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Abstract: In the present study, an artificial neural network (ANN) model is developed 
to predict the correlation between the friction stir extrusion (FSE) parameters and the 
recycled wires’ average grain sizes. FSE is a solid–state synthesis technique, in which 
machining chips are firstly loaded into the container, and then a rotating tool with a 
central hole is plunged into the chips at a selected rotational speed and feed rate to 
achieve indirect extrusion. Selecting rotational speed (RS), vertical speed (VS), and 
extrusion hole size (HS) as the input and average grain size as the output of the system, 
the 3–6–1 ANN is used to show the correlation between the input and output 
parameters. Checking the accuracy of the neural network, R squared value and Root–
Mean–Square–Error (RMSE) of the developed model (0.94438 and 0.75794, 
respectively) have shown that there is a good agreement between experimental and 
predicted results. A sensitivity analysis has been conducted on the ANN model to 
determine the impact of each input parameter on the average grain size. The results 
showed that the rotational speed has more effect on average grain size during the FSE 
process in comparison to other input parameters. 
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1 INTRODUCTION 

Magnesium alloys are widely applied in the aerospace 

and automotive industries due to their unique physical 

and mechanical properties such as low density, high 

specific strength, high specific stiffness, and high thermal 

conductivity [1]. Since magnesium has good 

machinability, a high quantity of chips is available for 

recycling. In traditional recycling method, which is based 

on melting, a high percentage of materials are oxidized 

during the process. Therefore, solid–state recycling 

process is an excellent substitution for the traditional 

method regarding energy efficiency and material loss [2–

4]. Based on previous studies [5–7], magnesium solid–

state recycling can modify the mechanical properties of 

the material through homogeneous oxide dispersion and 

nucleating fine grains.  

Combining direct solid–state processing and friction stir 

welding (FSW), friction stir extrusion (FSE) can be used 

to recycle the magnesium chips [8–9]. Therefore, FSE 

can produce a product with proper mechanical properties 

by converting scraps and chips into extruded bulk 

directly. Additionally, the FSE follows the FSW 

principles where a rotational tool generates frictional 

heating, resulting in material softening by plastic 

deformation [10]. Hence, the method is a potential 

material processing method without external heating 

resources that convert magnesium, aluminum, and 

titanium (known as lightweight materials) scrapes and 

chips into the usable products [11–12]. Due to material 

movement in the scrolled face of the rotating tool, severe 

plastic deformation happens during extrusion.  

As reported, dynamic recrystallization (DRX) results in 

equiaxed and fine grains during the FSE process [13–15]. 

Therefore, the grain size is an evaluative factor to 

investigate the mechanical properties of extruded wires 

and it is a critical element to modify the functional and 

structural properties of processed material such as tensile 

strength, or microhardness [16]. Thus, it is important to 

use mathematical and analytical models for better 

understanding of process structure and predicting the 

processed material properties, i.e. necessary to improve 

the manufacturing process and achieve a desired quality. 

There are two major techniques for developing 

mathematical models. The first method is response 

surface methodology (RSM) which is a linear, 

straightforward approximation technique, using the 

regression analysis and the design surface to analyse the 

model [17–18].  

In different studies [19–22], the RSM technique has been 

used to develop the mathematical model and then, the 

analysis of variance (ANOVA) have been utilized to 

validate the developed model. The second method, 

known as the artificial neural network (ANN), is an 

approximation tool that is inspired by natural networks 

which use many neurons as computational sections for 

training, validation, and test of the model [23]. Some of 

the work done in this area is as follows: Okuyucu et al. 

[23] have predicted the hardness of heat affected zone 

(HAZ), the hardness of weld metal, elongation, yield 

strength, and tensile strength of aluminum friction stir 

welding joints. The mean–error for the hardness of HAZ, 

the hardness of weld metal, elongation, yield strength, 

and tensile strength have been reported around 1.325, 

0.656, 7.596, 3.570, and 1.650, respectively.  

