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Abstract: Cutting the Titanium alloys is a complicated task which cannot be 
performed by traditional methods and modern machining processes, such as Wire 
electro-discharge machining (WEDM) process which are mainly used for this 
purpose. As a result of the high price of the Ti-6Al-4V alloy, proper tuning of the 
input parameters so as to attain a desired value of the surface roughness is an 
important issue in this process. For this purpose, it is necessary to develop a 
predictive model of surface roughness based on the input process parameters. In this 
paper, The Taguchi method was used for the design of the experiment. According to 
their effectiveness, the input parameters are pulse-on time, pulse-off time, wire 
speed, current intensity, and voltage; and the output parameter is surface roughness. 
However, a predictive model cannot be defined by a simple mathematical expression 
as a result of the complicated and coupled multivariable effect of the process 
parameters on the surface roughness in this process. In this study, application of the 
relevance vector machine as a powerful machine learning algorithm for modeling 
and prediction of surface roughness in wire electro-discharge machining for Ti-6Al-
4V titanium alloy has been investigated. The predicting result of model based on the 
root means square error (RMSE) and the coefficient of determination (R2) statistical 
indices, prove that this approach provides reasonable accuracy in this application.  
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1 INTRODUCTION 

In recent decades, the Ti-6Al-4V titanium alloy has 

widely been used in many industrial and medical 

applications due to its low density, high strength and 

corrosion resistance and excellent mechanical 

properties. It has applied in a wide range of applications 

from implants for dental and orthodontic wires to the 

chemical industry and gas turbines. As a result of special 

mechanical and metallurgical properties of this alloy, 

such as poor thermal conduction, extreme tendency to 

chemical reaction with cutting tool, and low elasticity 

modulus, Titanium alloys are difficult to cut by 

traditional methods and in some instances these methods 

may lead to several problems such as tolerances, 

tendency to weld onto tool’s surface and rapid tool 

destruction, and occurrence of chatter phenomenon in 

long parts [1].  

Wire electro-discharge machining (WEDM) and 

electrical discharge machining (EDM) are modern 

machining processes [2], [3] proven to be efficient for 

cutting the Titanium alloys. Surface roughness is an 

important factor in this process. As a result of the high 

price of this alloy and its special applications in sensitive 

parts such as implants, proper tuning of the WEDM 

parameters to achieve a desirable surface roughness has 

always been a crucial problem in this process. Therefore, 

it is important to investigate the mathematical 

relationship between surface roughness and the process 

parameters. However, no explicit mathematical 

expression has been proposed for this purpose. 

Thanks to the advances in machine learning, many 

problems in engineering can now be solved easier. 

Supervised machine learning algorithms provide us with 

the possibility of generating models based on a limited 

set of observations. Therefore, application of supervised 

machine learning tools can be applied to generate a 

model from the dependency of surface roughness to 

WEDM parameters based on a limited set of 

measurements. Nevertheless, few studies have been 

performed for modeling surface roughness in wire 

electro-discharge machining for Ti-6Al-4V titanium 

alloy and investigation of supervised learning 

algorithms for this purpose can be helpful for the 

researchers in this field. 

The performance of machine learning algorithms is 

largely dependent on the quantity and accuracy of 

databases used for training the models. For this purpose, 

Taguchi experiment design method was applied for 

designing the experiments to obtain a database of surface 

roughness and the corresponding WEDM parameters. 

Based on this database, the performance of both the 

relevance vector machine (RVM) and the support vector 

machine (SVM) algorithms are evaluated by means of 

standard statistical indices, which prove the RVM 

method to be efficient in this field based on the precision 

and generalization capability of the models. The main 

advantage of RVM-based modelling over the previous 

works is the acceptable accuracy and generalization 

capability of this approach, although the reduced number 

of measurements were obtained based on the 

experiments designed by the Taguchi method. 

