the various linear and 
non-linear mathematical relations [28] were tested on the 
data and the errors were examined. In this research, the 
linear regression model as well as the non-linear regression 
model was used to obtain the diameter and the height of the 
rivet, respectively. The RBF network and the hybrid model 
of artificial neural network and the genetic algorithm were 
employed to predict the maximum tangential stress via 
MATLAB software [29]. An optimization problem was 
introduced in which the objective function was in form of 
the hybrid model of the artificial neural network and genetic 
algorithm. The upper and lower limits of each variable as 
well as those of the diameter and the height values of the 
riveted part were considered as the constraints. The 
imperialist competitive algorithm was employed to solve 
this optimization problem which had 8 constraints. 
 

2 DESCRIPTION OF PROBLEM 

The semi-tubular 100º angled and 2017-T4 aluminium alloy 

rivet with the nominal diameter of 0.125 inches and the 

2024-T3 aluminium alloy sheets with the thickness 0.064 

inches were selected for modelling which are frequently 

used in the aviation industries [26, 27]. The geometrical 

sizes of the rivet may be observed in Table 1. 

 
Table 1 Geometric parameters used in the rivet modelling [26, 27] 

Parameters Value, inches 

Nominal rivet diameter 0.1250 

Head rivet diameter 0.2285 

Head rivet height 0.0420 

Rivet length 0.2500 - 0.3200 

Sheet thickness 0.0640 

Hole diameter in sheet 0.1285 

 

In this paper, the up and the low tolerance of the hole 

diameter in the sheets, the friction coefficient, and the 

tolerance of the rivet diameter and the rivet length were 

considered as the parameters influencing the riveting 

quality. The nomenclature of these parameters and their 

limits are shown in Table 2. A total of 64 models were 

investigated by the permutations of different models two at 

a time. The outputs of the finite element model were 

considered to be the rivet diameter after riveting (D), the 

rivet height after riveting (H), and the maximum tangential 

stress, Smax, in both sheets which caused the cracks in the 

sheets [9]. 
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Table 2 Nomenclature of the parameters and their limits 

 [26,27] 

Factor Name unit High Limit Low Limit 

X(1) 
Tolerance of hole 

diameter in the top sheet  
in 0 +0.008 

X(2) 
Tolerance of the rivet 

diameter 
in -0.003 +0.003 

X(3) Rivet length in 0.025 0.320 

X(4) Riveting force lbs 1500 3000 

X(5) 

Tolerance of hole 

diameter in the bottom 
sheet 

in 0 +0.008 

X(6) Friction coefficient - 0.2 1.1 

3 OBTAINING DATA VIA THE FINITE ELEMENT 

METHOD 

The finite element simulation was performed by the 

standard ABAQUS software. The boundary conditions for 

the rivet are demonstrated in Figure 1. Both the sheet and 

the rivet were defined as deformable bodies in the finite 

element model. The contact constraint between two 

contacting surfaces was considered. The element type for 

meshing the semi-tubular angled rivet was selected CAX4R. 

The mesh was consisted on the 3965 elements for the rivet, 

the 3675 elements for the upper sheet and the 3614 elements 

for the lower sheet after optimizing number of the elements 

in the meshes. The verification of the model was carried out 

according to [1]. Each one of the 64 models was examined 

separately and the aforementioned output was extracted 

using the finite element method. 

