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Abstract: 5XXX series of aluminum alloys are a category of novel alloys suitable 
for construction of ship hulls and the topside structures of offshore platforms. 
Within different 5XXX aluminum alloys, AA5083 is of great importance which is 
extensively used in ship construction industry. In the present study, formability of 
AA5083-H111 aluminum alloy is investigated at room temperature using uni-axial 
tensile tests and hydraulic bulge tests. Tensile tests were performed to evaluate 
material anisotropy in different directions with respect to rolling direction. 
Anisotropy coefficients were then used to correct flow stress curves obtained by 
balanced biaxial bulge tests. Moreover, flow stress curves obtained from both tests 
were separately introduced to an explicit commercial finite element code. 
Comparisons showed that numerical simulation carried out in this study stand in 
according with empirical results.  
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Assuming Von-Mises’s plastic flow criterion 
conjunction with Hill’48 [7] yield criterion the 
effective stress can be written as follows: 
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Principle strains at dome of the bulge are θε , ϕε  and 
tε  Assuming Von-Mises yield criterion and letting 

ϕθ εε = , the effective strain can be calculated as: 
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Considering the principle of volume constancy 
),0( =++ tεεε ϕθ the effective strain is: 
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In order to draw an effective stress versus effective 
strain curve, two variables (t and Rb) are needed to be 
measured in every time step during the bulging process.  
Table 1 contains theoretical approaches to calculate 
sheet thickness at the dome apex. 

3 DESIGN OF THE EXPERIMENT 

3.1 Hydraulic bulge test 
The experimental approach was carried out on a 1mm 
AA5083-H111 aluminum sheet alloy in so far as this 
alloy is significantly applicable in the ship construction 
industry. The experimental apparatus used to 
implement the hydraulic bulge test is composed of a 
tooling set, a hydraulic power generator and 
measurement devices. For the toolset accomplished, 
maximum forming pressure can reach 50MPa (500bar). 
This pressure is greatly sufficient for hydraulic bulging 
of 1mm AA5083-H111 sheet alloy. In order to seal the 
die the rubber diaphragm was precisely placed between 
the conical part of the die and the conjunctive disc. In 
this way, hydraulic bulging of different materials can 
easily be carried out. A pressure gauge and an indicator 

were used to measure the chamber pressure and bulge 
height respectively during the bulging process. The 
indicator used in the experiment is delicate and could 
not withstand impact loads as the specimen bursts. 
Hence, for bulge testing of AA5083-H111 at least three 
samples were burst with the absence of the indicator to 
discern the bursting pressure. Other samples were 
tested up to 90% bursting pressure while the indicator 
was used to measure the bulge height during the 
process. In order to ensure pure stretching, draw beads 
were used around the bulging region. First of all, using 
a 300ton hydraulic press, aluminum sheets were 
stamped into the draw bead and then the specimens 
were prepared for being bulged. Fig. 2 shows a 
hydroforming die used for bulge testing of sheet 
materials. 
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Measuring devices were also calibrated before testing 
to ensure precise measurement. In order to prevent 
draw-in of the sheet material to the die cavity, a draw 
bead was used.  Consequently, pure stretching of the 
sheet material was seen during the bulging process. 
After being bulged to a certain height, the chamber 
pressure was measured using a pressure gauge. The 
expanding height at the pole of the bulged sheet was 
detected by an indicator. Afterwards, the forming 
pressure increased to reach the next bulge height level. 
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5 RESULTS AND DISCUSSION 

In Table 2 mechanical properties of AA5083-H111 are 
tabulated in three directions relative to the rolling 
direction. As it can be observed from the Table, 
maximum elongation is obtained at 45 degrees with 
respect to the rolling direction. Average normal 
anisotropy obtained from the test shows that this 
material is sensitive to thinning and can not withstand 
large deformation during sheet metal forming 
operations. On the other hand, the planar anisotropy 
shows that this material is not sensitive to earring 
during the deep drawing process. Higher values for the 
planar anisotropy will result in earring, in stamping and 
deep drawing processes. In order to define the flow 
stress curve for AA5083-H111 in biaxial state of stress, 
seven bulging samples were used. At least three 
samples were burst to realize the bursting pressure. The 
burst pressure obtained from bursting sample #1 was 
104 bars and bursting pressures for samples 2, 3 and 4 
were 108, 106 bars, respectively. Hence, bursting 
pressure for 1mm AA5083-H111 aluminum sheet in 
this study was considered to be 106bars. Fig. 5 shows 
experimentally measured bulging pressure versus dome 
height up to 95 bars pressure.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Experimental pressure versus dome height curve for 

AA5083-H111 

 

 
Fig. 6 True stress-true strain curves for AA5083-H111 

obtained from hydroforming bulge test. 
 