Asadi et al. [24] have predicted the grain size and 

hardness of AZ91/SiC of friction stir processing (FSP) 

nanocomposite plate. As calculated, the maximum 

training errors for the hardness and grain size are 0.5% 

and 1.8%, respectively. Yousif et al. [25]  have developed 

an ANN model to predict the friction stir welding of 

AA6061 aluminum tensile stress, bending stress, and 

elongation. The errors of tensile stress, bending stress, 

and elongation are 1.7524 %, 7.3777 %, and 11.98 %, 

respectively. Ghetiya et al. [26] have used ANN with 4–

8–1 architecture to predict the tensile strength of FSW 

joint with less than 3% error. Arunchai et al. [27] have 

utilized the ANN to model the Resistance Spot Welding 

(RSW) joints mechanical properties with the accuracy of 

95%.  

Comparing the accuracy, Lakshminarayanan et al. [18] 

have tested both RSM and ANN methods for modelling 

the friction stir welding of AA7039 aluminum alloy 

strength. The calculated Mean–error of ANN and RSM 

models to predict the joints tensile strength are 0.258 and 

0.769, respectively. As the results show, the ANN can 

model the process more accurately. In addition, it has 

been investigated [28] that although RSM is unable to 

give any information about parameters’ relationship, the 

ANN can recognize the importance of each parameter 

and its impact on the output of the system.  
A review of the literature conducted in using ANN for 

modelling of similar processing techniques suggests that 

this method has a very high capability to optimize the 

FSE process. On the other hand, while there are sufficient 

experimental studies on experimental analysis of friction 

stir extrusion, the use of the ANN technique to optimize 

the process has not been reported so far. Also, there is no 

mathematical model to evaluate the effect of input 

parameters on the final properties of processed material 

during the FSE process.  

In addition, because the processed material grain size is 

an important factor to analyse the properties of wires and 

there is lack of study on the average grain size of 

processed material, the analytical analysis is important to 

understand the relationship between FSE parameters. 

Hence, to tackle the aforementioned limitations, this 

paper presents a mathematical model based on ANN to 

analyse the FSE process of magnesium. The feed–

forward neural network with the back–propagation 

algorithm is employed to find the correlation between 

FSE parameters and average grain size of the produced 
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wires. Root–Mean–Square–Error (RMSE) and linear 

regression analyses are used to show the accuracy of the 

developed model. Finally, the sensitivity analysis is 

employed to test the relative importance of input 

parameters on average grain size. 

2 EXPERIMENTAL STUDY 

To extrude Mg wires in the FSE process, clean and dry 

magnesium chips produced directly from Mg ingot and 

through planning machine, are used. Mg chips were clean 

and have an average width, length, and thickness of 1–4, 

6–10, and 0.2 mm, respectively. Magnesium ingot has a 

coarse grain size of 1mm, distributed uniformly in the as–

received material, whereas the magnesium chips have an 

average grain size about 14 µm which is reduced after 

machining process. The present chemical composition of 

pure Mg is (in weight percent): <0.01% Al, 0.005% Ca, 

0.006% Cu, 0.005% Zn, 0.03% Mn, <0.002% Sn and 

balanced Mg. Two main components of experimental 

setup are the container and rotating tool with a scrolled 

face that facilitates the flow of the deformed material 

toward the extrusion hole. Both of components are made 

of tempered and quenched H13 tool steel. The 

dimensions of the container are 21mm and 50mm in 

depth while rotating tool have an outer diameter of 20 

mm and extrusion hole diameter of 5mm which have 

scrolled face pattern at a 0–degree tilt angle. The 

container is fixed on the table of the modified CNC 

milling machine and then the die is rotated in the 

clockwise direction and plunged into the container that is 

filled with the Mg chips.  