 

Fig. 1   Boundary conditions 

 

 

Fig. 2 The deformations for  X(1)=X(5)=0,  X(2)=0.003,  

X(3)=0.25,  X(4)=1500 and X(6)=0.2 

 

Fig. 3 The deformations for X(1)= 0.008, X(2)=0.003,  

X(3)=0.25,  X(4)=1500,  X(5)=0 and X(6)=0.2 

 

Fig. 4 The deformations for X(1)= 0.008, X(2)=0.003,  

X(3)=0.25,  X(4)=1500,  X(5)=0.008 and X(6)=0.2 
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The material model for the strain hardening was defined as 

Hollman- Ludwik relation,  nK   which σ is the actual 

stress, ε is the actual strain, K is the strength coefficient, 

80000 psi for the rivet and 105880 psi for the sheets, and n 

is the power of the strain hardening, 0.1500 for the rivet and 

0.1571 for the sheets. The Young’s modulus, the Poisson 

ratio and the yield stress were selected as 10400 ksi, 0.33 

and 24000 psi for the rivet and 10500 ksi, 0.33 and 45000 

psi for the sheets, respectively [26, 27]. Figures 2, 3, and 4 

show the deformations of three different models from the 64 

presented ones. 

4 PREDICTING THE MAXIMUM TANGENTIAL STRESS 

IN THE SHEETS AS THE OBJECTIVE FUNCTION 

4.1  USING THE MLR MODEL 

Using the regression models is the conventional statistical 

technique, in this manner, the various linear and the non-

linear mathematical relations are tested on the data and the 

errors are examined. Both the multivariable linear 

regression (MLR) and the multivariable non-linear 

regression (MNR) were employed to obtain the smax value. 

The MLR model was selected which demonstrated the 

better performance. In addition, the data fit was used to 

obtain these relations. The coefficient of determination, R
2
, 

and the root mean square error, RMSE, were used to assess 

the regression models which were shown in Eqs. (1) and (2) 

[10]. In these Eqs., di(measured) is the measured data, di(predicted) 

is the predicted data, di(mean) is the average value of two data, 

and n is the number of data:  

2

( ) ( )
2 1

2

( ) ( )

1

( )

1

( )

n

i measured i predicted

i

n

i measured i mean

i

d d

R

d d







 






            (1) 

 

2

( ) ( )

1

( )
n
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i

d d

RMSE
n








              (2) 

 

The coefficient of determination value, R
2
, and the root 

mean square error, RMSE, and the mathematical relation 

obtained from the MLR model for the maximum tangential 

stress, Smax, are shown in Figure 5. The values 0.8189 for R
2
 

and 3128.4530 for RMSE were obtained from Figure 5. 

 

 

 

Fig. 5 The finite element and the MLR models results for the 

he maximum tangential stress  

4.2  USING THE ARTIFICIAL NEURAL NETWORK 

MODEL OF RBF TYPE 

The network with the radial basis function (RBF) is 

illustrated in Figure 6. In this network, the input signals 

directly were entered into the hidden layer cells. Unlike the 

MLP networks which have the global activity functions, the 

local activity functions were used in this network. The 

number of cells in the hidden layer was obtained by the trial 

and error. In the output layer, there was only an adder 

whose the inputs were the outputs of hidden layer cells. The 

number of output layer cells was selected equal to the 

number of outputs. In addition, for adjusting the weighted 

functions upon the training the network, the center of 

activity functions was also adjusted. The weighted functions 

were adjusted using the descending gradient method for 

resulting the least sum of error squared. 

 

 

Fig. 6 The network with the radial basis function (RBF) 

 

 

The function F was chosen by the radial basis functions 

technique as shown in Eq. (3) [10]: 

1

( ) ( )
N

i i

i

F x W x x


   (3) 
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Where, ( ) : 1, 2, ...,x x i Ni i   are set of N the non-linear 

functions are called the radial basis function, x x i

  
is 

defined as the norm of vectors which is normally considered 

as the Euclidean distance and Wi  are the weighted 

functions. 
 
