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Abstract: In this study, the flow characteristics through symmetric stenosis artery 
are investigated. The shape of eccentricity for stenotic flows is limited by circular-
cross sections and plaques usually assumed to be oriented concentrically. The 
governing equations are the usual Navier-Stokes equations and are numerically 
solved by using finite volume method in arbitrary orthogonal curvilinear 
coordinates. In addition, three-dimensional (3D) elliptic grid is presented, which 
the generating system is based on the solution of a partial differential system. To 
prevent serious distortion or overlapping of mesh lines, grid regularity is verified 
by some controlling parameter like Skewness value and maximum grid aspect ratio 
(MAR). The main objective of the present study is to investigate different degrees 
of the stenosis (45%, 55%, 65%, and 75% by area reduction) and finding the 
critical one playing a significant role in the development of forming sediment in 
the vessel wall. It is shown that the magnitude of inlet Reynolds number has strong 
relationship with the velocity, pressure, and wall shear stress (WSS) distributions 
as expected. The most important conclusion obtained from this model is the high 
WSS, pressure drop, and formation of large recirculation regions found in the 
downstream of the stenosis, especially in the case of severe stenosis that could 
create various pathological diseases. 
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1 INTRODUCTION 

Atherosclerosis refers to the development of fatty 

deposits on the walls of the medium and large blood 

vessels. These fatty deposits are commonly known as 

atheroma or atherosclerotic plaques obstructing the 

normal flow of blood through the blood vessels. 

Atherosclerosis is the most common type of 

arteriosclerosis (thickening of blood vessels that carry 

oxygenated blood in the body) and is sometimes used 

as a synonym of arteriosclerosis. The blood vessels of 

the heart, brain, kidneys, legs and other vital organs 

may be affected either directly or indirectly. This is the 

most common cause of heart disorders and the 

associated cases of death in the developed countries. 

In relation to the development of experimental models 

for flow in diseased human carotid arteries, extensive 

studies have been performed on flow visualization in 

the vicinity of stenosis under steady-state and pulsatile-

flow conditions by Giddens et al., [1-3]. Stenotic artery 

with an unrealistic range of Reynolds number up to 

15000 was studied extensively by Deshpande and 

Giddens [1]. In ref., flow visualization at constriction 

was investigated, using axisymmetric model geometries 

with 25%, 50% and 75% area reductions [2]. 

Generally, some flow parameters such as, WSS and 

pressure drop require accurate measurements about the 

artery wall experimentally, which is difficult, even for 

the technology presently available. Therefore, 

computational fluid dynamics (CFD) can play a 

significant role in producing relatively accurate data 

across mildly stenosed vessels. 

Hence, understanding of stenotic flow has also 

proceeded from both analytical and computational 

efforts; steady flow through an axisymmetric stenosis 

was studied extensively by Smith using an analytical 

approach [4]. It has been found that the flow patterns 

depend strongly on the geometry of the stenosis and the 

upstream Reynolds number. Numerical simulation of 

steady flow through an axisymmetric stenosis was 

carried out by Deshpande et al., using a finite 

difference technique [5]. The obtained flow patterns 

were in good agreement with the experimental results 

of Young and Tsai [6]. An LES study was conducted 

on the planer channel with one-sided semi-circular 

constriction under pulsatile flow condition in the range 

of Reynolds number 750 to 2000, with focus on the 

spectral analysis of the turbulent flows [7]. They 

observed that magnitude of the kinetic energy and 

specific dissipation increased within the stenosis with 

increasing Reynolds numbers.  

Direct numerical simulation was carried out by 

Varghese et al., [8], to replicate the benchmark 

experimental results of Ahmed and Giddens [2]. They 

extended their work for asymmetric stenosis with the 

same degree of stenosis, %75, under steady and 

pulsatile flow condition [9]. They showed that 

acceleration of the fluid through the stenosis resulted in 

WSS magnitudes exceeding upstream levels more than 

30 times; however low WSS levels are accompanied 

with the flow separation zones formed immediately 

downstream  of  the  stenosis. Another study was 

carried out by Sousa et al., applied the finite element 

method to solve the stenotic flow through a 3D artery 

[10]. Velocity and WSS fields were visualized for a 

better understanding of flow characteristics such as 

distributions of the flow pattern, stagnation flow, and 

recirculation zones in their study.  

