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Abstract: In this paper, nonlinear vibration and instability response of an embedded 
pipe conveying viscose fluid is investigated. The pipe is considered as a Timoshenko 
beam embedded on an elastic foundation which is simulated by spring constant of the 
Winkler-model and the shear constant of the Pasternak-model. The external flow force, 
acting on the beam in the direction of the flexural displacement is described by Navier-
Stokes equation. The corresponding governing equations are obtained using Hamilton's 
principle considering nonlinear strains and first shear deformation theory. In order to 
obtain the nonlinear frequency and critical fluid velocity for clamped supported 
mechanical boundary condition at two ends of the pipe, Differential Quadrature 
Method (DQM) is used in conjunction with a program being written in MATLAB. The 
effect of dimensionless parameters such as aspect ratios of length to radius of the pipe, 
Winkler and Pasternak modules, fluid velocity and viscosity as well as the material 
type of the pipe on the frequencies and instability of pipe are investigated. Results 
indicate that the internal moving fluid plays an important role in the instability of the 
pipe. Furthermore, the nonlinear frequency and instability increases as the values of the 
elastic medium constants and viscosity of fluid increases. 
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1 INTRODUCTION 

Pipes conveying fluid have become one of the most 
important structures widely used in engineering, such 
as those employed in nuclear reactor, ocean mining, 
heat exchanger, drug delivery, microfluidic and 
nanofluidic devices [1-6]. In such applications, one of 
the most important issues is to accurately measure the 
vibration characteristics, such as natural frequency, 
stability and critical flow velocity of the fluid-
conveying systems. It is not surprising, therefore, that 
the study on this topic has been constantly expanding in 
the past decades. In fact, the vibration and stability of 
pipes conveying fluid have been studied for more than 
six decades, both theoretically and experimentally. A 
good review of the related literature was provided by 
Païdoussis and Li [1]. As for the literature published so 
far, it is noted that several methods have been used to 
solve the vibration problem of such structures both in 
linear and nonlinear dynamics, such as Galer 
kinmethod [7-13], DQM [14-16], finite element method 
(FEM) [17-20], power series expansion and D-
decomposition method [21]. 
In this study, the differential transformation method 
(DTM) is employed to investigate the free vibration of 
pipes conveying fluid with different boundary 
conditions. The DTM was first proposed by Zhou [22] 
for solving linear and non-linear initial value problems 
in electrical circuit analysis. Based on Taylor’s series 
expansion, the DTM provides an effective and simple 
means of solving linear and non-linear differential 
equations. By using DTM, Chen and Ho [23] 
investigated the eigen values of Strum-Liouville 
problem. They also used this method to study the 
transverse vibration of rotating twisted Timoshenko 
beams under axial loading [24]. Mei [25] utilized the 
DTM to analyze the free vibration of a centrifugally 
stiffened beam. Muge and Metin [26] adopted the DTM 
to analyze the vibration of an elastic beam supported on 
elastic soil.  
Chenand Chen [27] studied the free vibration of a 
conservative oscillator with inertia and static cubicnon-
linearity and pointed out that the DTM has the inherent 
ability to deal with non-linear problems and it can be 
employed for the solutions of both ordinary and partial 
differential equations. In a latest literature, Odibat et al. 
[28] proposed a reliable new algorithm of DTM, 
namely multi-step DTM, which will increase the 
interval of convergence for the series solution, and 
applied the multi-step DTM to study the non-chaotic 
and chaotic dynamics of Lotka-Volterra, Chen and 
Lorenz systems. A generalized differential transform 
method (GDTM), i.e., the differential transform-Padé 
technique, mixed by DTM and Padé approximation, 
was proposed and used to solve differential-difference 

equation successfully by Zou et al. [29]. Very recently, 
Chenet al. [30] studied the natural frequencies and 
mode shapes of marine risers with different boundary 
conditions by using the DTM. 
From a mathematical point of view, in fact, the DTM 
displays its advantage in many computational problems 
governed by differential equations. As an example, 
Chen and Chen [31] investigated the free behavior of a 
strongly non-linear oscillator with fifth-order non-
linearities and showed that the DTM is a powerful tool 
for solving non-linear problems. They also pointed out 
that the DTM provides an accurate and efficient way 
for solving differential equations with high-order non-
linearities. Kurnaz et al. [32] generalized the DTM to 
n-dimensional cases for solving partial differential 
equations (PDEs) with n-variables. It was shown that 
the DTM is a feasible tool to solve n-dimensional linear 
or nonlinear PDEs. 
In this paper, nonlinear vibration and instability 
response of an embedded pipe conveying viscose fluid 
is investigated based on Timoshenko beam. The effect 
of dimensionless parameters such as aspect ratios of 
length to radius of the pipe, Winkler and Pasternak 
modules, fluid velocity and viscosity as well as the 
material type of the pipe on the frequencies and 
instability of pipe are investigated. 