Also, R : 1, 2, ...,

p
x i N

i
  are the centers 

of the radial basis functions. In this research, φ, the activity 

functions for the Gaussian type of the RBF network were 

selected in form of Eq. (4). As mentioned before, these 

functions are the local activity functions. In Eq. (4), 

: 1, 2, ...,i Ni   are the scale parameter [10]: 

2

2
( ) exp( )

2

i

i i

i

x x
x x




                                    (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Smax was predicted by the RBF artificial network  

 

 

using the MATLAB software. For each one of these 

networks, first the 2 data (16 fold) and second the 4 data (32 

fold) were considered as the test data. The test data were 

tested using the cross validation method; that is, all of the 

data were tested at least once. The spread parameter was 

used in the MATLAB software to determine the Gaussian 

functions. In this research, the value of the spread parameter 

was considered to vary in the range of 1 to 1000 for all 

cases [10]. The root mean square error values, RMSE, and 

the coefficient of determination values, R
2
, in the spread 

parameter range for the 16 fold RBF network are shown in 

Figures 7 and 8, respectively. For the 32 fold RBF network, 

the root mean square error values, RMSE, and the 

coefficient of determination values, R2, in the spread 

parameter range are shown in Figures 9 and 10, 

respectively. In Figure 10, the test R2 values is either 0 or 1 

for the different spread parameters. 

 

0

1

0 100 200 300 400 500 600 700 800 900 1000

R
2

Spread Parameter

32 fold RBF Network

Train R2

Test R2

 

Fig. 10 The R2 values in the spread parameter range for the 32 

fold RBF network  

 

 

 

Table 3 The conditions and the results for the 9-selected networks  

Network 
Spread 

parameter 

Train 

R2 

Train 

RMSE 

Test R2 
Test 

RMSE 

16 Fold  1 0.9958 32044.14 0.35513 441.74 

16 Fold  278 0.8878 3343.97 0.72584 2489.37 

16 Fold  962 0.8650 3279.11 0.70232 2731.61 

16 Fold  971 0.8658 3193.49 0.70285 2701.78 

16 Fold  994 0.8645 3287.38 0.68725 2710.18 

32 Fold  1 0.9927 21720.02 1 619.97 

32 Fold  342 0.8740 2969.96 1 2604.99 

32 Fold  986 0.8655 3184.60 1 2714.13 

32 Fold  997 0.8653 3083.33 Nan 2697.75 
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Fig. 7 The RMSE values in the spread parameter range 

for the16 fold RBF network 
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Fig. 8 The R2 values in the spread parameter range for the 

16 fold RBF network 

 

Fig. 9 The RMSE values in the spread parameter range for 

the 32 fold RBF network 
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The five networks out of the ones were generated by the 16 

fold RBF network and the four networks out of the ones 

were generated by 32 fold RBF network which were 

selected, since they presented the better performance 

according to the RMSE and the R
2
 criteria. The conditions 

and the results are demonstrated in Table 3 for these 9 

networks. Finally, the 32 fold RBF network with the spread 

parameter value of 342 was selected which showed the 

better performance in comparing to others. The comparison 

between the values of the maximum tangential stress, Smax, 

resulted from the finite element method and obtained from 

the 32 fold RBF network for the train and the test samples is 

shown in Figure 11.  

 
Fig. 11    The comparison between the Smax resulted from the finite 

element method and the 32 fold RBF network  

4.3 USING THE HYBRID MODEL OF THE ARTIFICIAL 

NEURAL NETWORK AND THE GENETIC ALGORITHM 

(ANN-GA) 

In this section, the artificial neural network model is 

presented to predict the maximum tangential stress in the 

sheets which lacks the specific analytical relation. The 

genetic algorithm optimization was employed by the 

weights and the network bias.  

