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Abstract: Stereolithography process limits wider applications due to low 
dimensional accuracy comparing with CNC process. Hence, to improve accuracy 
and reduce part distortion, understanding the physics involved in the relationship 
between the setup input parameters and the part dimensional accuracy is 
prerequisite. In this paper, a model is proposed to find and optimize important 
parameters to achieve higher accuracy and also predict dimensional accuracy using 
various parameters values. For this purpose, the result of a previous study is used, 
where it is found that in stereolithography process these factors in order of 
importance with respect to dimensional accuracy are: layer thickness, hatch style, 
hatch spacing, hatch fill cure depth and hatch overcure. Moreover, in this research 
the proposed neural network model is able to predict dimensional accuracy with 
6% error. 
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1 INTRODUCTION 

Stereolithography (SL) is the first process developed in 
rapid prototyping. It is a 3D printing process which can 
product objects straightly from 3D CAD model. The 
stereolithography apparatus (SLA) produces parts by 
scanning an ultra violet laser beam over a resin liquid, 
causing the monomers of liquid resin to polymerize 
into a solid. During polymerization, the resin can 
undergo between 5% and 7% volumetric shrinkage out 
of which between 50% and 70% is regarded as the 
initial shrinkage that occurs within the vat. The rest 
occurs during post-curing. Shrinkage leads to an 
increase in part density.  
The degree of shrinkage is strongly influenced by the 
resin itself, part building style and operational 
parameters. Although stereolithography is able to 
produce complex geometric forms in shortest time 
which are impossible in normal conditions and need 
long time to be built in conventional machining 
processes, dimensional accuracy and physical stability 
in prototypes built by this process, in comparison with 
conventional machining processes, still haven’t 
achieved to ideal magnitude where limits its 
application. Figure 1 shows the schematic view of a 
SLA machine [1-4]. In general, induced errors in SLA 
process may stem from five sources [5]:  

1- CAD/CAM induced error 
2- Laser beam width induced error 
3- Material shrinkage error 
4- Setup parameters error 
5- Post-processing error 

Among above sources of error, the problem applicable 
to approximation of 3-dimensional surfaces by 
triangular facets in STL files has been solved with 
newer files called SLC, presented by 3D Systems 
Company in 1992. Second source applicable to Laser 
beam width has been solved by today computer 
softwares. The error stemming from Acrylate resins has 
been improved by Epoxy resins, presented by 3D 
Systems and Ciba Geigy in 1994, where these resins 
were called XB5170 with only 2%-3% shrinkage in 
volume. New hatch style which was introduced along 
with these resins, pretty largely solved the problems 
applicable to post-processing. So, parameters setup 
optimization is primarily important for researchers in 
order to achieve the best dimensional accuracy in SL 
parts [5-8]. 
Various parameters are influencing distortion of SLA 
parts which are namely: Layer thickness, Z wait, Hatch 
spacing, Hatch overcure, Hatch style, Part orientation, 
Gap of blade, Scanning speed, etc. Some of these 
parameters are found more effective than the others by 
many researchers as per their methods and experiments. 

They have selected their desired parameters and 
investigated complex and non linear relations between 
them. 
 

 

Fig. 1  Schematic view of a SLA machine 
 
Layer thickness (lt) is any individual layer of the 
photopolymer surface which is solidified using laser 
beam. Based on most of the previous studies, it may be 
claimed that the layer thickness is the most important 
parameter in dimensional accuracy of SLA parts. 
According to the Jacob’s investigation, when lt is 
smaller, then exposure of laser would be less and 
therefore, it would lead to less shrinkage and better 
dimensional accuracy [9].  
 