Figure 1 shows the friction stir extrusion experimental 

setup. During the process, magnesium chips are stirred 

due to the conversion of mechanical energy to thermal 

energy, leading to flowing the deformed material toward 

the central hole. Then the extrusion process is completed. 

For microstructural analysis of extruded wires, optical 

microscopy (OM) has been used. The analyses are 

applied along the cross–section of wires, perpendicular to 

the extrusion direction. Specimens are prepared by 

standard metallographic techniques and etched with an 

Acetic–picral solution (5 ml Acetic Acid, 6 g Picric acid, 

10 ml water and 100 ml ethanol) for 5 seconds at room 

temperature. The linear intercept technique had been used 

to measure average grain size for each sample.  

The microstructure and grain size distribution histogram 

of the produced wire with the rotational speed of 250 rpm, 

vertical speed of 20 mm/min, and extrusion hole size of 

5 mm are shown in “Fig. 2ˮ. For all extruded wires, the 

OM micrographs of the microstructure are taken close to 

the wire center. For all of the micrographs, there is no 

sign of cracks or voids which is the result of grain 

refinement in the extruded wires. The experimental 

results are shown in “Table 1ˮ. It is obvious that the 

average grain size for all of the specimens is varied due 

to a different amount of heat and deformation rate. As 

shown, the process input parameters are the rotational 

speed, vertical speed, and extrusion hole size and the 

output is average grain size.  

 

Vertical Speed

Extruded Wire

Extrusion hole

Mg Chips

Rotating Tool

Container

Rotational Speed

 

Fig. 1 Schematic of friction stir extrusion setup.  

 

 

Fig. 2 Microstructure and histogram of grain size distribution for wire with the rotational speed of 250 rpm; vertical speed of 20 

mm/min, and extrusion hole size of 5 mm.



4                                  Int  J   Advanced Design and Manufacturing Technology, Vol. 11/ No. 4/ December – 2018 
  

© 2018 IAU, Majlesi Branch 
 

 

Table 1 The experimental results 

No Input Parameters Output 

Rotational speed (rpm) Vertical speed (mm/min) Hole size (mm) Average grain size (µm) 

1 250 14 4 8.8 

2 250 14 4 8.1 

3 250 14 5 10 

4 250 14 5 9.4 

5 250 20 4 6.1 

6 250 20 4 6.7 

7 250 20 5 10 

8 250 20 5 11.8 

9 355 14 4 14.5 

10 355 14 4 11.9 

11 355 14 5 15.1 

12 355 14 5 15.7 

13 355 20 4 12.1 

14 355 20 4 13.9 

15 355 20 5 13.8 

16 355 20 5 15 

17 180 14 4 13.1 

18 180 14 4 13.8 

19 180 14 5 15.9 

20 180 14 5 17.8 

21 180 20 4 13.9 

22 180 20 4 14.8 

23 180 20 5 15.4 

24 180 20 5 15.6 

 

 

3 ARTIFICIAL NEURAL NETWORK 

The neural network consists of several layers that have 

one or more neurons, utilized as a computational tool. 

The principle of artificial neural network to model the 

process is based on four laws: (a) neurons of each layer 

are connected to all neurons of the next layer which is 

passed through special activation function, (b) weight 

modification between neurons is done in order to adjust 

the accuracy of the system, (c) we need to train the 

network using input patterns to determine the network 

topology, and (d) we can use the established model to 

predict the output after training is done [29]. There are 

different types of feedforward neural network to model 

the mechanical processes. Among them, multi–layered 

perceptron (MLP) is the simplest neural network 

architectures [30]. MLPs are constructed from several 

parallel layers including input and output layer as the 

first and last layer of the network and in–betweens, there 

are one or more hidden layers.  