Table 4 The specifications of the hybrid model  

Division 

function 

Performance 

function 

Weight/bias 

learning 

function 

Network 

training 

function 

Transfer 

function 

'dividerand' 'mse' 'learngdm' 'traingdx' 'tansig' 

Combination 

of mutation 
Generation Train goal Epochs - 

'standard' 100 0.01 100 - 

For this purpose, the four hybrid models of the artificial 

neural network and the genetic algorithm were designed in 

the forms of one-layer (1 to 50 neurons), two-layer (1 to 25 

neurons), three-layer (1 to 25 neurons), and four layer (1 to 

25 neurons). Furthermore, the 44 data for training as well as 

the 10 data for testing along with the 10 data for the 

assessment were randomly chosen. The specifications of the 

hybrid model are shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Respectively, the train and the test values of RMSE and R
2
 

are demonstrated in Figures 12 and 13 for the 125 structures 

of the hybrid model. In the Figures, the single-layer ANN-

GA for the 1 to 50 networks, the two-layer hybrid model for 

the 51 to 75 networks, the three-layer hybrid model for the 

76 to 100 networks and the four-layer hybrid model for the 

101 to 125 networks was employed.  

 

 

 

 

 

 

 

The maximum tangential stress value, Smax,, resulted from 

the finite element model (the measured data) and obtained 

from the 39 neurons single-layer hybrid model (the 

estimated data) for training and assessing the data is shown 

in Figure 14. In this Figure, the data numbers 1 to 44 for 

training and numbers 45 to 54 for assessing were used.  
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Fig. 12 The train and test values of RMSE in 125 

structures of the hybrid mode 
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Fig. 13 The train and test values of R2 in 125 structures of 

the hybrid mode  

 

 
Fig. 14 The maximm tangential stress value for training 

and assessing the data 
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In Figure 15, the maximum tangential stress value was 

determined by the finite element and the 39 neurons single-

layer hybrid models for testing data were displayed. Based 

on the results, the single-layer structure in the hybrid model 

with the 39 neurons in the hidden layer illustrated the best 

performance. The value of the determination coefficient, R
2
, 

for the finite element and the hybrid models is shown in 

Figure 16. This value comprises the acceptable precision. 

 

 

Fig. 16 The value of R2 in the hybrid model for testing the data 

4.4 COMPARISON OF THE THREE METHODS AND 

SELECTION OF THE MOST SUITABLE ONE  

The regression models are the very proper tools in order to 

obtain the relationship between the input and the output 

parameters. A linear six-variable relation was used to obtain 

the value of the maximum tangential stress, Smax. The 

precision of the MLR model precision was not appropriate 

according to the R
2
 and the RMSE assessment. The RBF 

neural network was used as another model to recommend 

for predicting Smax. This model exhibited the better 

performance compared with the MLR model. One of the 

famous models in the artificial neural network is the 

combinational model of the artificial neural network and the 

genetic algorithm. This hybrid model was employed to 

predict the maximum tangential stress. The hybrid model 

demonstrated the better performance compared to the other 

models.  
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Fig. 17 The values of Smax obtained from the finite element 

method and the three MLR, RBF, and ANN-GA models  

Generally, the artificial neural network models showed the 

better results compared with the regression models for 

predicting Smax. The values of Smax obtained from the finite 

element method and the three MLR, RBF, and ANN-GA 

models is compared in Figure 17. Moreover, the train and 

the test data of R
2
 and RMSE are shown in Table 5 for the 

three models. As may be seen, the ANN-GA hybrid model 

presented the better performance in comparison to the other 

two models. Thus, the ANN-GA hybrid model was selected 

for modelling the objective function. 
 

Table 5 The values of R2 and RMSE for MLR, RBF and ANN-GA 

models 

Model 
Total 

RMSE 

Total 

R2 

Train 

RMSE 

Test 

RMSE 

Train 

R2 

Test 

R2 

ANN-GA 1118.25 0.9789 986.3 1572.3 0.982 0.972 

RBF 2567.00 0.8782 2970.0 2605.0 0.874 1.000 

MLR 3128.45 0.8189 - - - - 

5 OPTIMIZING THE PARAMETERS CONTRIBUTING 

TO RIVETING QUALITY 

5.1  DEFINITION OF THE OPTIMIZATION PROBLEM 

The maximum tangential stress, Smax, was considered as the 

objective function which should be minimized. The hybrid 

model of artificial neural network and the genetic algorithm 

was used to model this parameter. The up and low limits of 

the input parameters were considered as the constraints in 

the optimization problem which are presented in the 

following format [26, 27]: 