2 FORMULATION 

Fig. 1 shows the pipes modeled as a Timoshenko beam 
with length L, inner radius r1, outer radius r2 and equal 
thickness h embedded in an elastic medium. The 
surrounding medium is described by the Winkler 
foundation model with spring constant k and Pasternak 
foundation model with shear constant G. Based on the 
Timoshenko beam theory, the displacements of an 
arbitrary point in the beam along the x- and z-axes, 
denoted by U and W respectively, take the form of 
Eq. (1) [6]. 
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Where U(x, t) and W(x, t) are displacement 
components in the mid-plane, ψ  is the rotation of 
beam cross-section and t is time. The Von Karman type 
nonlinear strain–displacement relations are given by: 
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Fig. 1 Geometry of the pipe modeled as the nonlocal 

Timoshenko beam 

 
For a beam structure, the constitutive relation scan be 
approximated to one-dimensional form as: 
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Where E and G are Young’s modulus and shear 
modulus, respectively. The strain energy V of the pipes 
embedded in an elastic medium can be calculated from: 
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Submitting Eq. (2) into Eq. (4) gives: 
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The normal resultant force Nx, bending moment Mx, 
and transverse shear force Qx are defined as: 
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The work done by the elastic medium is denoted by: 
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The work done by the viscose fluid is denoted by: 
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The kinetic energy T is given by: 
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The equations of motion of the fluid-conveying pipes 
embedded in an elastic medium can be derived from 
the Hamilton principle: 
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Introducing the following dimensionless quantities: 
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Substituting Eqs. (4), (7), (9) and (10) into Eq. (11), 
integrating by parts and setting the coefficients of 

WU δδ , and δψ to zero lead to the dimensionless 
equations of motion as: 
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The associated boundary conditions can be expressed 
as: 
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3 DIFFERENTIAL QUADRATURE METHOD 

The differential quadrature (DQ) method is used to 
solve the nonlinear Eqs. (13)-(15) and the associated 
boundary conditions to determine the nonlinear free 
vibration frequencies of the pipes. The main idea of the 
differential quadrature (DQ) method is that the 
derivative of a function at a sample point can be 
approximated as a weighted linear summation of the 
function value at all of the sample points in the domain. 
The functions f={u, w, ψ } and their kth derivatives 
with respect to x can be approximated as [7]: 
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Where N is the total number of nodes distributed along 
the x-axis and ijC is the weighting coefficients, the 
recursive formula for which can be found in [8]. The 
cosine pattern is used to generate the DQ point system. 
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Using DQM, Eqs. (13) to (15) can be expressed in 
matrix form as: 
 

  
)19(    [ ] [ ] { }

{ } ,02 =
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Ω+Ω+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

d

b

K
NLL d

d
MCKK 

 
Where M is the ‘mass’ matrix, KL is the linear 
‘stiffness’ matrix and KNL is the nonlinear stiffness 
matrix. However, the frequencies obtained from the 
solution of Eq. (19) are complex due to the damping 
existed in the presence of the viscous fluid flow. 
Hence, the results are containing two real and 
imaginary parts. The real part is corresponding to the 
system damping, and the imaginary part representing 
the system natural frequencies. 

5 NUMERICAL RESULTS AND DISCUSSION 

The final converged solutions using the numerical 
procedure outlined in section B above are illustrated as 
nonlinear frequency and critical fluid velocity in Figs. 
2-6 below. In the following subsections, the effects of 
aspect ratios of length to radius of the pipe, Winkler 
and Pasternak modules, fluid velocity and viscosity as 
well as the material type of the pipe on the frequencies 
and instability of pipe are studied and discussed in 
details. 
Figs. 2 and 3 illustrate the effects of aspect ratio ( RL / ) 
on the dimensionless frequency versus fluid velocity 
and nonlinear frequency ratio against maximum 
amplitude, respectively. It is evident that an increase in 
the aspect ratio increase dimensionless frequency and 
critical fluid velocity. Also, with increasing RL / , 
nonlinear frequency ratio increases. This is because 
increasing RL /  leads to softer pipe. 
Figs. 4 and 5 illustrate the influence of the normalized 
Pasternak shear modulus ‘ gK ’ on dimensionless 
frequency versus fluid velocity and nonlinear frequency 
ratio (i.e. the dimensionless nonlinear to linear 
frequency ( LNL ΩΩ )) versus maximum amplitude 
‘ maxw ’, respectively. The results indicate that 

LNL ΩΩ decreases substantially as harder elastic 
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medium is employed. Hence, with increasing Pasternak 
shear modulus, LNL ΩΩ decreases. Furthermore, as 

gK increases, the critical fluid velocity and nonlinear 
frequency increase. 
 

 
Fig. 2 The effect of geometrical parameter on nonlinear 

frequency versus Fluid velocity 

 

 
Fig. 3 The effect of geometrical parameter on nonlinear 

frequency ratio versus maximum amplitude 

 
 

Fig. 6 illustrates the effect of fluid viscosity on the 
dimensionless frequency versus fluid velocity. The 
results indicate that viscous fluid increases natural 
frequency very little. However, during the flow of a 
fluid through a pipe as a Timoshenko beam, the effect 
of fluid viscosity on the vibration and instability of 
pipes may be ignored.  

 

 
Fig. 4 The effect of Pasternak foundation on nonlinear 

frequency versus Fluid velocity 

 

 
Fig. 5 The effect of Pasternak foundation on nonlinear 

frequency ratio versus maximum amplitude 

 

 
Fig. 6 The effect of fluid viscosity on nonlinear frequency 

versus Fluid velocity 
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6 CONCLUSION 

This paper investigates the nonlinear free vibration and 
instability of oil pipes based on Von Karaman 
geometric nonlinearity and Timoshenko beam theory. 
The differential quadrature (DQ) method and a direct 
iterative approach are employed to obtain the nonlinear 
vibration frequencies and critical fluid velocity of pipe 
with clamped supported. The effects of aspect ratios, 
Winkler and Pasternak modules, fluid velocity and 
viscosity as well as the material type of the pipe on the 
frequencies and instability of pipe are investigated. 
Results indicate that the internal moving fluid plays an 
important role in the instability of the pipe. 
Furthermore, the nonlinear frequency and instability 
increases as the values of the elastic medium constants 
and viscosity of fluid increases. Furthermore, during 
the flow of a fluid through a pipe as a Timoshenko 
beam, the effect of fluid viscosity on the vibration and 
instability of pipes may be ignored. Finally, it is hoped 
that the results presented in this paper would be helpful 
for study and design of oil pipes 
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