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Abstract:Hydro-forming is a fabrication process that uses a fluid mediumto form a 
component by using high internalpressure. In tube hydro-forming, a tubular blank 
is placed between two dies, sealed and pressurized water injected, deforming the 
tube walls in the forming cavity of the dies. Several typical hydro-forming 
processes such as T- shapes, cross-shapes and Y- shapes exist. Successful hydro-
forming depends on selection of proper tubular blank, sound preformed shape and 
internal pressure. In this paper, a 3D model of hydro-forming process of a T-
shaped tube has been simulated by finite element method. Two damage models, 
coupled with von Mises plastic criterion, have been applied to predict where and 
when ductile and MSFLD rupture occur in the process. All studies presented in this 
paper have been carried out on aluminium alloy EN AW-7108 T6. 
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1 INTRODUCTION 

Hydro-forming is a process for manufacturing complex 
hollow components, in most cases using circular tubes 
as a source material. To manufacture a hydro-formed 
component, a circular tube is inserted into a suitable 
die, sealed on both sides by two horizontal cylinders, 
and is subsequently formed to conform to the shape of 
the die cavity by internal hydraulic pressure. Compared 
to conventional forming processes, hydro-forming 
process has the potential of offering significant 
reductions in piece cost, tool cost, and weight for many 
automotive body and chassis applications. Therefore, 
this young technology is currently prevalent in 
automotive and aircraft industries, as well as in the 
manufacturing components for sanitary industry.It is 
expensive and time consuming to design the process 
using trial and error for the hydro-forming process, as 
well as the conventional forming process. The 
application of numerical simulation for the hydro-
forming process will help engineers to efficiently 
improve the process development [1]. Due to the 
complexity of the hydro-forming process, theoretical 
studies to date have produced a relatively limited 
understanding of the process. In comparison with other 
theoretical methods, the finite element method (FEM) 
has advantages in solving general problems with 
formed parts having complex shapes [2].Until now, 
several finite element simulation studies on hydro-
forming process have been reported in literature. Most 
FEM simulation results for hydro-forming process have 
been carried out by dynamic explicit FEM packages, 
which have the advantage of fast changing boundary 
conditions for complex die surfaces. Even though the 
implicit FEM provides a more reliable and rigorous 
scheme in considering the equilibrium at each step of 
deformation, the major obstacle for the implicit FEM 
lies in cases for which converged solutions cannot be 
found because of the changing contact and friction 
conditions at arbitrary tool shapes, and longtime 
consumption to handle contact conditions [3]. 
Simulation results for hydro-forming processes using 
implicit FEM package were usually limited to simple 
die geometries. Simulation results provide detailed 
knowledge on metal flow during the forming process, 
which allows us to control metal flow and provides a 
better design strategy in the actual forming process [4]. 

2 DUCTILE AND MSFLDDAMAGE MODEL 

Ductile criterion 

The ductile criterion is a phenomenological model for 
predicting the onset of damage due to nucleation, 

growth, and coalescence of voids. The model assumes 
that the equivalent plastic strain at the onset of damage, 
ߝ

ି is a function of stress triaxiality and strain 
rateaccording to Eq. (1), 

ߝ
ିሺߟ,  ሶିሻ                                                               (1)ߝ

where ߟ ൌ െ ⁄ݍ is the stress triaxiality, p is the 
pressure stress, q is the Mises equivalent stress, and 
 ሶିis the equivalent plastic strain rate. The criterionߝ
for damage initiation is met when the following 
condition according to Eq. (2), is satisfied [5]. 
 
߱ ൌ  ௗఌష

ఌವ
ష൫ఎ,ఌሶ ష൯

ൌ 1                                               (2) 

 
where߱ is a state variable that increases onotonically 
with plastic deformation. At each iteration during the 
analysis, the incremental step in ߱according to Eq. (3) 
is, 
 
∆߱ ൌ ∆ఌష

ఌವ
షሺఎ,ఌሶ షሻ

 0                                                (3) 

 
For ductile fracture, it is assumed that the equivalent 
fracture strainߝ

ככ is a function of the stress triaxialityη, 
defined in Eq. (4), by components in principal stress. 
 
ߟ ൌ ଷఙ

ఙ
                                                                       (4) 

 
Typically, the dependence of the equivalent fracture 
strain on the stress triaxiality is expressed in the form 
of Eq. (5) 
 
ߝ

ככ ൌ ݀exp ሺെܿߟሻ                                                     (5) 
 
Equation (5), assumes a monotonic decrease of the 
fracture strain with increasing stress triaxiality. 
However, experimental results from used aluminum 
extrusions show equivalent plastic strain at fracture. 
Equibiaxial stress (ߟ ؆ 2) can be higher than the 
equivalent plastic strain at fracture in plane strain 
loading ሺߟ ؆ √3 ). Equation (6), represents a more 
general formulation and includes a non-monotonic 
decrease of the fracture strain with increasing stress 
triaxiality[6-7]. 
 