2 LITERATURE REVIEW 

Tosun et al. [4] investigated the effect of the parameters, 

namely, wire speed, voltage, pulse-on time, and spray 

pressure of dielectric on kerf width and material removal 

rate using Taguchi experiments design. Based on the 

obtained signal per noise ratio, the voltage and pulse-on 

time parameters become more effective on output 

parameters. Muthu et al. [5] used a hybrid of Taguchi 

and GRA to achieve high optimized material removal 

rate, low surface roughness, and small kerf width 

simultaneously. According to the experiment results of 

titanium cutting, Arikatla et al. [6] figured out that the 

surface roughness increases with the rise of feed rate, 

pulse-on time, and current intensity of spark; on the 

other hand, the surface roughness decreases with the rise 

of the average gap voltage, wire speed, dielectric spray 

pressure, and wire tension.  

Jangra et al. [7] proceeded to simultaneously optimize 

the material removal rate and surface roughness, 

employing a hybrid of Taguchi method, gray surface 

analysis, and entropy measurement. The entropy 

measurement was used for determining the weights of 

the machining parameters. Foorginejad et al. [8] used the 

neural network to model the electro-discharge process. 

They applied the obtained model for optimization of 

material removal rate and tool wear by means of firefly 

algorithm.  

Shabgard et al. [9] utilized the fuzzy logic to 

successfully predict the parameters of electro-discharge 

machining. According to their study, the surface 

roughness rises with the increase of current and spark 

occurrence time. Ugrasen et al. [10] considered four input 

parameters, namely, pulse-on time, pulse-off time, 

current, and speed, and investigated their impact on 

material removal rate, wire wear, and surface roughness. 

In order to approximate the target parameters such as 

surface roughness, tool wear, and material removal rate, 

they used multiple linear regression (MRA) and group 

method of data handling (GMDH) models.  

In the present study, Taguchi experiment design method 

was applied for designing the experiments. By operating 

the Taguchi table’s experiments and collecting data, the 

modeling of data was carried out using relevance vector 

machine. The results from the implementation suggested 

that any of the presented methods are efficient, despite 

the simplicity, for modeling the surface roughness in the 

cutting process of Ti-6Al-4V titanium alloy. 
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3 WIRE ELECTRO-DISCHARGE MACHINING 

The process of wire electro-discharge machining 

(WEDM) uses a source of thermo-electrical energy for 

material removal. In this process, repetitive controlled 

sparks which occur between the electrode and work 

piece are used to cut it. The electrode is a thin wire that 

is fed by a spool and passes through the part, and is 

wound by another mechanism from the other side. There 

is a small distance between the wire and the work piece 

that is called ‘gap’ which is filled by the dielectric liquid 

during the machining. The electric discharge occurs 

between the wire and the work piece with appropriate 

voltage, and the produced sparks locally evaporate it. 

Then, the dielectric liquid washes them off and the 

material removal process is done. The schematic view of 

the electro-discharge wire cut process is depicted in 

“Fig. 1” [11]. 

 

 
Fig. 1 Schematic of the WEDM process [11]. 

 

The ability to produce parts with high dimensional 

precision, controllable surface quality and the possibility 

to create sharp edges are the advantages of electro-

discharge wire cut machining [12]. In addition, the 

manufacturing process is not affected by the strength and 

hardness of the machined part. 

As depicted in “Fig. 2”, many parameters affect the 

electro-discharge wire cut process, and proper tuning of 

these parameters contributes to the improvement of the 

material removal rate and surface roughness [13]. 

Several studies have been performed to determine the 

proper parameters in order to achieve the desirable 

surface quality. 

 
Fig. 2 The Ishikawa cause and effect diagram [13]. 

4 SURFACE ROUGHNESS 

Surface roughness is an important criterion in 

determining the surface quality of machined parts. 

Surface roughness can be defined as an indicator of the 

material tissue, which represents the unevenness of a 

surface in comparison with a smooth surface. Various 

methods are used for measuring the surface roughness, 

which is divided into two groups, namely, contact and 

non-contact. In the present research, contact method has 

been used for measuring the cut surface roughness. For 

evaluation of the surface roughness, three different 

indices have been proposed by researchers which are 

arithmetical mean roughness Ra, ten-point mean 

roughness Rz, and root mean square roughness Rq, from 

which the arithmetical mean roughness is mainly used in 

the literature. This index is calculated using the relations 

(1) and (2) [11], as shown in “Fig. 3”. 