The effect of stenosis shape on blood flow through an 

artery is visualized by Singh and Shah [11]. The blood 

is modelled as power-law fluid in a uniform circular 

tube with an axially non-symmetric but radially 

symmetric stenosis. It has been found that the 

resistance to flow, wall shear stress, and apparent 

viscosity decrease as stenosis shape parameter increase 

but they increase as stenosis size and stenosis length 

increase. Recently, a computational simulation in a 

carotid stenotic artery with varying pulsatile inlet 

profile has been conducted by Senol and Serdar, which 

3D transient NS equations was solved in actual domain, 

using the proposed boundary conditions [12]. In 

addition, effects of different input conditions on the 

results were discussed. The most important conclusion 

obtained from their model is the existence of negative 

relation between velocity at several inner points of the 

internal carotid artery and velocity at the inlet of the 

common carotid artery. 

In this paper, a considerable effort is devoted to 

implementing 3D finite volume method (FVM) in 

generalized body fitted coordinate in non-rectangular 

domain. Then, it can be concluded that the geometric 

limitation is removed by adopting this coordinate 

system in the in-house code. Thus, this paper provides 

insight into the numerical simulation of stenosis artery 

by applying the exact geometry of stenosis model 

without attending to the complicate procedure for 

complex geometry in Cartesian coordinate. 

Furthermore, our aim is to investigate the effect of 

different degrees of stenosis on the flow characteristics 

and illustrate the critical one, which causes serious 

damage to the vessel wall. It is noted that the 

possibility of the endothelium destruction is higher in 

the regions where wall shear stresses are beyond the 

range of 1-42 n/m
2
 that is the safe bandwidth of WSS 

[13]. 

2 NUMERICAL PROSEDURE 

2.1. Physical model 

Simple models of symmetric artery with different 

degrees of circular stenosis considered in the present 
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study are shown in Fig. 1. The diameter of the arteries 

D is 25.4 mm and the domains extending to 4D and 

17D upstream (Lu) and downstream (Ld) of the stenosis, 

respectively. The length of stenosis (Ls) is 1.5D in all 

models, as well. 

 

The stenosis severity is calculated using [8]: 

 

 1 21 / 100S A A                                                    (1) 

 

Where 1A and 2A are the cross-sectional areas at the 

throat and inlet of all models, respectively. 

 

 

 
Fig. 1 Schematic of a symmetric stenosis with 45%, 55%, 

65%, and 75% area reduction 

 

2.2. Grid generation 

Traditional methods of simulating arbitrary shape 

geometries were mostly performed in Cartesian 

coordinates, which cause some errors related to the grid 

precision.  

Finer grid may lead to more computation cost.  In this 

study, the general curvilinear coordinates is adopted, it 

helps transform the physical domain into a simple 

domain in the transformed space. In order to obtain a 

grid in the transformed space, a grid system generating 

method needs to be developed. The simplest equation 

that could be used to generate the grid is the Laplace’s 

equations [14]: 

 
2 0, 1,2,3i i                                                          (2) 

 

The above partial differential equations are subject to a 

set of Dirichlet boundary conditions. First, the 

boundaries of the domain are identified and initial mesh 

is obtained by using an algebraic method (here, TFI 

[15]). Then, Eq. (2) is transformed into the 

computational domain where the Cartesian coordinates 

are the dependent variables [15]: 
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The coefficients of equations (3) are obtained in [15]. 

Finally, the grid points are generated using equations 

(3) in an iterative elliptic loop where algebraic initial 

mesh is its initial condition. 

 

2.3. Grid quality 

Grid quality is important for minimizing computational 

error. A well-designed grid should be orthogonal. 

