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Abstract: The problem of crack identification in continuous beam like structures is 
considered. The cracks’ locations and their depths are identified by employing 
experimental modal test results performed on the structure. The cracks are modeled 
using generic elements to include the coupling effects between shear forces and 
bending moments at the crack section. In the identification procedure eigen- 
sensitivity analysis of continuous structure is performed by implicit differentiation 
of structure characteristic equation. The experimentally obtained modal results are 
exposed to uncertainty including measurement errors, uncertainties in model order 
determination and etc. Uncertainty may also originate from manufacturing 
tolerances that are irreducible. To quantify uncertainties, a stochastic model 
updating is preformed on the structure using multiple sets of modal data. The crack 
locations and the depths are set to be unknown parameters of the model to be 
identified using model updating. Stochastic distributions of multiple measurements 
are determined and via the desired uncertainty propagation method the distribution 
of model modal predictions is also formed. The model random parameters are 
determined by matching the distributions of these two sets modal data. The 
identification process is mainly divided into two adjustment steps of matching the 
parameters mean value and their related covariance matrix. Here, the uncertainty 
propagation is performed by the so-called Monte-Carlo simulation for simulating 
the random processes.  
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1 INTRODUCTION 

Model updating is the process of correcting a 
mathematical model by matching the simulated and 
experimental obtained data. But experimentally 
obtained modal results are inherently exposed to 
uncertainty that originates from several sources 
including measurement errors, uncertainties in model 
order determination, curve fitting errors, etc. A more 
significant source of variability is manufacturing 
tolerances or disassembly and reassembly. Unlike the 
former, this uncertainty is irreducible. The 
quantification of parameter uncertainty is the main 
topic of stochastic model updating. It is an issue that 
has been neglected in the past whereas methods for 
uncertainty propagation have been developed 
extensively [1]. Propagation methods may be 
considered as forward procedures in comparison with 
quantification (or identification) methods i.e. in 
propagation approaches one may determine the 
probabilistic description of the vibration response from 
a posterior distribution of parameters but in a 
quantification problem the statistical properties of the 
parameters are sought from a known distribution of the 
response. Recent studies presented different methods 
for stochastic model updating. Mares et al. [2] 
presented a stochastic model updating technique that 
uses Monte-Carlo inverse propagation and multivariate 
multiple regression and Mottershead et al. [3] applied 
the method of [2] to an uncertainty quantification 
problem in an experimental study. The structure is a 
short beam manufactured from two components that 
connected by spot-welds. The main uncertainty of the 
model is concerned with spot-welds but there is also 
uncertainties originated from manufacturing variability, 
principally in the geometric tolerances. 
Fonseca et al. [4] described a technique for stochastic 
model updating to identify and quantify variability in 
the parameters from experimental data by maximizing 
the likelihood of the measurements. They validated the 
method experimentally on a cantilever beam with a 
point mass at an uncertain location. Haddad 
Khodaparast et al. [5] developed a new method, based 
upon the perturbation procedure in two versions. The 
approach contains the estimation of the first and second 
statistical moments of randomized updating parameters 
from measured variability in modal responses. In their 
method the computing time of the stochastic model 
updating is reduced by making various assumptions 
and simplifications. In the first version of the method, 
the correlation between the updated parameters and 
measured data is omitted. This results in a procedure 
that requires only the first-order matrix of sensitivities. 