Figure 3 shows a three–layer MLP network. When the 

network architecture is defined, the training step 

(forward and backward pass) will begin to determine the 

weights of the system. During the forward pass, synaptic 

weights are considered constant and the influence of the 

input parameter of the network is propagated layer by 

layer throughout the network. During the backward pass, 
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the synaptic weights modification is done via error 

calculation between the experimental and calculated 

results. This cycle will continue until the error is less 

than desired value [31–32]. The local minimum error of 

the network can be calculated through different Back 

Propagation (BP) algorithms including conjugate 

gradient method, Gauss–Newton’s method, gradient 

descent method, variable–metric method, and 

Levenberg Marquardt (LM).  

Among these algorithms, the LM is the fastest one to 

update the weights and has the best performance [33]. 

Although validation step is part of training step, it is 

employed to guide the network performance by 

controlling the learning rate, deciding when it is the time 

to stop training, avoiding model to be overfitted, and 

tuning the model parameters. Finally, the trained 

network is examined and validated by the test step. 

Then, if the calculated outputs are close enough to the 

actual ones, the network can be used as a useful and 

accurate predictive tool to predict the output [31], [32]. 

 

 

 
 

Fig. 3 A multilayered perceptron schematic. 

4 PROPOSED ANN MODEL 

In the current study, to model the FSE process, MLP 

feed–forward neural network and Levenberg Marquardt 

backpropagation algorithm have been used to train the 

network [34]. The proposed ANN model takes rotational 

speed, vertical speed, and extrusion hole size as input 

parameters and average grain size as output. The dataset 

consists of 24 experimental data which have been 

normalized through whitening transformation, 

represented by x in the following equation: 

 

�̂� =
𝑥−𝜇

𝜎
                                                                     (1) 

 

Where x, μ and σ are the average and the standard 

deviation of each input parameter variation. With an 

appropriate network, different architectures including 

various activation function in the hidden and output 

layer and a different number of neurons in a hidden layer 

have been tested. The performance of different networks 

has been measured using Root–Mean–Square–Error 

(RMSE) (“Eq. 2ˮ) and correlation coefficient (“Eq. 3ˮ) 

between the experimental and predicted results (“Table 

2ˮ). 

 

RMSE = √
∑ (yi−ŷi)2n

i=1

n
                                                 (2) 

 

R squred value = R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n
i=1

                 (3) 

 

Based on the table, the total RMSE and R squared values 

for a model with 6 neurons in a hidden layer and “tan–

sigmoidal” and “linear” activation function for hidden 

and output layer are 0.75794 and 0.944376 which are 

much better results than other networks. Therefore, this 

architecture has been chosen as the basic network in this 

work. Schematic of 3–6–1 architecture is presented in 

“Fig. 4ˮ. The ANN flowchart, used in this study to 

predict the average grain size, is shown in “Fig 5ˮ [35]. 

To model the process, the “MATLAB R2017.a” [36] has 

been used to train, validate and test the network. 

 

 
 

Fig. 4 Schematic of the current three–layer neural 

network. 
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Fig. 5 The ANN model flowchart. 

 
 

Table 2 Different architectures for networks and corresponding performance 

No. Activation Function Neurons in hidden 

layer 

Model RMSE Model R squared 

value Hidden Layer Output layer 

1 Tansig Tansig 5 2.1321 0.692108 

2 Tansig Tansig 6 2.0205 0.582123 

3 Tansig Logsig 5 2.3538 0.610195 

4 Tansig Logsig 6 2.1833 0.664551 

5 Tansig Purelin 5 0.83973 0.934586 

6 Tansig Purelin 6 0.75794 0.944376 

7 Logsig Tansig 5 1.4804 0.774259 

8 Logsig Tansig 6 1.1591 0.877613 

9 Logsig Logsig 5 2.7957 0.335832 

10 Logsig Logsig 6 2.3032 0.681467 

11 Logsig Purelin 5 1.6523 0.716799 

12 Logsig Purelin 6 1.2278 0.863171 

 

 

5 ANN RESULTS AND DISCUSSION 

Using the proposed structure to model the FSE process, 

14 experiments have been used for training the network 

and both validation and test steps have used five 

experiments. Figure 6a–d represents the experimental 

and predicted results in all steps. Furthermore, the actual 

and predicted values of average grain size at the training, 

validation, and test steps are presented in “Table 3ˮ. 