0 (1) 0.008X                                                       (5) 

0.003 (2) 0.003X                                              (6) 

0.25 (3) 0.32X                                                   (7) 
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Fig. 15 The maximum tangential stress value for testing 

the data 
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1500 (4) 3000X                                                 (8) 

0 (5) 0.008X                                                      (9) 

0.2 (6) 1.1X                                                     (10) 

 

 

Fig. 18 The finite element and the regression results for the rivet 

diameter values 

The multivariable linear regression and the multivariable 

non-linear regression were employed to obtain the rivet 

diameter, D, and the rivet height, H, after riveting 

respectively. The finite element and the regression results 

for the rivet diameter values are shown in the Figure 18. As 

well as, Figure 19 shows the same results for the height 

rivet. As shown in these figures, the values of R
2
 and RMSE 

indicate the proper precision. 

 

 

Fig. 19 The finite element and the regression results for the rivet 

height values  

 

The up and low limits for the rivet diameter after riveting, 

D, was selected as the constraint in the optimization 

problem [1]. Using the regression method, this value was 

determined as Eq. (11): 

0.1719 0.1179 (1) 0.6037 (2) 0.1509 (3)

2.5651 5 (4) 7.5038 2 (5)

2.4340 E 3 (6) 0.0853 0.2188

X X X

E X E X

X

  

   

   

      (11) 

The value of the height rivet after riveting, H, was chosen as 

another constraint in the optimization problem. It should be 

in the range of the up and low limits [1].This value was 

obtained from the regression method as Eq. (12): 

0.0469 [ 4.3388 (1) 21.0670 (2)

5.6528 (3) 3.3750 4 (4) 6.1055 (5)

2.2270 3 (6) 3.5171] 0.0781

Exp X X

X E X X

E X

  

   

   

     (12) 

5.2 IMPERIALIST COMPETITIVE ALGORITHM FOR THE 

OPTIMIZATION PROBLEM  

5.2.1 AN INTRODUCTION TO THE IMPERIALIST 

COMPETITIVE ALGORITHM 

There are number of individuals in the genetics algorithm 

which constitute a population. Under the effect of the 

combination and the mutation operators, the population 

individuals move within the search space to select the best 

answer. The goal in optimization is to find an optimal 

answer in terms of the problem variables. An array of 

problem variables which should be optimized is created. 

This array is called a chromosome in the genetic algorithm. 

Here, it is called the country. In an Nvar–dimensional 

optimization problem, a country is a 1× Nvar array. This 

array is defined as Eq. (13) [24]: 

var1 2 3{ , , ,..., }NCountry p p p p                                (13) 

All of the countries are categorized into two groups which 

are called the colonizer and the colony. Every empire is 

comprised of a colonizer and the countries under its colony. 

The cost of a country may be calculated using Eq. (14) [24]: 

var

i i

1 2 3 N

cos t f ( country )

f ( p , p , p ,..., p }
                                     (14) 

Moreover, the total cost of an empire which is equal to the 

cost of the colonizer plus a percentage, , of the colonies 

mean cost, may be calculated using Eq. (15) as the 

following [24]: 

n n

n

T .C . Cost ( imperialist )

.Mean{ Cost ( colonies )}
                                    (15) 

A total of the Ncountry countries are created in order to initiate 

the algorithm. A total of Nlmp out of the best countries are 

selected as the imperialist countries. The remaining the Ncol 

countries constitute the colonies. The colonies of each 

imperialist country are determined in accordance with its 

power. To do so, their normalized cost is initially assumed 

to estimate by Eq. (16) [24]: 

 