 

 
Fig. 3 Scheme of surface roughness Ra [11]. 



16                                  Int  J   Advanced Design and Manufacturing Technology, Vol. 11/ No. 4/ December – 2018 
  

© 2018 IAU, Majlesi Branch 
 

5 EXPERIMENTAL DETAILS 

In the electro-discharge wire cut process, a series of 

sparks have to be generated between the wire and work 

piece via a constant electrical field in a dielectric 

environment, leading to the cutting of the work piece. 

The spark is generated in the presence of dielectric liquid 

with proper setting of the applied voltage. The machine 

utilized to conduct the experiments was a CNC 5-axis 

electro-discharge wire cut machine of Charmilles 

Robofill 310F model with two generators, i.e. iso-pulse 

and iso-frequency, and the experiments were carried out 

by the iso-pulse generator. The surface roughness was 

considered as the process efficiency parameter.  

As Ishikawa effects diagram shows, the surface 

roughness is related to process input parameters such as 

pulse-on time (Ton), pulse-off time (Toff), wire speed, 

current, and voltage. Proper setting of the machining 

parameters can improve the surface quality by reducing 

its roughness value. In order to run the experiment, a 9-

mm-thick titanium alloy specimen was cut by the 

electro-discharge wire cut process. “Table 1ˮ shows the 

chemical composition of the titanium alloy used. 

Surface roughness was measured by the Taylor-Hobson 

surface roughness tester as shown in “Fig. 4”. For each 

specimen, the surface roughness was measured 3 times 

based on Ra, and the average roughness value was 

calculated and considered as the surface roughness 

value. 

 
Table 1 The chemical composition of Ti-6Al-4V 

Component Al Fe Sn V Ti 

Weight % 6.22 0.187 0.56 3.35 89.6 

6 PROCESS CONTROL PARAMETERS AND 

TAGUCHI STANDARD ORTHOGONAL ARRAY 

SELECTION 

Taguchi method is a powerful approach for designing 

experiments to obtain the optimized values of the 

process parameters and has been proven as one of the 

most effective methods for manufacturing products with 

high quality and low cost. Unlike the full factorial design 

of experiments [14] reduction of experiments is one of 

the main benefits of using this method [15]. As it was 

indicated, in this study, the input parameters are pulse-

on time, pulse-off time, wire speed, current intensity, 

and voltage, and the output parameter is surface 

roughness. The ranking of control parameters is shown 

in “Table 2ˮ.  

Taguchi orthogonal array is selected based on the 

different levels for the entire input parameters. The 

orthogonal array is a special matrix which includes 

different levels of the input parameters. Each row of the 

matrix shows a different unique condition of the 

experiment, while each column contains the entire levels 

of a specific input parameter which are equally iterated. 

 

 

Fig. 4 Measurement of the surface roughness. 

 

 
Table 2 The Process parameters and their levels 

Process 

parameter 

Unit Level 

1 

Level 

2 

Level 

3 

Level 

4 

Gap voltage v 35 45 55 65 

Discharge 

current 

A 6 8 10 12 

Pulse on time 

(Ton) 

µs 0.6 0.8 1 1.2 

Pulse off time 

(Toff) 

µs 4 6 8 10 

Wire feed rate m/s 1 1.5 2 2.5 

7 SUPPORT VECTOR MACHINE REGRESSION 

In recent decades, the need for systems that can learn 

from limited information and solve complex decision 

problems has become more important as a result of the 

rapid advances in information processing systems. The 

study and construction of algorithms, capable of learning 

from and making predictions based on a limited set of 

observed data are explored in a subfield of computer 

science known as machine learning [13]. In supervised 

learning, given a set of N input vectors {xn} n=1
N  and the 

corresponding targets {tn} n=1
N , we want to learn a model 

of the dependency of the targets on the inputs in order to 

predict the targets in case of inputs which have not been 

observed [15]. 

Support vector machines (SVMs) are supervised 

learning models with associated learning algorithms that 

analyse data and recognize patterns, used for 

classification and regression analysis. The initial form of 

the support vector machines was a generalization of the 

Generalized Portrait algorithm, developed in the 1960s. 