Emax = Ec exp [(lt + ho) / Dp]                                        (1) 
 
Where Ec is the critical exposure and Dp is the 
penetration depth where both parameters are constants 
of the resin material. For the purpose of solidification, 
laser exposure, must be more than the critical exposure, 
Ec. The effectiveness of process parameters is 
explicable through their impact on exposure of laser; 
usually, higher magnitude of exposure usually leads to 
more shrinkage and subsequently dimensional error. 
The penalty for this is larger build time, where, smaller 
lt necessitates more build time and subsequently 
increase in cost.  
As to process parameters, Lee et al., acknowledged six 
parameters to be more effective among others and 
examined their relations and impacts on dimensional 
accuracy of SLA parts [6]. These parameters are layer 
thickness, hatch overcure, hatch spacing, border 
overcure, fill spacing and fill cure depth where the first 
three are more important. Their studies indicated that 
for achieving more dimensional accuracy, parameters 
such as small layer thickness, small hatch overcure and 
medium to large hatch spacing are desirable.  
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Raju et al. have shown that among different layer 
thicknesses of 50 μm, 100 μm and 150 μm, with respect 
to the optimum dimensional accuracy, mechanical 
characteristics and cost, the best layer thickness is 100 
μm [10]. Zhou et al. in a study in order to optimize 
process parameters in SLA, have found that 
effectiveness of parameters are different in various 
dimensional, geometrical and surface features; 
however, based on their findings, the most significant 
parameter among layer thickness, hatch overcure, blade 
gap, part location and hatch spacing in dimensional 
accuracy of SLA parts, is layer thickness, which is 
prefered to be small, followed by hatch overcure and 
blade-gap [5]. 
Onuh and Hon have studied the parts built by Acrylate 
resin, using newly proposed hatch style, with layer 
thickness of 190μm which would lead to improved 
dimensional accuracy and building time [11]. Hatch 
overcure (ho) is the depth in which one cured vector 
band pierces into the lower adjacent layer. This is what 
keeps the individual layers connected together to form 
a solid part. When ho is smaller, then laser exposure 
reduces, which subsequently results in less shrinkage, 
but improved dimensional accuracy. 
Lee et al. have claimed that the optimized state of laser 
is when the exposure is neither saturated nor inadequate 
[6]. If ho goes beyond the optimum magnitude, the total 
amount of laser exposure may be saturated, however, if 
it is less than the optimum magnitude, the laser 
exposure might be insufficient to connect adjacent 
layers. Zhou et al. [5] have shown that hatch overcure 
is the second most important parameter with regard to 
the dimensional accuracy which its lesser magnitude 
results in a better accuracy. 
Hatch spacing (hs) is the distance between parallel 
vectors used to hatch the interior of the part. If the 
hatch spacing is less than the optimized magnitude, the 
solidifying vectors would overlap, causing more laser 
exposure absorption and subsequently more 
dimensional error. Also, if the hatch spacing is larger 
than the optimized magnitude, the liquid photopolymer 
would be trapped within the part to be solidified during 
postcuring operation, causing additional error.  
Lee et al. have investigated that medium to large hatch 
spacing are more appropriate to achieve better 
dimensional accuracy [6]. Horton et al. in an 
experimental study have showed that hatch spacing is 
the most effective parameter on curl distortion in parts 
created using stereolithography process [12]. Their 
observations also indicated that it is impossible to 
achieve desirable dimensional accuracy without 
applying fill cure depth. Hatch fill cure depth (hfc) is 
the depth of solid layers formed on the upper and lower 
faces of the solid, where it holds the remaining uncured 
photopolymer inside the part for subsequent postcuring. 

In solidifying layers, the borders of each layer are 
drawn first and then the district between borders would 
be hatched. Hatch strategy through style and extent of 
laser exposure transferred to resin has an evident 
impact on dimensional accuracy. Tri-Hatch and Weave 
are primitive strategies which are abolished nowadays; 
au courant methods are accomplished based on Star-
Weave strategy; researches, however, have resorted to 
some changes in hatch strategies in many cases 
depending on the relevant special geometries and 
layering. 
The Divergent STAR-WEAVE (DSW) is developed by 
Onuh and Hon based on the results of prior studies by 
Konig et al. [13]. This new strategy is based on the fact 
that when layers are scanned in only one direction, it 
results in one-sided curling of the parts. An alternating 
exposure of the layers, results in a more homogeneous 
structure of residual stress in the part and subsequently 
a higher part stability and dimensional accuracy would 
be achieved. DSW starts hatching from the middle of 
the part to one end in such a way that half of the part is 
first hatched. Then, the other half is scanned from the 
middle to the other end (Fig. 2). This process is 
repeated in either X or Y direction, where it results in 
more dimensional accuracy. 
 