{ }n i n
i

C Max c c                                                    (16) 
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The normalized power of an imperialist country is the ratio 

of colonies run by that imperialist country. After calculating 

the normalized cost, the relative normalized power of each 

imperialist country is calculated according to Eq. (17) [24]: 

1

lmp

n
n N

i

i

c
p

c






                                                            (17) 

Therefore, the initial number of the colonies of an 

imperialist is determined by Eq. (18) [24]: 

n n colN .C . Round{ p .( N )}                                  (18) 

The establishment of first empires is demonstrated in the 

Figure 20. As shown in this Figure, the larger empires 

include more colonies. The number 1 imperialist country 

has the strongest empire and the greatest number of the 

colonies.  

 

 

Fig. 20 The establishment of first empires [24] 

By adopting a policy of the absorption (assimilation) in line 

with the different axes of optimization, the colonizers attract 

the colonies toward themselves. This part of the 

colonization process in the optimization algorithm is 

modelled in form of the movement of colonies toward the 

imperialist country. An overview of this movement is 

represented in Figure 21. As shown, the imperialist country 

attracts the colony along the cultural and the lingual axes. 

In Figure 21, if the distance between the colony and the 

colonizer is d, the movement of the colony will be as much 

as x toward the location of the corresponding colonizer. 

This movement is of course deviated at an angle of θ, where 

the values of x and θ are chosen randomly. The value 

changes of the angle θ and the movement x occurs in the 

ranges [γ, -γ] and [0, βd], respectively. The values γ and β as 

algorithm parameters are recommended to be 45 degrees 

and 2, respectively [25]. 

 

 
Fig. 21 The movement of colonies toward their relevant 

imperialist [24] 

 

Any empire which is unable to gain the power and loses the 

competitiveness will be eliminated from the course of the 

imperialistic competitions. In the course of time, the weak 

empires lose their colonies and the stronger empires seize 

them and increase their power. The stronger empire is more 

likely to seize the colonies. At first, the total normalized 

cost of the empire is calculated using its total cost by Eq. 

(19) [24]: 

. . . {T.C. } . .n i n
i

N T C Max T C                              (19) 

After determining the total normalized cost, the probability 

of a colony is calculated for which the empires are 

competing using Eq. (20) [24]: 

n lmp

n
p N

i

i 1

N .T .C .
p

N .T .C .

                                                (20) 

The colony is given to one of the empires using a 

mechanism such as the roulette wheel. An overview of this 

algorithm is shown in Figure 22. In accordance with this 

algorithm, the larger empires are more likely to get hold of 

the colonies of other empires. 

 

 

Fig. 22 Imperialistic competition [24] 
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5.2.2 THE SOLUTION OF THE OPTIMIZATION 

PROBLEM 

The imperialist competitive algorithm [24, 25] is used to 

solve the optimization problem. The number of countries, 

empires, and decades are considered to be 100, 10, and 100, 

respectively. The value of maximum tangential stress 

obtained from the imperialist competitive algorithm was 

estimated 16386 psi. After modification using the finite 

element method, this value increased to 23440 psi. This 

difference is due to the error in predictions by the artificial 

neural network and the regression. The maximum tangential 

stress after modification using the finite element method is 

shown in Figure 23. The average and the minimum cost for 

all the empires in 100 iterations of the algorithm is 

demonstrated in Figure 24. The optimal values for the 

design variables obtained from the imperialist competitive 

algorithm are shown in Table 6. 