However, the present form of the SVMs, was developed 

by Vapnik and his coworkers at the AT&T Bell 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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Laboratories in the 1990s [16]. In SVM-based 

regression, in order to estimate a function in form of “Eq. 

(1)ˮ based on a limited set of observations, the input 

space is mapped into a high dimensional feature space 

via the kernel function ϕ(x)  and then a linear optimal 

regression is performed in this space. 

 

y = f(x) =  wTϕ(x) + w0                                            (1) 

 

The vector of weights w and the bias w0 are estimated 

based on structural risk minimization principles [17], by 

solving the following optimization problem: 

 

min {𝑅(𝑤) =
1

2
‖𝑤‖2 + 𝐶 . ∑ 𝜉𝑖 + 𝜉𝑖

∗
𝑁

𝑖=1
} 

 

s.t. {

𝑦𝑖 −  (𝒘𝑻𝜙(𝑥𝑖) + 𝑏) ≤ 𝜀 +  𝜉𝑖  

(𝒘𝑻𝜙(𝑥𝑖) + 𝑏) −  𝑦𝑖 ≤ 𝜀 + 𝜉𝒊
∗ 

𝜉𝑖و  𝜉𝑖
∗ ≥ 0   ,   i = 1, … , N

                                  (2) 

 

Where C is the regularization factor, ε is the insensitivity 

parameter and ξiand ξi
∗  are slack variables, calculated 

based on the Vapnik’s ε-insensitive loss function, as: 

 

ξ =  |y − f(x)|ε = max{0, |y − f(x)| − ε}                  (3) 

 

Figure 5 depicts the concept of ε -insensitivity in SVM-

based regression. The optimization problem can be 

solved via quadratic programming optimization and the 

estimated function is expressed based on the optimal 

values as: 

 

f(x) = y(xi, w) = ∑ wiK(x, xi) +  w0
N
i=1                      (4) 

 

Where N is the number of training samples and K(x, xi) 

is calculated as: 

 

K(xk, xi) =  〈φ(xk), φ(xi)〉      ( k , i = 1, … , N)                (5) 

 

The training samples associated with non-zero weights 

are called the support vectors, which determine the 

number of necessary kernel functions for estimating a 

function. The Gaussian radial basis function (RBF) 

kernel is the most popular kernel function in SVM and 

other kernel methods, expressed as: 

 

𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥−𝑥𝑖‖2

2𝜎2 )                                        (6) 

 

Where 𝜎2 is the kernel function's parameter. The key 

feature of the SVMs is the minimization of the structural 

risk besides the empirical risk, resulting in model 

sparseness besides accuracy and state-of-the-art results 

have been reported on many tasks where SVMs have 

been applied [18]. 

 
Fig. 5 SVM-based regression and the concept of 𝜺 –

insensitivity. 
 

Despite its widespread success, the SVM methodology 

suffers from some important disadvantages [19]: 

 SVM makes point predictions and the 

predictions are not probabilistic. Ideally, estimation of a 

conditional distribution of the outputs 𝑝(𝑡|𝑥) is desired 

in order to capture uncertainty in prediction. Although, 

posterior probability estimates have been coerced from 

SVMs via post-processing, they have been argued to be 

unreliable. 

 Although relatively sparse, SVMs make liberal 

use of kernel functions, the requisite number of which 

grows steeply with the size of the training set. 

 It is necessary to estimate the regularization 

parameter 'C', which trades off between the error and 

margin, and the insensitivity parameter 𝜀, as the margin 

of tolerance in function estimation. For this purpose, a 

cross-validation procedure is mainly necessary, which is 

wasteful both data and computation. 

The kernel function 𝐾(𝑥, 𝑥𝑖) must satisfy the mercer's 

condition. That is, it must be the continuous symmetric 

kernel of a positive integral operator. 