Additionally, grid aspect ratios close to one are 

important for good conditioning of the discrete 

operator, as well as for reducing errors in derivatives of 

the approximate solution. Therefore, for obtaining 3D, 

clustered, and smooth grid, grid regularity should be 

verified. The verification is performed by some 

controlling parameter like Skewness value [16] and 

MAR [17]. 

 
2.3.1. MAR 

MAR is used to study the quality of the resulting grids 

and preventing grid lines from collapsing on to each 

other. In this study, MAR is calculated from [17]: 
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Where Scale factors 
ijkh
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Where subscripts i, j and k represent node numbers and 

discretized directions. 

 

2.3.2. Skewness 

At a complicated boundary, the orthogonalization will 

invert the grid eventually after a sufficient number of 
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repetitions. The verification is performed by calculating 

a normalized cell volume, so-called Skewness value, 

for each of the cells affected by the orthogonalization. 

The Skewness value  is defined as the volume divided 

by the quantities e1, e2, and e3, which are the maxima of 

the lengths of the cell edges in the three curvilinear co-

ordinate directions [16]: 

 

 1 2 3/ , ,V e e e                                                         (6) 

 

Where V is the cell volume and e1, e2, and e3 are 

obtained in [16]. 

 

2.4. Governing equations 

The governing equations in the computational space are 

(Variable  is considering as a velocity components at 

Cartesian coordinates) [18]: 
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Where U
c
, V

c
, and W

c
 are velocity components in 

computational domain: 
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Where  ,   and   are general curvilinear 

coordinates and determinant of inverse Jacobean 

is:  
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Source term ( CDJS ) is evaluated by: 

   

 

12 13 12 23

13 23

JS J q q J q q

J q q

   

 

 
            
    


     
 

  (10) 

 

In addition, coefficients
11q ,

22q  and 
33q  are: 
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Values x ,
y  

and etc. are calculated from [18]. 

 

2.5. Boundary conditions 

In the current work, the flow is assumed to be laminar, 

incompressible, and the wall is rigid. The blood is 

treated as a Newtonian fluid, which is a common 

assumption, used in simulating flow in large arteries 

[19]. Hence, Blood is modeled as a Newtonian fluid 

and the density is taken as constant throughout the 

domain in this study. Viscosity ( ) and density (  ) 

are taken as 0.022 kg/ms and 1600 kg/m
3
 respectively. 

The inlet velocity is assumed to have a parabolic 

profile and convective boundary condition is applied at 

the outlet. 

3 GRID INDEPENDENCY AND VALIDATION 

In order to validate the applicability of the in-house 

code prepared in Fortran 90 in general curvilinear 

coordinates, 3D cylindrical tube is simulated, and 

numerical results are compared with analytical solution 

[20].  
 

U/U
IN

Y
/D

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.4

-0.2

0

0.2

0.4

N
1
=1717210

N
2
=2020250

N
3
=2626330

N
4
=3636455

Parabolic Profile

 
Fig. 2 Comparison of x-velocity profiles using four 

different grids at fully developed region about outlet of 3D 

tube 

 
Fig. 2 shows typical grid independence study 

conducted for x-velocity profiles for Re=100. Around 

223080 mesh points are the optimal number to obtain 

grid independent solution. 
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Fig. 3 exhibits the comparison of mean WSS 

coefficient between numerical and analytical solution 

[20]. It can be seen from the figure that the WSS 

coefficient computed on the coarser grid agrees very 

well with analytical solution. 
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Fig. 3 Comparison of computed mean WSS coefficient at 

different dimensionless axial locations with the analytical 

solution [20] at Re=100 

 

Four different mesh testing procedures are conducted to 

guarantee the grid-independency of the present stenosis 

models. Mean WSS value for various mesh 

combinations are explored for the case of Re=340 for 

Newtonian blood flow as shown in Table 1.  
 