According to the “Fig. 6ˮ, the proposed ANN can predict 

the output in good agreement with the experimental 

results. Furthermore, the Root–Mean–Square–Error at 

training, validation, test, and all steps together are 

0.75349, 0.76796, 0.76027, and 0.75794, respectively. 

Regarding several studies [37–38], the RMSE smaller 

than 2% of the output value is an acceptable error for the 

network. Thus, the ANN output has a close relationship 

with the experimental results and can predict the average 

grain size precisely.  

 Set the input and output parameters 

Training, Validation, and test data-set are 

defined from the experimental results

Selection of ANN training algorithm

Weight and bias are selected randomely

Training process is applied by considering:

 1. Number of hidden layers

 2. Number of neurons in each layer

 3.Type of transfer functions 

Update network parameters:

Network validation

Error < threshold

Increase iteration

 Neural network is reached the goal

 Network is ready for predicting

Stop

No

Yes

Start
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Fig. 6 The actual and predicted values of average grain size: (a): The training step, (b): Validation step, (c): Testing step and (d): 

All steps together. 

 
Table 3 The actual and predicted values of grain size at the training, validation, and test steps 

Stage No. RPM 

(rpm) 

VS 

(mm/min) 

HS 

(mm) 

Average grain size 

(µm) 

Error Error % RMSE 

Actual calculated 

Training 1 250 14 4 8.1 8.102172 –0.00217 0.02681 0.75349 

2 250 14 5 10 9.850278 0.149722 1.497224 

3 250 14 5 9.4 9.850278 –0.45028 4.790187 

4 250 20 4 6.7 6.096957 0.603043 9.000643 

5 250 20 5 10 10.59151 –0.59151 5.915069 

6 355 14 4 14.5 13.20398 1.296021 8.938077 

7 355 14 5 15.7 15.68823 0.011769 0.074964 

8 355 20 4 12.1 13.9002 –1.8002 14.87769 

9 355 20 4 13.9 13.9002 –0.0002 0.00144 

10 355 20 5 13.8 14.99962 –1.19962 8.692929 

11 180 14 4 13.1 13.44995 –0.34995 2.671357 

12 180 14 4 13.8 13.44995 0.350052 2.53661 

13 180 20 4 13.9 14.34518 –0.44518 3.202743 

14 180 20 4 14.8 14.34518 0.454819 3.073099 

Validation 1 250 20 4 6.1 6.096957 0.003043 0.049887 0.76796 

2 355 14 4 11.9 13.20398 –1.30398 10.95781 

3 355 14 5 15.1 15.68823 –0.58823 3.895567 

4 180 14 5 17.8 16.85002 0.949977 5.336949 

5 180 20 5 15.6 15.60019 –0.00019 0.00125 

Testing 1 250 14 4 8.8 8.102172 0.697828 7.929868 0.76027 

2 250 20 5 11.8 10.59151 1.208493 10.24147 

3 355 20 5 15 14.99962 0.000376 0.002505 

4 180 14 5 15.9 16.85002 –0.95002 5.974988 

5 180 20 5 15.4 15.60019 –0.20019 1.299967 
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6 REGRESSION ANALYSIS 

Through applying linear regression analyses, the 

correlation coefficients (𝑅2) are computed between 

experimental and calculated values in the developed 

model. For all of three input parameters, “Fig. 7ˮ 

represents the comparison between the experimental and 

predicted data at training, validation, test, and entire 

model. Because the 𝑅2 values are very close to the unit 

number, the proposed neural network can predict the 

output accurately.  

 

 
 

Fig. 7 Correlation between actual and predicted data at: (a): training step, (b): validation step, (c): test step and (d): all steps 

together. 

