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1 INTRODUCTION 

The free vibration analysis of a suspended cable has 
attracted much of interest in engineering mechanics 
especially in last decades. The vibration of many 
important engineering structures such as overhead 
transmission lines, gay cables and tracks can be 
represented using the suspended cable model. In 
practice the actual oscillations occurring in cables 
depend on static sag due to the cable weight. It can be 
shown that due to this static sag, the longitudinal and 
transversal modes of vibration are coupled and 
equations of motions become fully nonlinear. 

Irvin’s theory [1] was the first theory, presented in this 
context. According to this theory eigenvalues and 
eigenfunctions of differential equations of motion can 
be calculated using an appropriate numerical method 
while neglecting non-linear terms. This theory is also 
presented in [2]. In [3] differential equations of motion 
are solved using the method of separation of variables 
and also by another numerical method. In [4], natural 
frequencies and mode shapes of a suspended cable are 
computed using finite element method.  

Free vibration analysis of a track, which is simulated 
with a suspended cable, is investigated in [5] using 
Newton-Raphson method. In [6], equations of motion 
are solved by using engineering software (DADS) and 
natural frequencies are compared with experimental 
results for the track of specific tank.  In-plane 
vibrations of flat-sag suspended cables carrying an 
array of moving oscillators with arbitrarily varying 
velocities has been studied by Sofi and Muscolino [7]. 
They proposed an improved series representation of 
vertical cable displacement which allows overcoming 
the inability of the traditional Galerkin method. 

The latest progresses and future directions on nonlinear 
dynamics for transverse motion of axially moving 
strings have been summarized in [8]. An asymptotic 
approach was proposed by Chen et al. [9] to investigate 
nonlinear parametric vibration of axially accelerating 
viscoelastic strings. Effects of the initial stress, the 
parameters in the Kelvin model, and the axial speed 
fluctuation amplitude on the amplitudes and the 
existence conditions of steady-state responses were 
studied.  transversal nonlinear vibration of an axially 
moving viscoelastic string supported by a partial 
viscoelastic guide was analytically investigated in [10]. 
In the case of principal parametric resonance, the 
stability and bifurcation of trivial and non-trivial 
steady-state responses were analyzed through the 
Routh–Hurwitz criterion in that paper. Li-Qun Chen in 
[11] has reviewed 242 references on transverse 

vibrations of axially moving strings and their control. 
Linear and nonlinear vibration and variety of control 
strategies have been discussed in that paper. Surveying 
the literature indicates that in most cases the speed of 
the moving belt is assumed to be constant for 
simplification. In very few published papers the speed 
is adopted to be a harmonic function. In our present 
study in order to generalize the study and approaching 
to the real case both the tension and moving speed are 
simultaneously assumed to be harmonic functions.    

2 MATHEMATICAL MODELING 

A suspended cable is shown in the Fig. 1, in which L, 
A, T0, E and ρ are the length and cross-sectional area, 
cable pretension, elasticity module and mass per unit 
length of the cable, respectively. 
If we consider u and w to be the components of 
longitudinal and transversal displacement of any point 
along the cable length, the total kinetic and potential 
energy of the cable are [4]: 
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Fig. 1 Schematic picture of the cable with axial and 
transversal displacements 

 
 
in which εxx is [4]: 
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In Eq. (3), K is a parameter representing the cable static 
sag and usually is assumed to be constant as [2]: 

0T
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Using Hamilton’s principal, we have: 
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By introducing Eq.(1) in to Eq.(5) and then by applying 
integration by-parts, we have: 
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in which: 
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In case of a cable with harmonic tension and velocity 
the total kinetic and potential energy of the cable are: 
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The large deformation strain of the systems is defined 
as  
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And potential energy of the systems is  
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Using Hamilton’s principle one can reach to 
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Since Eq. (12) are valid for any arbitrary wδ  and uδ  
then 
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Implementing the boundary conditions: 
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 Substituting Eq. (16) into Eq. (14) the following result 
can be achieved 
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Variable speed and cable tension are assumed to be 
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tSinPPP 22 * Ωε+=  (19) 

3 FREE VIBRATION ANALYSIS OF STATIONARY 
SAGGED CABLE 

In practice and over a technologically useful range of 
parameter values, in the cable the square of 
longitudinal wave speed i.e., (EA/ρ), is much higher 
than unity consequently with an acceptable 
approximation, from Eq. (13) we have [5]: 
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After integration and imposing the boundary conditions 
(U(0,t) = U(L,t) = 0) on the above equation we have: 
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Using Eqs. (15) and (21), we have: 

∫=
∂
∂

−
∂
∂ L

0

2
l

2
2

2

2

2
2
t dηt)w(η(vK

t
w

g
1

x
wLv )  

 
(22) 

Using the method of separation of variables, one will 
get: 
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By defining a dimensionless parameter S (S=x/L) we 
have: 
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in which: 
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Eigenvalues of the Eq. (26), which are the natural 
frequencies of the suspended cable, can be calculated 
from Eq. (24):  
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In above equation ωL1 is the first natural frequency of 
an ordinary over hanged cable, furthermore in Eq. (26) 
following definition is also considered 
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According to the previous described algorithm, natural 
frequencies and mode shapes of a suspended cable are 
calculated and plotted versus dimensionless λ. 