The second procedure includes this correlation (after 
the first iteration) but is a more expensive computation 
requiring the second-order sensitivities. They illustrated 
the stochastic model updating procedure by a physical 
experiment; the method is applied to the problem of 
determining thickness variability in a collection of 
plates from measured natural frequencies. Govers and 
Link [6] presented their approach of stochastic model 
updating as an extension of the classical model 
updating technique by an equation accounting for the 
statistical properties. In their approach, at first, the 
parameter means are updated by minimizing the 
difference between test and analysis output means. 
Next, the parameter covariance matrix is adjusted by 
minimizing the difference between test and analysis 
output covariance matrices based on their Frobenius 
norm. They applied the proposed method to a 
numerical model of a replica of the GARTEUR SM-
AG19 benchmark structure [1]. The source of 
variability originated from disassembly and reassembly 
of the structure.  
Haddad Khodaparast et al., defined interval model 
updating for the purpose of quantification of irreducible 
uncertainty [7]. It is a non-probabilistic method in the 
field of stochastic model updating that estimates the 
ranges of parameters instead of distributions of them. 
They applied the method to a frame structure with 
uncertain internal beams locations. Abu Husain et al. 
[8] employed the developed perturbation method of 
Haddad Khodaparast et al. [5] and discussed the subject 
of parameterisation for stochastic updating. The study 
is a further development of the method of for more 
complicated structures [5]. Experimental work is 
conducted on two sets of structures: first, simple flat 
plates, and second, spot welded structures. Here, a 
crack identification problem in continuous beam like 
structures is considered. Experimental modal test 
results are employed in order to identify crack locations 
and their depths. Accounting for uncertainties 
incorporated with the test data, it would be more 
relevant to perform the updating process from the 
stochastic point of view. Here the covariance matrix 
adjustment method of Govers and Link [6] is employed 
to achieve a correct description of crack locations and 
depths variabilities.  

2 THEORY 

The problem considered here is a continuous beam with 
multiple cracks. Fig. 1 shows such a beam with two 
cracks. Each crack is modeled by a generic element 
with a crack at half its length within the beam. So the 
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problem of one continuous beam is split to multiple 
continuous beams that joint to each other with middling 
elements.  

 

 

 

 

 

Fig. 1 A typical model of the beam with two cracks 
 
Moreover the cracks’ locations and their depths are set 
to be unknown parameters of the model to be identified 
using model updating. But the updating process is 
performed from the stochastic point of view. In 
stochastic model updating method used here, the 
parameters are considered as random variables and the 
identification process leads to identification of 
statistical properties of these variables i.e. mean values 
and standard deviations. Also sensitivity analysis of the 
continuous model is performed by implicit 
differentiation of the characteristic equation. First, the 
mathematical model for the beam structure is 
introduced and the characteristic equation is derived. 
Second, the stochastic model updating approach for 
estimation of cracks’ depths and locations is discussed 
and then the sensitivity of the model to updating 
parameters is explained. 

2.1. Characteristic equation 

Fig. 1 shows the model of the beam with two cracks. 
As mentioned earlier, for each crack a generic element 
with a middling crack is assumed within the beam. By 
writing the compatibility conditions at the jointing 
elements the characteristic equation of the structure 
will be derived.  
For example considering the cracked free-free beam of 
Fig. 1, the mode shapes of the left, middle and the right 
beams may be defined in general form as: 

 

1 2 3 4sinh( ) cosh( ) sin( ) cos( )LW A x A x A x A xλ λ λ λ= + + +            (1) 
 

1 2 3 4sinh( ) cosh( ) sin( ) cos( )mW C y C y C y C yλ λ λ λ= + + +            (2) 
 

1 2 3 4sinh( ) cosh( ) sin( ) cos( )RW B z B z B z B zλ λ λ λ= + + +            (3) 
 
where 4 2A

EI
ρλ ω= , with ‘ ρ ’, ‘ A ’, ‘ E ’ and ‘ I ’ 

respectively density, cross-section area, module of 

elasticity and second moment of area. Also ‘ω ’ is the 
unique angular frequency of the motion of the whole 
set at each mode i.e. the natural frequency. Applying 
the free boundary conditions, one obtains : 
 

[ ] [ ]1 2sinh( ) sin( ) cosh( ) cos( )LW A x x A x xλ λ λ λ= + + +               (4) 
 

[ ] [ ]1 2sinh( ) sin( ) cosh( ) cos( )RW B z z B z zλ λ λ λ= + + +                (5) 
 
Now by focusing at jointing sections between the 
elements and beams showed in Fig. 2 one may write 
the moment and shear resultants of each section. 