 

 

7 FORMULATION 

Creating a mathematical formula to predict the average 

grain size, the developed neural network weights have 

been extracted. In the proposed network, firstly, the 

input layer parameters are multiplied by the hidden layer 

weights and then are added to hidden layer biases. The 

summations are passed through “tansig” (“Eq. 4ˮ) 

transfer function (Eq. 𝑓1 −  𝑓6). Afterward, they are 

multiplied by the output layer weights and added to 

output layer bias. Finally, they pass through “purelin” 

transfer function (“Eq. 5ˮ) to generate the output (“Eq. 

6ˮ). 

 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =
2

(1+𝑒−2𝑥)
  − 1                                         (4) 

 

purelin(x) = x                                                            (5) 

Average grain size = −0.62244f1 + 0.382324f2 −
0.79684f3 − 0.29625f4 − 0.33067f5 − 0.98962f6 +
1.17337155                                                                (6) 

 

Where x is the weighted summation of the input. 

 

𝑓1 =
2

1+𝑒−2(1.47266(RS)+1.00608(VS)−1.93075(HS)−2.49435   − 1  

                                                                                    (7) 

 

𝑓2 =
2

1+𝑒−2(1.72452(RS)+1.360273(VS)+0.321748(HS)−2.04292   − 1  

                                                                                    (8) 
 

𝑓3 =
2

1+𝑒−2(−2.25114(RS)+0.57049(VS)+0.783208(HS)+1.778691   − 1  

                                                                                    (9) 
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𝑓4 =
2

1+𝑒−2(−0.71733(RS)+0.256621(VS)−2.99931(HS)−1.428   − 1   

                                                                                  (10) 

𝑓5 =
2

1+𝑒−2(0.019349(RS)−1.11877(VS)+1.992122(HS)+1.908361   − 1  

                                                                                  (11) 

 

𝑓6 =
2

1+𝑒−2(2.827377(RS)+0.117701(VS)−0.04241(HS)+2.723661   − 1  

                                                                                  (12) 

 

Where RS, VS and, HS are rotational speed, vertical 

speed, and extrusion hole size, respectively. It should be 

noted that to calculate the average grain size, all 

parameters in “Eqs. 7 to 12ˮ should be normalized by 

whitening transformation (“Eq. 1ˮ). 

8 SENSITIVITY ANALYSIS AND MODEL 

INTERPRETAION 

Sensitivity analysis has been conducted to recognize the 

important input parameters and its order in the 

developed ANN model. Hence, sensitivity analysis can 

present useful information about the model “robustness” 

which leads to having a better decision making during 

the process. For analysing the developed neural network 

structure, different methods have been suggested since 

the end of the 1980s. There are two main approaches: the 

first method is weights magnitude and the second one is 

sensitivity analysis [36]. 

9 WEIGHT MAGNITUDE METHOD 

Weights magnitude technique is solely based procedure 

which analyzes the network based on the stored value in 

the weights matrix of the model to extract the relative 

importance of each input parameter. This kind of 

analysis is proposed by Garson through “Eq. 13ˮ [39], 

where 𝑄𝑖𝑘 defines the impact percentage of the input 

variable 𝑥𝑖 on the calculated output 𝑦𝑘 . The other input 

parameters contribution is calculated by considering the 

total amount of index which is 100% [40] (Different 

input parameters of the developed model relative 

importance is calculated in Appendix).  