As it is seen from Fig. 2, for different values of λ less 
than λc1 (in which the first crossover phenomenon is 
occurred) the ratio of first natural frequency of the 
suspended cable to the first natural frequency of 
straight ordinary cable is increased and then after λc1 
remains constant. Also it is seen that for values less 

than the value of λc1 by increasing the value of λ, the 
ratio of second natural frequency of the suspended 
cable to the first natural frequency of straight ordinary 
cable remains constant and for the values greater than 
λc1 primarily it increases in a non-linear fashion and 
finally approaches to the value of 2.8607. 

In Fig. 3 for the values of λ less than λc1, the first 
transversal mode has a symmetric shape and the second 
transversal mode shape is similar to the second mode 
shape of straight ordinary cable and for values greater 
than λc1, the first transversal mode shape is similar to 
the second mode shape of straight ordinary cable and 
the second mode has a unsymmetrical shape (Fig. 4). 

Similar to the first and second mode shape, as it is 
illustrated in Fig. 5 for the values of λ less than λc2 (in 
which the second crossover phenomenon is occurred) 
the ratio of third natural frequency of the suspended 
cable to the first natural frequency of straight ordinary 
cable is increased and then after λc1 remains constant. 
Also it is seen that before λc2 with increase of the value 
of λ, the ratio of forth natural frequency of the 
suspended cable to the first natural frequency of 
straight ordinary cable remains constant and for values 
greater than λc2 it increases and finally approaches to 
the value of 4.918. In Fig. 6 for the values of λ less 
than λc2, third transversal mode has a symmetric shape 
and forth transversal mode shape is similar to the forth 
mode shape of straight ordinary cable and after λc2, 
third transversal mode shape  is similar to the forth  
mode shape of straight ordinary cable and forth mode 
has a unsymmetrical shape (Fig. 7). From Figs. 8 to 10 
it can be seen that the variation of fifth and sixth 
natural frequencies and mode shapes of the suspended 
cable is similar to that of previous modes.  
 
Table 1    Limit values of frequency ratio and values of λ2 in 

which crossover is occurred 

Mode Numbers 
λ2c Crossover 

Frequency 
Limit Frequency 

Ratio 
1-2 39.4784  2.8607 

3-4  157.9136 4.918  

5-6  355.30357 6.9418  

7-8  631.6546 8.9548  

9-10  986.9604 10.9631 

 

Specific values of λ2 in which crossover phenomenon 
are occurred and also the limiting values of Ω2/π are 
also presented in Table 1. It is notable that all of 
obtained results in this paper are in a very good 
agreement with those given in [1] – [5]. 
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Fig. 2    Variation of  frequency ratio versus λ2 for the first 
and second mode  

 
 

 
a) First mode b) Second mode 

 
Fig. 3    First and second mode shapes for λ<λc1 

 

 

 
a) First mode b) Second mode 

 
Fig. 4     First and second mode shapes for λ>λc1 
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Fig. 5    Variation of  frequency ratio versus λ2 for the third 
and forth mode  

 
a) Third mode b) Forth mode 
Fig. 6    Third and forth mode shapes for λ<λc2 

 

a) Third mode b) Forth mode 
Fig. 7   Third and forth mode shapes for λ>λc2 
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Fig. 8    Variation of  frequency ratio versus λ2  for the fifth 

and sixth mode 
 

 
a) Fifth mode b) Sixth mode 
Fig. 9   Fifth and sixth mode shapes for λ<λc3 

 

 
a) Fifth mode 

 
b) Sixth mode 

        Fig. 10    Fifth and sixth mode shapes for λ>λc3
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4 NONLINEAR VIBRATION ANALYSIS OF A 
MOVING CABLE WITH HARMONIC TENSION AND 
SPEED 

Galerkin’s method is used as the solution technique. In 
this method, solution is approximated with the below 
equation: 

 

)()(),(
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In which, Φ is the mode shape functions and q(t) is 
unknown functions of time to be determined. 
Substituting Eq. (30) into Eq. (17), for a four-term 
approximation one can reach 
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5 VALIDATION OF SIMULATION 

A special case of a moving viscoelastic cable with 
constant tension and speed [12] in the literature is 
considered in this section. For such a special case 
differential equations of motion can be derived as [12] 
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(35) 

For such a viscoelastic cable with constant velocity and 
tension, numerical simulations have been carried out 
and the obtained results are compared with [12] in Fig. 
11. As it is illustrated a very good correlation is seen 
between the results. 