 
 
 

The corresponding flow stress curve is illustrated in 
Fig.6. As discussed before, due to the fact that bulge 
height measuring devices are delicate, when using an 
indicator, bulging of sheet metal was carried out up to 
95 bars pressure (about 89% of bursting pressure). To 
define the flow stress curve up to bursting point, the 
experimentally measured pressure versus dome height 
was extrapolated using third order polynomial 
approximation. The extrapolated curve is shown in Fig. 
7. Fig. 8 shows extrapolated flow stress curve from 
pressure versus dome height curve. With this 
extrapolated curve, the full range of flow stress curve 
for AA5083-H111 in biaxial stress state was obtained. 
In Fig. 8 it is also shown that a plastic strain of 0.37 is 
reachable when the sample bursts. Its corresponding 
true stress is about 425MPa which reveals relatively 
high strength for AA5083-H111 aluminum sheet 
alloys. Fig. 9 shows a burst sample (a) and a sample 
being bulged up to 89% of bursting pressure (b) for 
1mm AA5083-H111 aluminum sheet. In the Figure, the 
left sample is pressurized up to 95bars pressure using 
the indicator. The right sample shows 1mm AA5083-
H111 when reaching the burst pressure. 
 

 
Fig. 7 Experimental pressure versus dome height curve for 
AA5083-H111 (the curves is extrapolated, using higher order 

polynomial approximation). 
 

 
Fig. 8 Corresponding flow stress curve related to 

experimentally measured bulging pressure vs. dome height 
(with extrapolation) 

 

Burst pressure = 106 bars 
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Table 2 Mechanical properties of 1mm AA5083-H111 sheets 
obtained from uni-axial tensile test 

Parameters Angle to rolling direction 
     0º           45º           90º 

Density, (gr/cm3) 2.8 2.8 2.8 
Poisson’s ratio 0.33 
Elastic modulus, (GPa) 69.5 68.7 71 
Yielding stress, (MPa) 178 195 184 
Ultimate tensile stress, (MPa) 310 337 318 
Total elongation, (%) 23 26 24.5 
Anisotropy coeff., R 0.66 1.05 0.667 
Normal anisotropy 0.848 
Planar anisotropy -0.404 
Strain hardening exponent 0.22 0.23 0.21 
Hardening coeff. (MPa) 514 521 517 

 

In Fig. 10, flow stress curves were compared between 
uniaxial test and biaxial bulge test. Biaxial curves are 
depicted with/without considering anisotropy of sheet 
material. As it can be deduced from the Fig., in biaxial 
flow stress curves more strain ranges can be covered 
compared to uni-axial flow stress. This difference in 
plastic strain would be 280% for AA5083-H111. 

 

 

 

 

 

 

 

 
Fig. 9 Hydraulic bulge test samples (a) sample not burst 

and (b) sample burst 
 

 
Fig. 10 Comparison between flow stress curves obtained 
from tensile test and hydraulic bulge test for AA5083-H111 

(biaxial curves are extrapolated and uni-axial curve is 
depicted up to uniform elongation) 

 

5.1 Finite element simulation 
Fig. 11 shows the numerical model simulated in the FE 
software. In Fig. 12, very good consistency for 
minimum thickness at the dome apex vs. bulge pressure 
between numerical approach and the experiments are 
shown. Moreover, in finite element simulation of 
hydroforming bulge test, bursting pressure of 118bars 
was obtained although the 1mm AA5083-H111 sheet 
was burst at 106bars pressure during several 
experimentations. 
 

Table 3 Comparison of K and n-value  
obtained by tensile test and bulge test 

Test type K-value (MPa) n-value 
Tensile test 514 0.221 
Bulge test 500.4 0.177 
FE simulation (with bulge 
test input) 486 0.165 

FE simulation (with tensile 
test input) 508 0.205 

 
Furthermore, maximum dome height, which expresses 
the material formability during the bulge test, was 
17.58mm in the simulation while from extrapolated 
experimental pressure vs. dome height, maximum 
height of 14mm was detected.  
 
 

 
Fig. 11 Finite element simulation compared to empirical 

results of AA5083-H111experiment  
 

 
Fig. 12 Minimum thickness at dome apex vs. bulge 

pressure; comparison between FE simulation and empirical 
results  
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6 CONCLUSION 

In the present study, forming behaviors of 1mm 
AA5083-H111 aluminum sheet alloy under uni-axial 
and biaxial state of stress were evaluated through 
tensile test, as the preliminary step. Analytical 
equations were used to determine the biaxial flow stress 
curves by implementing measured bulging pressure and 
dome height. Moreover, experimental flow stress 
curves obtained from bi-axial and uni-axial tests were 
separately introduced to a finite element code in order 
to investigate the flow stress curves obtained from 
simulations. 

Based upon experimental and numerical results the 
following conclusions were drawn: 

1. Cold stretchability of 5XXX series of aluminum 
sheet alloy is much lower than warm stretchability 
of this alloy at increased temperatures as done by 
the others [10]. 

2. Flow stress curves obtained from the hydraulic 
bulge test cover a wider strain range in comparison 
with the flow behavior deduced from tensile test. 

3. Finite element results were in good agreement with 
the empirical results obtained from simulation of 
hydroforming bulge test. 
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