 
 
 
 
 
 
 
 

Fig. 2 Sign conventions for the moment and shear 
resultants of jointing sections. 
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( ) ( ) ( ) ( )3
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=
= + − −⎡ ⎤⎣ ⎦     (10) 

 
( ) ( ) ( ) ( )3

1 2 3 4cosh sinh cos sinmR y c
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=
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( ) ( ) ( ) ( ){ }2

1 2sinh sin cosh cosR z b
M EI B b b B b bλ λ λ λ λ

=
= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (12) 

 
[ ] [ ]{ }3

1 2cosh( ) cos( ) sinh( ) sin( )R z b
Q EI B b b B b bλ λ λ λ λ

=
=− − + +      (13) 

 
Summarizing them in vector form 
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where 

[ ]
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On the other hand for the middling beam elements 
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where ( )1D λ  and ( )2D λ  are the dynamic stiffness 
matrices of the generic elements defined as 

 
( ) [ ] [ ]2D K Mλ ω⎡ ⎤= −⎣ ⎦                                               (19) 

 
[ ]K  and [ ]M  are respectively stiffness and mass 

matrix of the cracked generic element and ‘ 2ω ’ can be 
expressed in terms of ‘ λ ’ by 
 

2 4EI
A

ω λ
ρ

=                                                                 (20) 

 
Existence of a crack in an element would not change its 
mass matrix [ ]M  significantly whereas would affect its 

stiffness matrix [ ]K  considerably. Crack depth (here 
shown by ‘ ca ’) is the single parameter that affects the 
stiffness matrix of a cracked generic element. So 

dynamic stiffness matrices ‘ 1D ’ and ‘ 2D ’ respectively 
are functions of ‘ 1ca ’ and ‘ 2ca ’, the crack depth of each 
element. This issue will be discussed in detail in the 
section 2.2 devoted to crack modeling. Expanding the 
vector of nodal displacements 
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where 
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Replacing Eq. (21) in Eq. (18) results in 
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Based on sign conventions shown in the Fig. 2 
compatibility conditions form as 

 



Int  J   Advanced Design and Manufacturing Technology, Vol. 5/ No. 4/ September - 2012 43 
 

© 2012 IAU, Majlesi Branch 
 

1

1

2

2
'

1
'

1
'

2
'
2 8 18 1

/

/

/

/

L

L c

mL

mL c

mR

mR c

R

R c

V Q
M M L
V Q
M M L
V Q
M M L

QV
M LM ××

⎧ ⎫ −⎧ ⎫
⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪

−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

                                          (26) 

 
Finally by employing the relations between crack 
locations, ‘ 1x ’ and ‘ 2x ’, with respect to geometric 
dimensions of the structure 
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The following equation forms the characteristic 
equation of the cracked beam 
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2.2. Crack modeling 

Each crack is modeled using a generic element with a 
crack at half its length to include the coupling effects 
between shear forces and bending moments at the crack 
section. The characteristics of such a generic element is 
extracted from the paper of Ahmadian et al. [9]. The 
stiffness matrix of a generic beam element is generally 
defined as 
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By assigning 
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A beam element with a crack may be formed, where 

/ ch Lα =  is the ratio between the height and the length 
of the element (Here 3cL h=  is assumed) and the 
functions 1F  and 2F  are defined as 
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where ‘ ca ’ is the crack depth. Needless to say that ‘ 1F ’ 
and ‘ 2F ’ are obtained via the concepts of fracture 
mechanics. The crack depth ‘ ca ’ is an unknown 
component in terms ‘ 1F ’ and ‘ 2F ’. In fact ‘ wk ’ and 
‘ k θ ’ are functions of only an unknown parameter, the 
crack depth ‘ ca ’. Thus 
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2.3. Stochastic model updating method 