8 RELEVANCE VECTOR MACHINE REGRESSION 

To overcome the shortcomings of support vector 

machines, a fully probabilistic framework termed 

http://en.wikipedia.org/wiki/Quadratic_programming
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
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relevance vector machine (RVM) has been used. RVM 

is a nonlinear pattern recognition model with a simple 

structure based on Bayesian Theory and Marginal 

Likelihood. In addition to the improving the 

inadequacies of SVM, RVM utilizes a very fewer 

number of kernel functions. Therefore, it has been used 

in wide variety of applications, such as wind power 

grouping forecast, power system disturbance 

classification, load forecasting, canal flow prediction, 

EEG signal characterization and pneumatic actuator 

fault diagnosis. But its application has not yet been 

investigated for modeling the wire electro-discharge 

machining process. In RVM-based regression, in order 

to predict a function based on a set of N input-target 

pairs{𝑥𝑛 , 𝑡𝑛}𝑛=1
𝑁 , each target is modeled as a function of 

the corresponding inputs with additive white Gaussian 

noise to accommodate measurement error on the target: 

 

𝑡𝑖 = 𝑦(𝑥𝑖 , 𝑤) + 𝜀𝑖 (7) 
 

𝜀𝑖 is assumed to be mean-zero Gaussian with variance 

𝜎2 and similar to the SVM, 𝑦(𝑥, 𝑤) is considered as a 

linear combination of N kernel functions centered at the 

training samples inputs, in form of “Eq. (1)ˮ. Therefore, 

with the assumption that we know y(xn), each target is 

independently distributed as Gaussian with the mean 

𝑦(𝑥𝑛) and variance 𝜎2, expressed as: 

 

𝑝(𝑡𝑛|𝑥) = 𝑁(𝑡𝑛|𝑦(𝑥𝑛), 𝜎2) (8) 
 

Due to the assumption of independence of the targets, 

the likelihood function of the whole samples can be 

written as: 
 

𝑝(𝒕|𝒘,𝜎2) =  
𝑒

{
−‖𝒕−𝝋 𝒘‖2

2𝜋𝜎2 }

(2𝜋𝜎2)
𝑁
2

 (9) 

 

Where: 

 

𝒕 = (𝑡1 … 𝑡𝑁)𝑇 (10) 

𝒘 = (𝑤0 … 𝑤𝑁)𝑇 (11) 
 

And 𝝋 is an N*(N+1) matrix, defined as: 

 

𝝋 = [ 𝜑(𝑥1), 𝜑(𝑥2), … , 𝜑(𝑥𝑁)]𝑇 (12) 
 

In which the vector 𝜑(𝑥𝑛) is calculated as: 

 

𝜑(𝑥𝑛) =  [
1, 𝐾(𝒙𝑛 , 𝒙1), 𝐾(𝒙𝑛 , 𝒙2)

, …  , 𝐾(𝒙𝒏 , 𝒙𝑁)
]

𝑇

 , 𝑁         

= 1, … , 𝑁 

(13) 

It is expected that maximum likelihood estimation of w 

and 𝜎2 from (9) would lead to over-fitting. Therefore, 

additional constraints must be imposed on the 

parameters. For this purpose, a ‘prior’ zero-mean 

Gaussian probability distribution is assumed for the 

weights as follows: 

 

𝑝(𝒘|𝜶) = ∏ 𝑁(𝑤𝑖|0, 𝛼𝑖
−1)

𝑁

𝑖=0

 (14) 

 

Where 𝜶 is a vector of N+1 hyper-parameters. The 

variance of this Gaussian probability distribution, 𝛼𝑖
−1 

controls how far from zero each weight is allowed to 

deviate, and a very large value for 𝛼𝑖 means that the 

corresponding weight, 𝑤𝑖  is estimated to be zero. Using 

Bayesian posterior inference, the posterior over w is 

computed as: 

 

𝑝(𝒘|𝒕, 𝜶, 𝜎2) =  
𝑝(𝑡|𝑤,𝜎2)  𝑝(𝑤|𝛼)

𝑝(𝑡|𝛼,𝜎2) 
    

=  (2𝜋)− 
𝑁

2   |∑|− 
1

2  𝑒
{− 

(𝑤−µ)𝑇 ∑−1 (𝑤−µ)

2
}
                      (15)       

 

Where ∑ and µ are calculated as: 

 

∑ =  (𝜎−2𝝋𝑇𝝋 + 𝑨)−𝟏  (16) 