 

Fig. 2 Divergent STAR-WEAVE [13] 

 

 

Fig. 3 Diagonal Divergent STAR-WEAVE [13] 
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The Diagonal Divergent STAR-WEAVE (DDSW) in 
fact is the modified DSW which is also proposed by 
Onuh and Hon [11]. The only difference in this strategy 
is that scanning is done diagonally from the middle of 
the part in such a way that half of the part is first 
scanned from the middle to one end before the other 
half is completed. In DDSW, scanning is at 45 degree 
to X and Y directions (Fig. 3).    
Onuh and Hon [11] investigated the parts built by 
Acrylate resin using DSW and DDSW hatch styles. 
They found that the layer thickness of 190μm would 
make good results with these new hatch strategies for 
dimensional accuracy and build time. 
The Circular STAR-WEAVE (CSW) is developed by 
Nosouhi and Rahmati, where this new method is based 
on the fact that by a more uniform distribution of the 
shrinkage stress throughout the part, the shrinkage 
strains decrease relatively [14]. According to this 
strategy, the hatches in X and Y directions are replaced 
with circular paths and radial hatches respectively. The 
circular hatches, in this method, are not joined to the 
previous layer by which the building shrinkage doesn’t 
apply any stress on the work piece. The radial hatches 
then join the new layer to the previous layers. Also, the 
direction of the radial hatches is changing in each layer; 
one layer from the center to the outside, and in the next 
layer, from outside to the center. They have 
acknowledged that those parts produced using CSW 
hatching method are more accurate than those which 
are being produced by STAR-WEAVE hatching 
method. 

2 EXPERIMENTAL METHOD 

Onuh and Hon [11] have studied also four parameters 
(i.e., layer thickness, hatch spacing, hatch overcure and 
hatch fill cure depth) and their impact on dimensional 
accuracy. In their study, the effects of the parameters 
shown in Table 1 on the product quality were 
determined experimentally.  
The following equipment were used in their 
investigation: Sun Sparc 10 and Silicon Graphics 
Indigo Workstations, 3D Systems Stereolithography 
Apparatus SLA-250 series 40, and a post-curing unit 
(PCU). The investigation was conducted in the Rapid 
Prototyping Centre and all dimensional measurements 
were taken using a Mitutoyo BHN-706 coordinate 
measuring machine (CMM) with an accuracy of ±5µm. 
The related experimental part is shown in Fig. 4. 
Onuh and Hon [11] used the Taguchi method for the 
selection of the experimental parameters in their work 
and as well as the analysis of the results. In the present 
study, distortion values measured by previous 
researchers, is modeled by Artificial Neural Network 
(ANN) in order to achieve correct prediction of 

dimensional accuracy and investigate the impact of 
these parameters on dimensional error. The value of 
dx1 is measured along the top edge DC; dx2 is 
measured along the top edge AB; and the value of dy is 
measured along the top edge BC, as shown in the 
experimental model in Fig. 4. Also, the experimental 
runs and level combination are shown in Table 2, 
where in next section it will be explained how these 
experimental data is modeled by neural network. 
 

Table 1 List of experimental parameters and their factor 
levels [11] 

Level 3 
(mm) 

Level 2 
(mm) 

Level 1 
(mm) 

 

0.250 0.190 0.125 Layer thickness 
 0.200 0.210 Hatch spacing (A) 
 -0.035 -0.04 Hatch overcure (B) 
 0.200 0.250 Hatch fill cure depth 

(C) 
 

 

Fig. 4  The experimental model [11] 
 
Table 2 The experimental runs and level combination [11] 
 Factor Level Factor Level Factor Level 
Runs A B C 
R1 1 1 1 
R2 1 2 2 
R3 2 1 2 
R4 2 2 1 

 
The results achieved from these experiments were 
presented by different graphs, however in this study 
these results are transformed in to numerical values in 
order to be used in Neural Network, as shown in Table 
3 (Appendix A). 