The crack locations and their depth statistical properties 
are estimated using stochastic model updating. 
Identification process is mainly divided into two 
adjustment steps, at first, the parameter means are 
updated by minimizing the difference between test and 
analysis output means. Next, the parameter covariance 
matrix is adjusted by minimizing the difference 
between test and analysis output covariance matrices 
based on their Frobenius norm. For further study see 
Ref. [6]. 
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2.3.1. Parameter Mean Value Adjustment 

For mean value adjustment the method of weighted 
least squares is used. The vector of parameter means is 

[ ]1 1 2 2
T

c cp x a x a= , where  1,2x are the crack 
location means (measured from one end of the beam) 
and 1,2ca  are the crack depth means.  
The measured mean vector consists means of the first 
n  Eigen values 1 2

T

m m m nmλ λ λ λ⎡ ⎤= …⎣ ⎦  that have the 

following relation with the natural frequencies 
 

4 2A
EI
ρλ ω=                                                               (36) 

 
And the corresponding Eigen values that estimated 
from the continuous beam model are  
 

1 2

T

e e ne eλ λ λ λ⎡ ⎤= …⎣ ⎦ . 

 
The parameter mean estimation starts by defining a 
residual which contains the differences between the 
estimated and measured mean Eigen values. 

 
m eε λ λ= −                                                                (37) 

 

eλ  basically is a function of p , the parameters of the 
model, by applying the Taylor series truncated after the 
linear term 

 
( ) ( )1 .e i e i i ip p G pλ λ+ = + Δ                                      (38) 
 

where ( )e ipλ  or simply 
ieλ  represents the vector of 

estimated Eigen values at the iteration step i , 
e

i
i

G
p
λ∂

=
∂

 represents the sensitivity matrix and ipΔ  

represents the vector of the parameter changes between 
successive iteration steps. Thus 

 
.i i i iGr pε = − Δ                                                         (39) 

 
with 

ii m er λ λ= − . The vector ir  contains the residual 

between the measured and the estimated Eigen values 
at the i -th iteration step. The method of weighted least 
squares leads to the objective function for parameters 
mean identification 

 
minT

mJ W εε ε= →                                                 (40) 
 

where the subscript of ‘ mJ ’ denotes for mean values 
and ‘W ε ’ is a positive diagonal weighting matrix which 
reflects the confidence level in the frequency 
measurements. The estimated parameter means are 
obtained by minimizing ‘ mJ ’ with respect to pΔ , 
which involves differentiating ‘ mJ ’ with respect to 
each parameter, and setting the result equal to zero. The 
change in the parameter vector is then 

 

( ) 1T
i i i i ip G W G G W rε ε

−
Δ =                                        (41) 

 

2.3.2. Parameter Covariance Matrix Adjustment 

In a similar manner to mean value adjustment, the 
parameter covariance estimation starts by defining a 
residual which contains the differences between the 
estimated and measured covariance matrix of Eigen 
values. 

 
Cov m eCov Covε = −                                                   (42) 
 

eCov  is a function of pCov , the covariance of 
parameters, by applying the Taylor series expansion to 
output covariance matrix eCov  truncated after the 
linear term 

 
( ) ( )1 . .

pi

T
e i e i i Cov iCov p Cov p G G+ = + Δ                    (43) 

 
where ( )e iCov p  or simply 

ieCov  represents the 

covariance matrix of estimated Eigen values at the 
iteration step ‘ i ’, ‘ iG ’ represents the sensitivity 
matrix which is obtained in the same way of previous 
section and 

piCovΔ  represents the parameter covariance 

matrix changes between successive iteration steps. 
Thus 

 
. .

i i pi

T
Cov Cov i Cov iG Gε = Δ − Δ                                       (44) 

 
with 

i iCov m eCov CovΔ = − . The matrix 
iCovΔ  contains 

the residual between the measured and the estimated 
Eigen values covariance matrix at the i -th iteration 
step. The objective function for parameter covariance 
matrix adjustment is 