ߝ

ככ  ൌ –ሺ ݔ݁ 0݀   ሻ + d1exp (cη)                           (6)ߟܿ
 
whered1 is an additional material parameter. Of course, 
Eq. (6) includes aspecial case of Eq. (5), for a 
monotonic decrease in fracture strain vs. stress 
triaxiality. However, Eq. (5), and Eq.(6),remain limited 
to describing isotropic materials. A more general 
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formulation of Eq. (6), which includes the orthotropy of 
fracture, must also include the boundary conditions of 
the equivalent fracture strain ்ߝ

ା for the equibiaxial 
tension condition which must not be orientation 
dependent. Theoretically, the fracture strain at 
equibiaxial compression ்ߝ

ିmust not be orientation 
dependent as well. However, its value is usually very 
high. If ߟା is the stress triaxiality for equibiaxial 
tension and ିߟ indicates the stress triaxiality in 
equibiaxial compression (a material with isotropic 
plasticity yields ߟା = 2 and 2– =ିߟ), the following 
boundary conditions may be definedaccording to Eq. 
(7), [5]. 
 
்ߝ

ା ൌ ߝ
ככ ߟݎ݂ ൌ  ା                                                 (7-a)ߟ

 
்ߝ

ି ൌ ߝ
ככ ߟݎ݂ ൌ  (b-7)                                                ିߟ

 
The parameters d0 and d1 of Eq. (6), can be substituted 
using the boundary conditions from Eqs.(7a) and(7b). 
The result is given in Eq. (8), 
 

ߝ
ככ ൌ ఌ

శ ୱ୧୬୦ሾሺఎషିఎሻሿାఌ
ష ୱ୧୬୦ሾሺఎିఎశሻሿ

ୱ୧୬୦ሾሺఎషିఎశሻሿ                   (8) 

 
An orientation dependent parameter c has been 
introduced in Eq. (8), for the orthotropic case. 
Therefore Eq. (8) has two constant parameters, ்ߝ

ା, ்ߝ
ି 

and one orientation dependent parameter c. The 
dependence of the parameter c on the angle ߥbetween 
the extrusion direction and the direction of the first 
principal strain rateߝሶଵ is expressed in Eq. (9),[7]. 
 
 ܿ ൌ  ݇0  ሻߥሺ2 ݏܿ 1݇     ሺ4                     (9) ݏܿ 2݇ 

 
Equations (9) and (10) fulfill the necessary symmetry 
boundary conditions. Equations (8) and (9) are used to 
approximate the ductile fracture curve in this paper. 
The parameter ்ߝ

ାcan be directly obtained from 
anequibiaxial tension test (i.e. Erichsen test). The 
parameters ்ߝ

ି and c for one direction (extrusion 
direction) can be derived from two additional 
experiments with different stress triaxiality. For two 
different orientations (45°and 90°) the value of c is 
derived from three point bending tests. If c is known 
for three orientations (i.e. c0, c45 and c90), the 
coefficients k0, k1 and k2 of equation (9) can be 
calculated using equations (10a-c). 
 
݇0 ൌ  ሺܿ0   2ܿ45   ܿ90ሻ/4                             (10-a) 
 
݇1 ൌ  –ଽ

ଶ
                                                           (10-b) 

 
݇2 ൌ  – ଶସହ ା ଽ

ସ
                                                 (10-c) 

Ductile fracture limit curves ்ߝ
 .ሻareshown in Fig. 1,[8]ߟሺככ

 

 

Fig. 1 Ductile fracture limit curves ்ߝ
 ሻ compared withߟሺככ

experimental data for quasi-static case in orientation of 0°, 
45°and 90°to extrusion direction 

Muschenborn-sonne forming limit diagram (MSFLD) 
criterion 

Müschenborn and Sonne (1975) proposed a method to 
predict the influence of the deformation path on the 
forming limits of sheet metals on the basis of the 
equivalent plastic strain, by assuming that the forming 
limit curve represents the sum of the highest attainable 
equivalent plastic strains. This paper makes use of a 
generalization of this idea to establish a criterion of 
necking instability of sheet metals for arbitrary 
deformation paths. The approach requires transforming 
the original forming limit curve (without pre-
deformation effects) from the space of major versus 
minor strains to the space of equivalent plastic strain, 
ߙ, , versus ratio of principal strain ratesିߝ ൌ
 ሶߝ/ሶߝ
Forming limit curve MSFLDis illustrated in Fig (2), 
[8]. 
 