3 NEURAL NETWORK MODELING 

The artificial neural network mimics the function of 
human brain, simplifying the structure and function, 
and makes a mathematical model. The theory of ANNs 



Int  J   Advanced Design and Manufacturing Technology, Vol. 7/ No. 1/ March - 2014 63 
 

© 2014 IAU, Majlesi Branch 
 

will be discussed briefly to show how the ANN can be 
used to model the functional relationship between y and 
x. Several neural networks have been developed that 
are able to represent very accurate functions within 
certain parameter spaces. The network adopted here is 
the multilayer perceptron whose structure is fully 
connected as shown in Fig. 5 [6, 15].  
 

 

Fig. 5  The perceptron neural network structure [6] 
 
As the figure indicates, the network consists of a fixed 
number of layers and nodes on each layer (in this case, 
one hidden layer): wji denotes the weight, the strength 
between the ith node of the layer I and the jth node of 
layer J; oi , oj , ok and ol are the outputs of the ith, jth, kth 
and lth node of the corresponding layers respectively. 
This estimator has a few inputs (here: hatch style, layer 
thickness, hatch spacing, hatch overcure and hatch fill 
cure depth) and a few outputs (here: dimensional errors 
such as dx1, dx2 and dy). The perceptron has been 
trained first with experimental data (here: 35 cases), 
within certain cycles (here: 381 cycles) with definite 
learning rate (here: 0.6) and certain momentum (here: 
0.7), and then one or more validated data.  
 

Table 4 The neural network characteristics 
Number of hidden layer(s) 1 
Learning cycles 15501 
Training error 0.001912 
Validating error 0.030265 
Input columns 5 
Output columns 3 
Training example rows 33 
Validating example rows 3 
Input nodes 5 
Hidden layer nodes 7 
Output nodes 3 
Learning rate 0.6000 
Momentum 0.7000 
Validating ‘correct’ target 100.00٪ 
Target error 0.0100 

Fig. 6 shows the neural network which has been 
developed in this study. This model can predict 
dimensional accuracy with about 6% error probability 
which is considered a good prediction. It will be useful 
for users that can select best parameters for setup and 
can predict dimensional accuracy to be achieved. 
Furthermore, it shows that this model enjoys a good 
structure with precise analyses which can represent 
SLA process. The structure used in this study is a 
multilayer perceptron with characteristics as shown in 
Table 4.  
 

 
Fig. 6  Multi-layer perceptron developed in this study 

 
Table 5  Prediction of dimensional accuracy for 30th data 

 dx1 dx2 dy 
Real Value 1.6 1.4 1.2 
Predicted 

value 1.5766 1.5023 1.1707 

Error% 1.46 7.3 2.44 

4 RESULTS AND DISCUSSION 

The neural network was used to predict the dimensional 
accuracy of the 3 samples in post-train step. Table 5 
shows the predicted values against real values for 30th 
data, where error is defined Eq. (2). 
 
Error/100=│Real Value–predicted value│/Real Value       (2) 
 
Average error for 30th data amounts to 3.73%. Also, 
this prediction was done for 20th and 10th data, 
respectively, with average errors of 4.73% and 9.56%. 
The average of prediction errors for these three data is 
about 6%. This prediction is pleasing which 
demonstrates that the ANN developed in this study 
represents satisfactory SL process and its analyses are 
true.  
In artificial neural network, nodes with a higher sum of 
weights are more important than other nodes or 
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parameters. These weights are determined in training 
step through using experimental data. The sum of the 
weights connected to every node, actually signifies the 
“importance” of each parameter. 
 

 
Fig. 6  The importance of parameters 

 
As shown in Fig. 6, layer thickness is the most 
important parameter in dimensional accuracy (with 
72.8247 as its sum of weights), and then, respectively, 
hatch style (59.2407), hatch spacing (22.7762), hatch 
fill cure depth (20.4420) and hatch overcure (with 
11.4005 as its sum of weights).  
So, the model proposed in this study, indicates that 
these five parameters have a significant impact on 
dimensional accuracy in SLA parts; the layer thickness 
enjoys highest importance among the abovementioned 
parameters. Moreover, this study demonstrated that 
ANN is able to predict precisely the dimensional 
accuracy for SLA parts. 