 
21 . . min

2
T

c Cov F
J W Wε εε= →                                   (45) 
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with subscript ‘ F ’ denoting the Frobenius norm of a 
matrix, the subscript of ‘ cJ ’ denoting covariance and 
‘W ε ’ is a positive diagonal weighting matrix which 
reflects the confidence level in the frequency 
measurements. The estimated covariance matrix of the 
parameters is obtained by minimizing ‘ cJ ’ with respect 
to 

pCovΔ , which involves equation / 0
pCovJ∂ ∂Δ = , 

finally the change in the parameter covariance matrix is 
 

. .
p ii

T
Cov i Cov iT TΔ = Δ                                                   (46) 

 
where 

 

 ( ) 1
. . .T

i i i iT G W G G Wε ε

−
= .                                       (47) 

 

2.4. Sensitivity Analysis 

Model updating process of weighted least squares 
method, needs the sensitivity matrix of the model. Such 
a matrix includes the derivatives of Eigen values with 
respect to model parameters, as follows 

 
1 1 1

1 2

2 2 2

1 2

1 2

k

k

n n n

k n k

p p p

p p pG

p p p

λ λ λ

λ λ λ

λ λ λ

×

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

                               (48) 

 
with n k×  denoting respectively number of n -first 
Eigen values and number of the supposed parameters of 
the model. This computation is performed in the 
following. Suppose the characteristic equation as 

 
( )1 2, , , , 0i kf p p pλ … =                                                (49) 
 

where ‘ iλ ’ is the i -th Eigen value and p ’s are the 
updating parameters. In fact ‘ iλ ’ is the dependent 
variable defined explicitly by p ’s that are independent 
variables. Differentiating both sides of the 
characteristic equation with respect to jp  (the j -th 
parameter) using the chain rule results in 
 

1

0
k

i m

mi j m j

pf f
p p p
λ

λ =

∂ ∂∂ ∂
+ =

∂ ∂ ∂ ∂∑                                       (50) 

 

But p ’s are independent variables, so 
1

0

m

j

m j
p
p

m j

=⎧
∂ ⎪= ⎨
∂ ⎪ ≠⎩

                                              (51) 

 
Thus 
 

0 ji
i

i

i
j

i j j j

f pf f g
p p p f
λ λ

λ λ
∂ ∂∂ ∂∂ ∂

+ = ⇒ = = −
∂ ∂ ∂ ∂ ∂ ∂

          (52) 

So the Eigen value sensitivity of the structure ends in 
differentiating the characteristic equation with respect 
to parameters and Eigen values. 

3 EXPERIMENTAL STUDY 

In this section an experimental example of a stochastic 
crack identification problem is presented. The example 
is selected among the experimental examples of the 
Ref. [10]. An aluminum free-free beam with two cracks 
is considered. Table 1 gives details of the geometric 
and material properties.  

 
Table 1 The properties of the beam used for the 

experimental study 
Boundary Conditions Free-Free 
Material Aluminum 
Young’s modulus, E  69.79 GPa  
Mass density, ρ  2600 3/kg m  
The Poisson ratio, ν  0.33 
Beam length, L  1832 mm  
Beam width, w  50 mm  

Beam height, h  25 mm  

 

Nominal values for mean and standard deviation of 
crack locations and depths are tabulated in table 2.  

 
Table 2  Nominal values for statistical properties of crack 

locations and depths 

 Location, x  
(mm) Depth, ca  (mm) 

  

 Mean, 
x  

Std, 

xσ  
Mean, 

ca  
Std, 

caσ  

Crack No. 1 595 4
 

12
 

1

Crack No. 2 800 5
 

8
 

1.5
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A realistic number of 10n =  samples are considered 
for the distribution of measured data whereas for the 
distribution of analytical model 100n =  samples are 
assumed. It is considered that the variables follow a 
normal distribution. Samples are generated by the so-
called method of Latin Hypercube Sampling (LHS) that 
is much more efficient than the simple random 
sampling method. The uncertainty propagation is 
conducted by Monte-Carlo simulation to achieve the 
distribution of outputs of the model i.e. natural 
frequencies. The distribution of measurements and the 
initial scatter of the analytical model is shown in Fig. 
3a. 
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(c) 

 
Fig. 3 Distributions and the corresponding confidence 
ellipses of the natural frequencies obtained by Analytical 

model (empty red circles) vs. Test data (filled blue circles): 
(a). Iteration step 0 (b). After mean value adjustment (c). 