Table 1 Comparison of the average wall shear stress 

coefficient for different grid resolution for all stenosis models 

at Re=340 

Mesh size S=45% S=55% S=65% S=75% 

20 20 530   31.5812 31.084 30.516 36.304 

24 24 580   31.612 31.109 30.541 36.339 

27 27 631   31.622 31.125 30.551 36.348 

30 30 680   31.628 31.130 30.558 36.354 

4 RESULTS 

CFD simulations are carried out on the symmetric 

stenosis model with different degrees of stenosis 45%, 

55%, 65%, and 75% at Reynolds numbers 130, 160, 

190, and 340. The governing equations are discretized 

by using the control volume method in body-fitted 

coordinates. The SIMPLE algorithm is used to ensure 

the coupling between velocity and pressure. The 

convection and diffusion terms are discretized by the 

power-law and central scheme, respectively. First of 

all, Fig. 4 demonstrates the geometry of the straight 

symmetrical stenotic tube and computational grids for 

the stenosis models with 612,000 volume cells. In order 

to improve the quality of the generated grid system, 

especially at stenosis region, some controlling 

parameter like Skewness value and MAR are calculated 

for each cell. Table 2 presents MAR for all cases in this 

study. 

 

 

Fig. 4 3D elliptic grid at stenosis model 

 

 
Table 2 Calculating MAR of computational cells in 

different models 

simulation 

models 

maximum MAR 

in domain 

 mean MAR 

in domain 

cylinder 25  1 

45% stenosis 25  1 

55% stenosis 25  1 

65% stenosis 25  1 

75% stenosis 25  1 

 

Table 3 presents maximum, minimum, and mean 

values of Skewness for computational cells in all 

models. A right-angled cell has the skewness value of 

one. For a degenerate cell, the skewness Value is zero. 

As the cells having more right-angled, their skewness 

value becomes smaller. In this study, all computational 

models have acceptable grid quality corresponding to 

the Table 2 and Table 3. 

 
Table 3 Calculating Skewness of computational cells in 

different models 

simulation 

models 

maximum 

Skewness 

in domain 

minimum 

Skewness 

in domain 

mean  

Skewness 

in domain 

cylinder 0.9966 0.4989 0.9 

45% 

stenosis 

0.9966 0.2393 0.8 

55% 

stenosis 

0.9966 0.2245 0.8 

65% 

stenosis 

0.9966 0.2205 0.8 

75% 

stenosis 

0.9966 0.2045 0.8 
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Fig. 5 Comparison of pressure distribution along the 

models wall for different degrees of stenosis at  

(a) Re= 130 (b) Re=160 (c) Re=190 and (d) Re=340 

 

Pressure within the artery is an important characteristic 

as it can determine the resistance against the flow in the 

vessel. A large pressure drop across the vessel causes 

the flow experience resistance and has a tendency to 

stagnate or even reverse (an undesirable feature). 

Figure 5 shows the pressure distributions along all 

stenosis models for four different Reynolds number 

with 130, 160, 190, and 340. A rapid fall in pressure is 

observed as the occlusion is approached, and the local 

minimum is attained corresponding to the separation 

point in all models.  
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Fig. 6 Comparison of pressure drop along stenosis models 

with different degrees of stenosis versus Reynolds number 

 

Furthermore, distribution of pressure drop versus 

Reynolds numbers for different degrees is presented in 

Fig. 6. It is clear that with increasing degree of stenosis, 
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the increase in pressure drop through stenosis model 

increases significantly. In case of 75% stenosis, fast 

decrease in pressure (Fig. 5 frame d) by passing 

through constriction, causes highly increase of pressure 

drop especially at high Reynolds number. 

Fig. 7 shows the contour plots of streamlines of the 

flow through different degrees of stenosis at four 

different Reynolds numbers. The separated shear layer 

at the neck of stenosis due to the adverse pressure 

(existing downstream of stenosis), reattaches to the 

wall at downstream of stenosis. This reattachment 

causes to form a vortex in this region at some cases. 

The corresponding lengths of the major axes are 

presented in Table 4. It is also noticed that the length of 

the vortexes are increased with the increasing Reynolds 

number and degrees of stenosis.  
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Fig. 7 Contour plots of streamlines at different degrees of 

stenosis and different Reynolds number 

 

This could be an alarming condition. Because, from 

pathological point of view, the blood in the post-

stenosis region is re-circulated for a long time and 

stagnant in this region, which could potentially cause 

the blood clot or thrombosis leading to stroke and heart 

attack. 