 

Fig. 2 Forming limit curve for MSFLD 

According to the MSFLD criterion, the onset of 
localized necking occurs when the sequence of 
deformation states in the ିߝ െ  diagram intersects ߙ
the forming limit curve, as discussed below. For 
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arbitrary loading, however, the MSFLD representation 
takes into account the effects of the history of 
deformation through the use of the accumulated 
equivalent plastic strain. For the specification of the 
MSFLD damage initiation criterion, we can directly 
provide the equivalent plastic strain at damage 
initiation as a tabular function of ߙand, optionally, 
equivalent plastic strain rate, temperature, and 
predefined field variables, ߝெௌி

ି ሺߙ, ,ሶିߝ ,ߠ ݂ሻ. Let 
߱ெௌிrepresent the ratio of the current equivalent 
plastic strain, ߝሶି to the equivalent plastic strain on the 
limit curve evaluated at the current values of ߙ; strain 
rate, ߝሶି;temperature,θ; and predefined field variables, 

݂:according to Eq. (11), [5] 
  

߱ெௌி ൌ ఌష

ఌಾೄಷಽವ
ష ሺఈ,ఌሶ ష,ఏ,

                                       (11) 

 
The MSFLD criterion for necking instability is met 
when the condition ߱ெௌி ൌ 1 is satisfied. Necking 
instability also occurs if the sequence of deformation 
states in the ିߝ െ  diagram intersects the limit curve ߙ
due to a sudden change in the straining direction. This 
situation is illustrated in Fig. 3. As ߙ changes from 
 ௧ା∆௧, the line connecting the correspondingߙ ௧ toߙ
points in the ିߝ െ  diagram intersects with the ߙ
forming limit curve. When this situation occurs, the 
MSFLD criterion is reached despite the fact that 
 
௧ା∆௧ߝ

ି ൏ ெௌிߝ
ି ሺߙ௧  ∆௧ሻ.                                         (12) 

 
Fig. 3, illustrates how a sudden change in the straining 
direction, from ߙ௧to ߙ௧  ∆௧, can produce a horizontal 
intersection with the limit curve and lead to onset of necking. 
[6]. 
 

 
Fig. 3 Sudden change in the straining  

direction, from ߙ௧to ߙ௧  ∆௧ 

3 MATERIAL PROPERTIES 

The material properties used in the simulations are 
summarized in Table 1. Because the use of aluminum 

alloy will bring great improvement in weight reduction, 
now aluminum alloy enjoys wide application in 
automobile industry. However, due to the low 
formability of aluminum material, it is more difficult to 
form aluminum alloy than to form steel [8]. 
 

Table 1 Material properties of aluminum alloy  
EN AW-7108 T6 

    Density, ρ (kg/m3)                              2700                               
Young modulus, E (Gpa) 

Poisson coefficient, ߥ 
Initial yield stress ,ߪ௬ 

(Mpa) 
Yield stress,ߪ௬ (Mpa) 

Damage parameter ߝା
் 

Damage parameter ିߝ
் 

Damage parameter c 

70 
0.33 
311 

 
511.5൫0.012  ൯.ଵଵସ଼ߝ

 
0.26 
193 

1.908 

4 FE SIMULATION OF TUBE HYDROFORMING 

Fig.4shows geometry and FEM model of the T-shaped 
tube hydro-forming in which a counter punch is used 
for controlling the branch shape. Because of symmetry 
only one half of the die, counter punch and tube were 
modeled [9]. 

 
Fig. 4 Finite element modeling of hydro-forming a T-

shaped tube 
 
The reason for the interest in computer modeling of the 
tube hydro-forming processes is mainly economical. 
Since the majority of tube hydro-forming processes 
require high pressures, it is not possible to perform try-
outs using soft tooling. All the try-outs are performed 
on hard tooling to verify the process control parameters 
such as internal pressure and axial feed variations in 
time. If major modifications are required on tooling 
after it is manufactured it will be very costly and time 
consuming. Therefore, computer simulations are 
increasingly used to verify and fine tune the initial 
design before the hard tooling is built [10],[11]. 
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Various software packages available in the world 
market are capable of simulating the tube hydro-
forming process. Explicit and implicit programs are 
available. For hydro-forming, it is important to use a 
code, which is capable of describing “follower forces”. 
A simple definition of a follower force is a load that 
must be able to follow the deformed geometry, which 
means that the pressure must always be perpendicular 
to the actual part geometry. Pressure is usually 
described by a pressure-time function but this may 
cause stability problems in some cases. However, using 
a flowing volume–time function (of the pump) instead 
of a pressure–time function eliminates the stability 
problem [12]. 