After covariance matrix adjustment 

 
By the method of Govers and Link [6] the stochastic 
model updating is performed and the results are shown 
here. Fig. 3 shows the updating process in three steps: 
(a) The initial scatters, (b) Distributions after 
parameters mean adjustment and (c) Distributions after 
parameter covariance matrix adjustment.  
Table 3 shows all of the statistical properties for the 
model parameters at various stages of the updating 
process i.e. the mean values and covariances of the 
crack locations and depths for the test case, the initial 
analytical model and the identified one. Nominal values 
are those used in LHS for producing random samples.  

 

 

 

 

 

 
Table 3 Statistical properties of parameters; mean values are 

in (mm) while covariances are in (mm2) 

Parameter Nomin
al   Statisti

cal  

 Test Initi
al  

Test 
( 10n =

) 

Updated 
(
100n =

) 

p  

1x  595 400  595.419 596.160 

1ca  12 4  11.959 11.924 

2x  800 700  800.300 802.388 

2ca  8 4  8.059 8.186 

( )Cov p
 

2
1xσ  42  82  19.521 25.106 

1

2
caσ  12 22  1.040 1.055 

2
2xσ  52 102  22.045 19.683 

2

2
caσ  1.52 32  2.631 3.396 

( )1 1, cCov x a
 

0 0  1.076 0.766 

( )1 2,Cov x x
 

0 0  8.649 9.206 

( )1 2, cCov x a

 
0 0  1.419 3.261 

( )2 1, cCov x a
 

0 0  1.730 2.467 

( )2 2, cCov x a

 
0 0  1.152 1.364 

( )1 2,c cCov a a

 
0 0  3.007 6.382 

 
It must be mentioned here that the distribution of the 
updated analytical model is generated in a correlated 
random space (see the Statistical column of Table 3 and 
note that off-diagonal elements of the covariance 
matrix are no longer zero). In such cases LHS is based 
on Cholesky decomposition [1]. Details may be found 
in Ref. [11]. 
For a better insight in how the updating process is 
performed, the Figs. 4 and 5 are provided which 
respectively correspond to the evolution of outputs 
mean and standard deviation.  
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Fig. 4 Evolution of the natural frequencies mean values of 
the Analytical model (empty red circles) toward those of the 

Test data (filled blue circle) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Evolution of the natural frequencies standard 

deviations of the Analytical model (empty red circles) toward 
those of the Test data (filled blue circle) 
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Numerical results show a good agreement between test 
and analysis in both mean values and covariances. 
Statistical properties of natural frequencies of the 
updated analytical model concur with those of the test 
results as can be explicitly seen by the match of the 
frequency confidence ellipses. Both centers and the 
circumferences of the ellipses are nearly coincided to 
each other. Cholesky decomposition plays a crucial role 
in reconstructing the desired distributions. 

4 CONCLUSION 

In this paper the recently developed stochastic model 
updating technique is applied to a crack identification 
problem in the presence of measurement uncertainty. 
Statistical properties of the measured modal parameters 
are used in order to correct the mean values and 
covariances of the output of the analytical model. In 
this manner, the location and the depth of cracks, i.e. 
the model parameters, are estimated (in fact, the 
statistical properties of locations and depths). Random 
processes are conducted by the so-called Monte-Carlo 
simulation incorporated with Latin Hypercube 
Sampling (LHS) method. For the simulation of 
correlated random data, LHS is based on Cholesky 
decomposition. This is essential for achieving the 
correct distribution of a random space. 
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