 

𝑄𝑖𝑘 =

∑ ((
𝑤𝑖𝑗

∑ 𝑤𝑟𝑗
𝑁
𝑟=1

)𝑣𝑗𝑘)𝐿
𝑗=1

∑ ((
𝑤𝑖𝑗

∑ 𝑤𝑟𝑗
𝐿
𝑗=1

)𝑣𝑗𝑘)𝑁
𝑖=1

                                          (13) 

 

Where ∑ 𝑤𝑟𝑗
𝑁
𝑟=1  represents the weights summation 

between the input and hidden layer neurons. “Table. 4ˮ 

shows the relative importance of rotational speed, 

vertical speed, and extrusion hole size as input 

parameters on average grain size. Based on the table, the 

effect of rotational speed, vertical speed, and extrusion 

hole size are 38.19387, 21.60877 and, 40.1973, 

respectively. Therefore, the influence of rotational speed 

is more than vertical speed, while the extrusion hole size 

has more impact than other two factor. 

 
Table 4 Relative importance of input parameters on average 

grain size 

Relative importance (%) 

RS VS HS 

38.19387 21.60877 40.19736 

10 PAD METHOD 

Using sensitivity analysis for the developed ANN 

model, the Pad method is usually employed [41]. In this 

technique, the derivative of ANN outputs is calculated 

concerning each input. The m𝑡ℎ output is calculated 

using (“Eq. 14ˮ) for a neural network with ni neurons in 

input layer, nj neurons in the hidden layer, nk neurons in 

the output layer, and “Tansig” and “Purelin” transfer 

function for hidden and output layer, respectively. 

 

𝑦𝑚 = ∑ 𝑊𝑚𝑗𝑡𝑎𝑛𝑠𝑖𝑔(∑ 𝑊𝑗𝑖𝑋𝑖 + 𝑏𝑖𝑖 ) + 𝑏𝑚  𝑗              (14) 

 

Where 𝑊𝑚𝑗 is the weight between the hidden neuron j 

and the output neuron m, 𝑊𝑗𝑖 is the weight between the 

hidden neuron j and the input neuron i, Xi is the input 

value, and 𝑏𝑖 and 𝑏𝑚 are biases for the hidden layer and 

output layer, respectively. For the 𝑚𝑡ℎ network output, 

the derivative (PD) of output is differentiated concerning 

𝑖𝑡ℎ input (“Eq. 15ˮ). 

 
𝜕𝑦𝑚

𝜕𝑥𝑖
= ∑ 𝑊𝑗𝑘 (1 − (∑ 𝑊𝑗𝑖𝑋𝑖 + 𝑏𝑖𝑖 )

2
) 𝑊𝑗𝑖𝑗                (15) 

 

For N observations, there are N partial derivatives and 

they will be calculated for each input parameter. Thus, 

the relative contribution (“Eq. 16ˮ) of each input is 

calculated using the total value of the squares of partial 

derivatives (SSD) [41–42]. 

 

𝑆𝑆𝐷𝑖 = ∑ (
𝜕𝑦𝑚

𝜕𝑥𝑖
)

𝑝

2
𝑁
𝑝=1                                                 (16) 

 

Where (
𝜕𝑦𝑚

𝜕𝑥𝑖
) is the Pad for 𝑝𝑡ℎ observation. 

Finally, the contribution for each input parameter is 

calculated using (“Eq. 17ˮ): 

 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =
𝑆𝑆𝐷𝑖

∑ 𝑆𝑆𝐷𝑖
× 100%    

                                                                                  (17) 
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It is obvious that the parameter with the highest SSD will 

affect the output most significantly. Therefore, the input 

parameters can be sorted based on the order of SSD 

values, showing the relative importance of each input 

parameter on output. “Table. 5ˮ shows the sensitivity 

analysis of the developed model input parameters on 

average grain size. 

 
Table 5 The sensitivity analysis for average grain size 

No Variables SSD Contribution (%) Rank 

1 RS 31.5634034 73.27699 1 

2 VS 7.4543113 17.30578606 2 

3 HS 4.0563835 9.417222 3 

11 CONCLUSIONS 

In this work, magnesium chips have been recycled 

through friction stir extrusion and the average grain size 

have been used as a metric to investigate the wires’ 

quality. Choosing average grain size as an output and 

rotational speed, vertical speed, and extrusion hole size 

as the input of the system, the artificial neural network 

is used to model the process. Comparing different 

architecture, the best performance is achieved by 3–6–1 

architecture which has “Tansig” and “Purelin” transfer 

function for hidden and the output layer with the back–

propagation rate. The equation for calculating average 

grain size has been extracted based on the developed 

neural network to predict the output as a function of 

rotational speed, vertical speed, and extrusion hole size. 