5 FINITE ELEMENT MODEL 

In this paper, the explicit FE code is used to simulate 
the tube hydro-forming. The reason for using explicit 
code is that ABAQUS software can show the bending 
and unbending effects of the tube wall on the tube 
forming. ABAQUS is a famous software which can be 
used in the research field of hydro-forming. Two 
calculation methods including dynamic explicit and 
static implicit can be used in this software. In this 
paper, the dynamic explicit method has been used. 
Due to the characteristic of axis-symmetry, only half a 
model was selected during the numerical simulation. 
The tools including die cavity and punches were 
modeled as rigid elements and the tube blank as von 
Mises material with 200 elements in the axial direction. 
The applied material model has elastic–plastic behavior 
with isotropic and kinematic hardening which does not 
take the Bauschinger effect into consideration. It is 
assumed that the static friction coefficient equals the 
dynamic friction coefficient.  
Using the Coulomb friction law, the friction 
coefficients between tools and blank are 0.05 which is 
the same as in the experiment. Tube thickness was 
assumed 1 mm. The penalty method algorithm was 
used for contact with friction coefficient of 0.05. By 
using a counter punch, formation of the branch can be 
improved due to a better control of the material 
movement in the branch. With axial feed of 15 mm and 
applied internal fluid pressure of 125 MPa, the tube is 
formed perfectly and a sound T-shaped joint with a 
branch of 10 mm length is made.Loading path, i.e. 
internal pressure vs. axial feeding was assumed as 
shown in Fig. 5. The loading path consists of two 
stages. In the first stage, internal pressure and axial 
feeding increase until one third of the axial feeding is 
applied. In the second stage, internal pressure increases 
more slowly in comparison with the first stage. 

6 FRICTION 

Lubrication and friction conditions in hydro-forming 
are very critical especially in parts where substantial 
axial feeding is required. In such cases, lubricant is 
used to reduce the sliding friction and prevent sticking 
and galling to reduce tool wear, axial forces and 
buckling lubrication also becomes a critical factor 
during the calibration stage when tube cross-section is 
stretch formed to the final dimensions [13],[14]. As 
soon as the tube surface is in contact with the die, a 
friction interface is generated, and depending on the 
level of friction, the strain distribution will not be 
uniform any more. Material will be locally stretched to 
form the final shape.  
In order to distribute the stretching over a broader 
section of the tube, friction should be low, and thus, 
material should be allowed to flow into the deformation 
zone [15]. In hydro-forming, boundary lubrication 
governs the friction conditions. The lubricant trapped 
between the asperities on the tube and die surfaces 
provide the lubrication. As the internal pressure 
increases, contact area at the interface increases and 
sticking friction may occur. Therefore, under various 
pressure conditions, different friction laws may be used 
to model the friction conditions. At low pressures, 
Coulomb friction may be used. According to the 
Coulomb friction law, the tangential (frictional) stress 
(τ) is proportional to the normal stress (σ) at the 
interface. The proportionality constant is called the 
friction coefficient (μ). If the contact pressure is close 
to the flow stress of the tube material, then, the 
Coulomb friction model does not apply anymore, and 
the Shear Stress model needs to be used. According to 
the Shear Stress model, the tangential (frictional) stress 
(τ) at the interface is proportional to the flow stress 
[16], [17].The proportionality constant is called the 
friction factor (f). In this paper, friction coefficient of   
μ = 0.05 was regarded as a good lubrication at the 
interface tube-tooling. 

7 DETERMINATION OF LOADING PATH 

Not only the success of achieving a completely formed 
hydro-formed part but also the success of forming the 
part with required thickness specifications is dependent 
on the selection of an appropriate loading path for 
already selected set of material, lubrication and part 
and tooling design [18]. Proper coordination of internal 
pressure and axial feeding is the key issue as these 
process parameters have to be applied synchronously. 
Loading path, i.e. internal pressure vs. axial feeding 
was assumed as shown in Fig. 5. 
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forming process to a wide range of applications. Using 
a ductile damage model coupled with von Mises 
criterion, time and location of crack onset and ductile 
rupture in the process was predicted by the FEM. 
Numerical results of critical failure areas were 
compared with experimental observations. Also it is 
realized that ductile damage model can be applied as a 
proper criterion to determine forming limits and predict 
ductile fracture in complex and complicated hydro-
forming operations. 
For tube hydro-forming the formability of the tube 
hydro-forming is strongly dependent on the loading 
paths, indicating that the end feeding condition has a 
definite effect on the onset of bursting. The hydro-
forming of T-shapes requires proper selection of many 
process parameters, i.e. the internal pressure, the axial 
feeds (at the left and right ends), and the counter punch 
force. All these parameters are crucial to the success of 
the hydro-forming operation. 
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