µ =  𝝈−𝟐∑𝝋𝑻 𝒕 (17) 
 

Where in A is a diagonal matrix formulated as: 

 

𝐴 = 𝑑𝑖𝑎𝑔(𝛼0, 𝛼1, … , 𝛼𝑁) (18) 
 

Integrating 𝑝(𝒘|𝒕, 𝜶, 𝜎2) over the weights w, it can be 

concluded that: 

 

𝑝(𝒕|𝜶, 𝜎2) =  ∫ 𝑝(𝒕|𝒘, 𝜎2) 𝑝(𝒘|𝜶) 𝑑𝒘 (19) 

 

The integral above is a convolution of Gaussians, and 

can be calculated as: 

 

𝑝(𝒕|𝜶, 𝜎2) = (2𝜋)− 
𝑁
2   |Ω|− 

1
2  𝑒

{− 
𝒕𝑇 Ω−1 𝒕

2
}
 (20) 

Where Ω is a matrix defined as: 

 

Ω =  𝜎2 𝑰 + 𝝋 𝑨−1𝝋𝑇  (21) 
 

Learning process of RVM can be described as a search 

for the parameters 𝜶 and 𝝈𝟐 which maximize the 

marginal likelihood of 𝑝(𝒕|𝜶, 𝜎2) based on the training 

dataset. The optimal parameters cannot be obtained in 

closed form, and they are estimated using an iterative re-

estimation procedure. Following the approach of 

MacKay, the following iterative relationship can be 

obtained for estimating the hyper-parameters 𝛼𝑖 by 

differentiation of 𝑝(𝒕|𝜶, 𝜎2) in “Eq. (20)ˮ with respect 

to log (𝛼𝑖) and equating it to zero. 
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𝛼𝑖
𝑛𝑒𝑤 =

1 − 𝛼𝑖∑𝑖𝑖

𝜇𝑖
2  (22) 

 

Where 𝜇𝑖 is the i-th element of the vector µ in “Eq. (17)ˮ, 

and the i-th diagonal element of the matrix ∑ in “Eq. 

(16)ˮ. For the noise variance 𝜎2, the following update 

formula is obtained by setting the derivative of the 

marginal likelihood with respect to log (𝛼𝑖) to zero: 

 

(𝜎2)𝑛𝑒𝑤 =  
‖𝒕 − 𝝋𝝁‖2

𝑁 − ∑ (1 −  𝛼𝑖∑𝑖𝑖)𝑁
𝑖=0

 (23) 

 

Iterative calculation of the parameters 𝛼𝑖 and  𝜎2 from 

“Eq. (22)ˮ, “Eq. (23)ˮ concurrent with updating of the 

posterior statistics ∑ and µ from “Eq. (16)ˮ, “Eq. (17)ˮ 

is repeated until some suitable convergence criteria have 

been satisfied. In this procedure, many of the hyper-

parameters 𝛼𝑖 tend to infinity, which means that the 

probability distribution of the corresponding weights, 𝑤𝑖  

is peaked at zero and they are estimated to be zero, thus 

pruning many of the kernel functions used in “Eq. (1)ˮ, 

which results in the sparseness of the model. The 

training set, which associates with the remaining 

nonzero weights is called the relevance vector. 
After convergence of the hyper-parameter estimation 

procedure and obtaining the maximizing values  𝜶𝑀𝑃 

and 𝜎𝑀𝑃
2 , the predictions are made based on the posterior 

distribution over the weights conditioned on them. It has 

been proven in that the predictive distribution for a new 

input sample 𝑥∗ has a Gaussian distribution, expressed 

as: 

 

𝑝(𝑡∗|𝑡) = 𝑁(𝑡∗|𝑦∗, 𝜎∗
2) (24) 

 

Where 𝑦∗ and 𝜎∗
2 are the predicted mean and variance 

values, calculated as: 

 

𝑦∗ =  𝝁𝑇 𝝋(𝒙∗) (25) 
 

𝜎∗
2 =  𝜎𝑀𝑃

2 +  𝝋(𝒙∗)𝑇 ∑ 𝝋(𝒙∗) (26) 
 