 

 

Fig. 23 The maximum tangential stress  

 

Fig. 24 The mean and minimum cost for all empires in 100 

iterations of the algorithm 

 

 

Table 6 The optimal values for the design variables 

Design 

Variables 
X(1) X(2) X(3) X(4) X(5) X(6) 

Optimal 

Values 
0.000 0.003 0.280 2000 0.000 0.400 

 

The optimal value for the rivet diameter, D, was obtained 

0.18524 inches. The deformation contour in direction of the 

rivet radius is indicated in Figure 25. Using the maximum 

value U1 and Eq. (21) [26, 27], the rivet diameter value after 

riveting may be calculated: 

0 1 max
D D X ( 2 ) 2U

0.125 0.003 2 0.0286 0.1852

                    (21) 

 

 

Fig. 25 The deformation contour in direction of the rivet radius 

The optimal value for the rivet height, H, was obtained 

0.07689 inches. The deformation contour in direction of the 

rivet length is displayed in Figure 26. Using the maximum 

value U2 and Eq. (22) [26, 27], the rivet height value after 

riveting may be determined: 

2 max
H X ( 3 ) 2t U

0.280 2 0.064 0.0751 0.0769

                      (22) 

 

 

Fig. 26 The deformation contour in direction of the rivet length 
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6 CONCLUSION 

The tangential stresses arising in sheets during riveting are 

important factors leading to cracks in sheets. Various 

parameters contribute to the amount of these stresses. The 

riveting force, the tolerance of hole diameter in the top 

sheet, the tolerance of hole diameter in the down sheet, the 

friction coefficient, the tolerance of the rivet diameter and 

the rivet length were studied as the influential parameters.  

The up and low limits for each parameter were considered 

and the 64 (2
6
) models were built via the permutations of 

the different models two at a time. The maximum tangential 

stresses in sheets, the diameter and the length of the rivet 

after riveting were considered as the output of the models. 

They were obtained using the axisymmetric finite element 

method. The three MLR, RBF, and ANN-GA methods were 

used to predict the maximum tangential stress as the 

objective function in the optimization problem.  

With respect to the regression model, the several linear and 

the non-linear mathematical relations were investigated to 

model the maximum tangential stress from among which a 

six-variable linear mathematical relation, which showed less 

error, was selected. Although the relations were simple but 

they had the high RMSE value; therefore could not be used 

in modelling the objective function. Another model 

examined for predicting the objective function was the RBF 

neural network. A total of the 2000 RBF models with the 

spread values varying between 1 and 1000 were designed in 

order to arrive at the appropriate RBF model. In these 

models, the 2 or 4 test data were switched in turn using the 

cross validation method. The RBF model with the two test 

data which performed better was selected from among these 

models. The spread value was considered to be 342 for the 

RBF model. The RMSE value of this model decreased 

compared to that of the MLR model; however, the RMSE 

value in the RBF model was still not suitable for the 

objective function.  

Finally, the total of 125 hybrid models of the artificial 

neural network and the genetic algorithm were used in order 

to predict the maximum tangential stress. After analysing 

the performance of these models via the two R
2
 and RMSE 

criteria, the single-layer hybrid model with 39 neurons was 

selected to predict the objective function. The regression 

method was employed to model the rivet diameter, D, and 

the rivet height, H, after riveting.  

The two six-variable linear and non-linear relations were 

obtained for modelling these two values. The up and low 

limits for D, H, and the six variables of the problem were 

considered as the constraints of the optimization problem. 

In the end, the optimization problem was solved with the 

objective function in form of the hybrid model of the 

artificial neural network and the genetic algorithm, two non-

linear constraints and six other constraints (the boundary 

conditions of the problem variables).  

The imperialist competitive algorithm (ICA) was employed 

to this problem and the optimal values were obtained for the 

problem variables. The obtained value for the maximum 

tangential stress using the imperialist competitive algorithm 

was determined 16368 psi. After the modification, this 

value increased to 23440 psi using the finite element 

method. This error value was evaluated as the error in the 

prediction by the artificial neural network and the 

regression. The least   value eligible in the numerical data is 

26958 psi. The values of 0.07689 inches and 0.18524 inches 

were obtained for H and D respectively. Also, these values 

were in the desired range. In addition, the power of the 

imperialist competitive algorithm in solving the 

optimization problems is demonstrated, in which there is 

not any analytical relation for the objective function and the 

constraints. 
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