5 CONCLUSION 

1- The artificial neural network with multi-layer 
perceptron possessing a hidden layer structure is a good 
model for modeling SLA process and prediction of 
dimensional accuracy.  
2- The layer thickness is the most important parameter 
with regard to dimensional accuracy, followed by hatch 
style, hatch spacing, hatch fill cure depth and hatch 
overcure respectively.  
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APPENDIX 

Table 3 The achieved values (inputs and outputs) from experiments for using in neural network 

 Runs Hatch 
Style 

lt 
(mm) 

hs 
(mm) 

ho 
(mm) 

hfc 
(mm) 

dx1 
(mm) 

dx2 
(mm) 

dy 
(mm) 

0 R1 SW 0.125 0.210 0.04 0.250 0.4 0.05 0.2 
1 R4 SW 0.125 0.200 0.035 0.250 1.2 1.2 1.56 
2 R1 SW 0.190 0.210 0.04 0.250 1 1.2 0.5 
3 R4 SW 0.190 0.200 0.035 0.250 2.8 3 3.3 
4 R1 SW 0.250 0.210 0.04 0.250 0.64 0.3 0.64 
5 R4 SW 0.250 0.200 0.035 0.250 0.52 0.6 0.4 
6 R2 SW 0.125 0.210 0.035 0.200 1.1 0.76 0.6 
7 R3 SW 0.125 0.200 0.04 0.200 0.6 0.52 0.8 
8 R2 SW 0.190 0.210 0.035 0.200 2.3 2.5 2.5 
9 R3 SW 0.190 0.200 0.04 0.200 2.3 3.5 3.5 

10 R2 SW 0.250 0.210 0.035 0.200 1.52 1.3 1.8 
11 R3 SW 0.250 0.200 0.04 0.200 1.2 1.3 1.4 
12 R1 DSW 0.125 0.210 0.04 0.250 1.52 1.12 0.88 
13 R4 DSW 0.125 0.200 0.035 0.250 1.12 1.48 1.2 
14 R1 DSW 0.190 0.210 0.04 0.250 1.2 1.5 1 
15 R4 DSW 0.190 0.200 0.035 0.250 0.4 0.8 0.5 
16 R1 DSW 0.250 0.210 0.04 0.250 1 0.8 0.92 
17 R4 DSW 0.250 0.200 0.035 0.250 2.32 2.4 1.6 
18 R2 DSW 0.125 0.210 0.035 0.200 0.8 1.12 1.16 
19 R3 DSW 0.125 0.200 0.04 0.200 1.2 1.12 1.16 
20 R2 DSW 0.190 0.210 0.035 0.200 0.5 0.8 1.5 
21 R3 DSW 0.190 0.200 0.04 0.200 1 1 0.5 
22 R2 DSW 0.250 0.210 0.035 0.200 2.32 2.2 1.6 
23 R3 DSW 0.250 0.200 0.04 0.200 1.8 1.55 1.2 
24 R1 DDSW 0.125 0.210 0.04 0.250 1.6 1.48 1.2 
25 R4 DDSW 0.125 0.200 0.035 0.250 2 2 1.8 
26 R1 DDSW 0.190 0.210 0.04 0.250 0.8 0.9 0.6 
27 R4 DDSW 0.190 0.200 0.035 0.250 0.4 0.5 0.5 
28 R1 DDSW 0.250 0.210 0.04 0.250 1.6 1.7 1.5 
29 R4 DDSW 0.250 0.200 0.035 0.250 1.6 1.3 1.2 
30 R2 DDSW 0.125 0.210 0.035 0.200 1.6 1.4 1.2 
31 R3 DDSW 0.125 0.200 0.04 0.200 1.92 1.88 1.56 
32 R2 DDSW 0.190 0.210 0.035 0.200 0.8 0.9 0.6 
33 R3 DDSW 0.190 0.200 0.04 0.200 0.4 0.4 0.2 
34 R2 DDSW 0.250 0.210 0.035 0.200 1 2 1.4 
35 R3 DDSW 0.250 0.200 0.04 0.200 1.88 2 1.6 

 