𝜑(𝒙∗) =  [
1, 𝐾(𝒙∗ , 𝒙1), 𝐾(𝒙∗ , 𝒙2),

 … , 𝐾(𝒙∗ , 𝐱N)
]

𝑇

, 𝑁          

= 1, … , 𝑁 

 

(27) 

 

 

 

 

 

 

9 RESULTS AND DISCUSSION 

In order to obtain a database for training the models, 

Taguchi method was employed to design the 

experiments and the mean surface roughness was 

measured for different process parameters set based on 

the Taguchi's L-16 standard array. From the obtained 

database shown in “Table 3ˮ, twelve measurements 

were used for generating the model and four of them, 

indicated by *, were applied to test the model accuracy. 

To improve the accuracy, all the input and target values 

were normalized between −1 and +1 as: 

 

𝑝𝑛 = 2 ∗
𝑝 − (

𝑚𝑎𝑥 + 𝑚𝑖𝑛
2

)

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)
    (28) 

 

Where, max and min are respectively the maximum or 

minimum value of the input or the output among the 

whole dataset, 𝑝 is the input or output and 𝑝𝑛 is the 

corresponding normalized value. Based on the 

normalized dataset, RVM and SVM models were 

implemented by the SparseBayes package for MATLAB 

and the SVM-km toolbox and predicted outputs were 

scaled to their original range based on “Eq. (29)ˮ, as: 

 

�̂� = 𝑦𝑛 ∗ (
𝑚𝑎𝑥 − 𝑚𝑖𝑛

2
) + (

𝑚𝑎𝑥 + 𝑚𝑖𝑛

2
) (29) 

 

Where �̂� is the predicted output in the original range and 

𝑦𝑛 is the normalized predicted output. The accuracy of 

the final models was evaluated based on the root means 

square error (RMSE) and the coefficient of 

determination (R2) statistical indices, defined as: 

 

𝑅𝑀𝑆𝐸 =  √
∑ ( 𝑦𝑖  −  𝑦�̂�  )

2𝑁
𝑖=1

𝑁
 (30) 

  

𝑅2 = 1 − 
∑ ( 𝑦𝑖  −  𝑦�̂�  )

2𝑁
𝑖=1

∑ ( 𝑦𝑖  −  �̅�  )2𝑁
𝑖=1

 (31) 

 

In these equations, 𝑦𝑖  and 𝑦�̂� are the measured and the 

predicted outputs, respectively, N is the number of 

training samples, 𝑦𝑚𝑎𝑥  and 𝑦𝑚𝑖𝑛 are the maximum and 

minimum values of the measured outputs and �̅� is the 

mean value of the measured output, calculated as: 
 

�̅�  =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 (32) 
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Table 3 The 4 different levels of the input parameters, set based on the Taguchi's L-16 standard array 

Expt. No. 
Gap voltage 

(A) 

Discharge 

current (V) 

Pulse on 

time (μs) 

Pulse off 

time (μs) 

Wire feed rate 

(m/s) 

Mean Surface 

Roughness 

(μm) 

1 1 1 1 1 1 3.0000 

2 1 2 2 2 2 2.3933 

3 1 3 3 3 3 2.6467 

4 1 4 4 4 4 3.3733 

5 2 1 2 3 4 2.6333 

6 2 2 1 3 4 2.0533 

7 2 3 4 1 2 2.9333 

8 2 4 3 2 1 2.7133 

9 3 1 3 4 2 2.5000 

10 3 2 4 3 1 2.9600 

11 3 3 1 4 4 2.0200 

12 3 4 2 1 3 2.6067 

13 4 1 4 2 3 2.7467 

14 4 2 3 1 4 2.4133 

15 4 3 2 4 1 2.1733 

16 4 4 1 3 2 2.0200 

 

 

The calculated value of indices is listed in “Table 4ˮ. For 

the purpose of comparison, the ratio of RMSE to the 

maximum value of the measured outputs (𝑦𝑚𝑎𝑥) is also 

added to the table. The RVM and SVM kernel and model 

parameters, obtained by minimizing the training root 

mean square error are also listed in Table 5. 