 

 
(a) 
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(b) 

 

 
(c) 

 
(d) 

Fig. 8 3D contour plots of stream wise velocity in the 

cross-section at downstream of stenosis for different degrees 

of stenosis a) S=45% b) S=55% c) S=65% d) S=75%            

at Reynolds number 340 
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(d) 

Fig. 9 Comparisons of WSS at different degrees of 

stenosis for a) Re=130 b) Re=160 c) Re=190 and d) Re=340 

 
Table 4 Length of vortexes generated downstream of 

stenosis with different degrees for Reynolds number 130, 

160, 190, and 340 corresponding the contour plot of stream 

lines at Fig. 7 

 

Re 

vortex 

length 

S=45% 

vortex 

length 

S=55% 

vortex 

length 

S=65% 

vortex 

length 

S=75% 

130 - - 0.64 D 2.22 D 

160 - - 0.81 D 2.3 D 

190 - - 0.95D 2.49D 

340
 

0.44D D 1.62D 3.25D 

 

Figure 8 compares 3D contour plots of stream wise 

velocity at the cross-section downstream of stenosis for 

different degrees of stenosis at Reynolds number 340. 

It is readily apparent that the recirculation regions 

observed in Fig. 8 are associated with regions of low 

pressure. Within such recirculation regions indicated by 

the negative velocity (blue color), blood moves in the 

direction opposite to the mean flow, increasing the 

probability of stenosis.  
Figure 9 shows comparisons of WSS for 45%, 55%, 

65%, and 75% area reductions at different Reynolds 

number. It is also clear that with increasing degree of 

stenosis and Reynolds number, magnitude of WSS 

increases significantly, and this value is the highest at 

throat of the stenosis. However, a subsequent strong 

positive-negative oscillation of WSS behind of the 

stenotic area is found in the case of 65% and 75% area 

reduction for all Reynolds number and in the case of 

45% and 55% area reduction just for Reynolds number 

340. These may correspond to the reattachment 

locations of the separation zone behind the stenosis on 

the wall. It is worthwhile pointing out that WSS 

exceeds the critically reported value (40 n/m
2
) only at 

75% stenosis as the velocity reaches its peak value 

causing damage to the endothelium cell layer. 

5 CONCLUSION 

The numerical simulation of blood flow through an 

artery with different degrees of stenosis was 

investigated in this study. Inlet Reynolds numbers of 

130, 160, 190, and 340 corresponding to the range of 

Reynolds number typically involved in the human 

common iliac artery, which is the most common sites 

for development of atherosclerotic lesions, were used. 

An in-house code in Fortran 90 was developed to 

generate 3D elliptic grids and implement finite volume 

method in generalized body fitted coordinate in non-

rectangular domain. The discretized forms of the 

transformed equations were obtained by a control 

volume formulation in a non-staggered grid. 

The most important parameters of the simulation were 

the pressure drop and WSS. It has been hypothesized 

that the distribution and magnitude of the shear stress 

and pressure on the arterial walls play a role in the 

genesis and acceleration of arterial diseases. For 

instance, local hypertension may be directly caused by 

localized increase in lateral wall pressure. This study 

showed that the severity of stenosis had an important 

effect on the characteristic behaviour of the blood flow. 

It was found that stenosis model with degree of 75% 

could be a critical stenosis in this investigation causing 

the magnitude of WSS exceed corresponding safe 

bandwidth, where highly pressure drop occurs in this 

case leading to serious damage to the vessel wall. 

Moreover, it was also noticed that the length of the re-

circulation region and vortexes were increased with the 

increasing Reynolds number and degree of stenosis, 

which is an alarming condition from pathological point 

of view. In this case, the blood in the post-stenosis 

region is re-circulated for a long time and stagnant, 

which could potentially cause the blood clot or 

thrombosis leading stroke and heart attack. 
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