 
 
 

 

Fig. 11 Comparison between the results from the present 
work (Right) and [12] (Left)  

6 NUMERICAL RESULTS 

Using the prescribed method of solution provided for 
differential equations of motion a computer program 
has been written employing MATLAB (R2006b) 
software and a comprehensive parametric study is 
carried out. 4th order Runge-Kutta method with time 
increment of 0.01 is employed in numerical 
integrations.  
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For a real case with mechanical properties listed in 
Table 2, different approximations for the response of 
the midpoint of the cable are illustrated in Figs. 12 to 
14. Effects of the initial conditions on the frequency of 
the free vibrations of the moving cable are illustrated in 
Fig. 11. As it is seen the dynamic system has hardening 
behavior and the period of its vibration decreases with 
increasing of the magnitude of initial condition.  

 
Table 2    Mechanical properties of the simulated belt 
Symbol Value    Unit 

ρ 7.68X103 kg/m3

A 4 X10-5 m2

L 1.0 m 
E 3X109 N/m2

P0 76.22 N 
V0 10 m/s 
ε1=ε2 0.1  

 

Effects of the harmonic tension on reduction of the 
vibration amplitude are illustrated in Fig. 13. As it is 
seen the harmonic tension force acts as the control 
force and reduces the amplitude of vibration even up to 
10%. This means that if the moving cable is excited 
with the harmonic variable tension with the same 
frequency and phase of the natural vibration the 
vibration amplitude will decrease noticeably. That 
result is quite matched with physical experience when 
someone applies a harmonic tension on a vibrating rope 
with the same frequency and phase of its vibration to 
suppress the oscillations. Effects of the amplitude of 
harmonic tension on reduction of the vibration 
amplitude are illustrated in Fig. 14. As it is seen, 
amplitude of vibration reduces by increasing of the 
amplitude of the variable tension.  
 
 

 
 

Fig. 12    Effect of the initial condition on the period of free 
vibration  

 
 

 
Fig. 13    Effect of the harmonic tension on reduction of the 

vibration amplitude 

 
 

Fig. 14    Effect of the amplitude of harmonic tension on 
reduction of the vibration amplitude 

 
 

 
 

Fig. 15    Effect of the frequency of harmonic tension on 
reduction of amplitude 
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Ω2= 1.5*ω1= 64.24 Rad/s 
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Effects of the frequency of harmonic tension on 
reduction of the vibration amplitude are illustrated in 
Fig. 15. As it is seen, the variable tension acts as a 
controller force to reduce the vibration of the cable. It 
is seen that if the frequency of the variable tension is 
exactly equal to the first natural frequency of the cable, 
it has its highest performance in reducing the vibration 
level of the cable. 

7 CONCLUSION 

Coupled nonlinear vibrations of a suspended cable with 
time dependent tension and velocity were studied in 
this paper. For a stationary sagged cable a modal 
analysis was initially carried out in order to identify the 
dynamic system. A crossover phenomenon was 
achieved in which two consecutive natural frequencies 
become the same.  Natural frequencies and mode 
shapes are plotted versus a dimensionless parameter λ, 
known as static sag character. In case of moving cable, 
the tension force and the rotary speed of the pullies 
were assumed to be harmonic functions. Galerkin mode 
summation approach was employed to discretize the 
nonlinear equations of motions. Numerical simulations 
were carried out in the time domain. A frequency 
analysis was then carried out and effects of the 
frequency of tension force and rotary speed on the belt 
dynamic responses are studied. Validity of the 
simulation was verified for a special case in the 
literature i.e. a moving cable with constant tension and 
sinusoidal speed. It was proved that the nonlinear 
dynamic system of a moving cable with variable 
tension and speed acts a hardening system and the 
period of its vibration decreases with increasing of the 
magnitude of initial condition. It was also found that 
fourth order Galerkin approximation is an acceptable 
solution with very good convergence. A comprehensive 
parametric study was carried out and effects of 
different parameters like the moving speed and tension 
force on the response were studied. It was also found 
that the harmonic tension can act as a suppression 
system and reduces the amplitude of vibration. 

Nonlinear vibration of a moving belt with time 
dependent tension and velocity was studied in this 
paper. Tension force and the moving speed were 
assumed to be harmonic. Dynamic responses of the 
system were calculated using Galerkin’s method. A 
frequency analysis was carried out and effects of 
different parameters like the moving speed and tension 
force on the responses were studied. it was proved that 
increasing the tension increases the critical speed of the 
moving cable. It was also found that the harmonic 

tension can act as a controller and reduces the 
amplitude of vibration up to 25 times. Optimal 
frequency of the variable tension was found to be 
exactly the first natural frequency of the systems and 
also it was proved that increasing the amplitude of the 
variable tension can considerably reduce the level of 
vibration. It was found that the behavior of the systems 
is harmonic when the excitation frequency is much or 
less than the natural frequency. Exactly at the natural 
frequency the system has beating behavior and the 
frequency of beating increases with increase of the 
amplitude of variation of the moving speed and also the 
variable tension. 
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