 

Table 4 The Statistical indices for evaluation of the RVM 

and SVM 

Database Method RMSE 
RMSE/y_ma

x  
R2 

Training 

RVM 
1.095×

10-4 
6.9×10-8 1 

SVM 
2.7×10

-7 
6.9×10-8 1 

Testing 
RVM 0.1694 0.0502 

0.875

6 

SVM 0.2237 0.0663 0.783 

 

As it can be observed, the RVM method has a good 

performance for the training data and a better 

performance for the test data and therefore a better 

generalization capability than the SVM method. The 

measured outputs together with the outputs predicted by 

the RVM method are depicted in “Fig. 6”, showing a 

good agreement between them. 

 
Table 5 The RVM and SVM parameters 

RVM kernel parameter 

 

2.2437 

SVM kernel parameter 2.03 

SVM regularization factor (C) 100 

SVM insensitivity parameter (𝜀) 10-9 

 

In this survey, the surface roughness was evaluated in 

terms of the arithmetical mean roughness Ra index with 

four different levels of the input parameters, including 

the gap voltage, discharge current, pulse on-time, pulse 

off-time and wire feed rate. With respect to the 

uncertainty in measurements, Ra is calculated three 

times for each sample. The results are shown in “Table 

6ˮ. 
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Fig. 6 The measured outputs and the outputs predicted by RVM. 

 
Table 6 The mean, standard deviation and uncertainty of samples 

Expt. No. 
Ra1 

(µm) 

Ra2 

(µm) 

Ra3 

(µm) 

Mean Surface 

Roughness 

Standard 

deviation 
Uncertainty 

1 2.84 2.04 3.12 3.0000 0.1178 0.1183 

2 2.3 2.42 2.46 2.3933 0.0680 0.0690 

3 2.46 2.72 2.76 2.6467 0.1330 0.1335 

4 2.9 3.58 3.64 3.3733 0.3356 0.3358 

5 2.64 2.56 2.7 2.6333 0.0573 0.0585 

6 2.1 2.04 2.02 2.0533 0.0340 0.0359 

7 3.4 2.58 2.82 2.9333 0.3442 0.3444 

8 2.84 2.7 2.6 2.7133 0.0984 0.0991 

9 2.52 2.22 2.76 2.5000 0.2209 0.2212 

10 3.02 2.88 2.98 2.9600 0.0589 0.0600 

11 1.84 2.08 2.14 2.0200 0.1296 0.1301 

12 2.9 2.42 2.5 2.6067 0.2100 0.2103 

13 2.78 2.72 2.74 2.7467 0.0249 0.0275 

14 2.62 2.3 2.32 2.4133 0.1464 0.1468 

15 2 2.36 2.16 2.1733 0.1473 0.1477 

16 2.04 1.92 2.1 2.0200 0.0748 0.0757 

 

 

The uncertainty in measurements is inevitable and is 

calculated based on “Eq. (33)ˮ, in which S and R are the 

standard deviation and resolution, respectively. The 

Roughness meter used, has a resolution of 0.02µm. 

“Table 6ˮ shows the mean, standard deviation and 

uncertainty for the samples of “Table 3ˮ.  

 

u = √S2 + (
R

√3
)

2

 (33) 

10 CONCLUSION 

Due to the high price of Ti-6Al-4V titanium alloy and its 

special applications in sensitive parts, proper tuning of 

the parameters of the wire electro-discharge machining 

process, as the most common process for machining this 

alloy, is an important issue which provides the 

possibility of achieving a desirable surface roughness. 

To this end, it is greatly important to the development of 

a global model of surface roughness based on the 
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process parameters, which are pulse-on time, pulse-off 

time, wire speed, current, and voltage. For this purpose, 

based on the experiments designed by the Taguchi 

method, a database of the parameters and the 

corresponding measurements of the surface roughness is 

obtained. Using this database, the surface roughness is 

modeled by both the support vector machine and the 

relevance vector machine, as advanced machine learning 

techniques and the accuracy and generalization 

capability of the models is evaluated. Results show that 

modeling this process based on the relevance vector 

machine provides reasonable accuracy besides 

generalization capability and can be used to tune the 

process parameters to achieve a desirable amount of 

surface roughness. 
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