The developed model correlation coefficient and the 

Root–Mean–Square–Error (RMSE) (0.94438 and 

0.75794, respectively) have shown that the predicted and 

experimental results are in good agreement. Finally, a 

sensitivity analysis has been conducted on the ANN 

model to determine the impact of each input parameter 

on the average grain size. Considering Pad method as a 

more reliable technique, the rotational speed has more 

effect on average grain size during the FSE process in 

comparison to other input parameters. 

12 APPENDIX 

The weights between of hidden layer and input and 

output layer are shown in “Table 6ˮ. To calculate the 

relative importance of each input parameters, firstly, the 

absolute value of output layer weight multiplies by each 

hidden layer weight value (𝑃𝑖𝑘) that is presented in 

“Table 7ˮ. Then, for obtaining the 𝑄𝑖𝑘 , 𝑃𝑖𝑘  is divided into 

the sum value of each neuron which is shown in “Table 

8ˮ. For example, for the first input parameter and first 

neuron, we have: 𝑄11 = 𝑃11/𝑃11 + 𝑃12 + 𝑃13. Finally, 

for all of the input parameters, Si is calculated by 𝑄𝑖𝑘  

summation. As an example, for first input parameter it is 

as following: 𝑆1 =  𝑄11 + 𝑄21 + 𝑄31 + 𝑄41 + 𝑄51 +
𝑄61. Therefore, by dividing 𝑆𝑖 into the sum value of S, 

the relative importance of each input parameters can be 

calculated separately. For instance, the relative 

importance of the rotational speed is calculated as: 

(𝑆1*100)/ ( 𝑆1+𝑆2 + 𝑆3). 

 
Table 6 Different layers weights 

Hidden layer neuron No. 
Weight of different layer 

Rotational Speed Vertical Speed Hole Size Grain Size 

1 1.47266 1.00608 –1.93075 –0.62244 

2 1.72452 1.360273 0.321748 0.382324 

3 –2.25114 0.57049 0.783208 –0.79684 

4 –0.71733 0.256621 –2.99931 –0.29625 

5 0.019349 –1.11877 1.992122 –0.33067 

6 2.827377 0.117701 –0.04241 –0.98962 

 

Table 7 The 𝑷𝒊𝒌 calculation of different input parameters 

Hidden layer 

neuron No. 
Rotational Speed Vertical Speed Hole Size Sum 

1 =0.91664211P =0.92221612P =1.20177613P 3.040634 

2 =0.65932521P =0.89686322P =0.12301223P 1.6792 

3 =1.79379831P =1.02334432P 624091=0.33P 3.441234 

4 =0.21250941P =0.05453442P =0.88854643P 1.155589 

5 =0.00639851P =0.00715852P =0.65873553P 0.672291 

6 =2.79802961P =0.32933162P =0.0419763P 3.169329 
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Table 8 The 𝑸𝒊𝒌 Calculation of different input parameters 

Hidden layer neuron No. Rotational Speed Vertical Speed Hole Size 

1 =0.30146411Q =0.30329712Q =0.39523913Q 

2 =0.39264321Q =0.53410122Q =0.07325623Q 

3 =0.52126631Q =0.29737732Q =0.18135733Q 

4 =0.18389741Q =0.04719242Q =0.76891243Q 

5 =0.00951751Q 0.010647=52Q =0.97983653Q 

6 =0.88284661Q =0.10391262Q =0.01324263Q 

Sum Value =2.2916321S =1.2965262S =2.4118423S 
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