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Abstract: With the development of micro and nanotechnology, machining 
methods at micro and nanoscale have now become interesting research topics. One 
of the recently-proposed methods for sub-micron machining, especially 
nanomachining, is dynamic plowing lithography (DPL) method. In this method an 
oscillating tip is used for machining soft materials such as polymers. The geometry 
of the oscillating beam and its vibrational properties are the most important 
parameters in this nanomachining process. In this study, effects of the AFM beam 
geometry on its stiffness coefficient, resonant frequency, beam stability, and the 
maximum stress created in the beam structure were investigated for 12 different 
general shapes using the finite element method. The obtained results indicate that 
circular and square membranes are the most favourable AFM cantilever geometries 
because these structures provide higher machining force and speed; while for noisy 
conditions and environments, straight and V-shaped beams are recommended 
(because of their higher stability factor) for the DPL nanomachining process. 
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1 INTRODUCTION 

Atomic force microscopy (AFM) machining is one of 

the few methods that can create small nanoscale 

features. This method has been widely studied in recent 

years. Intensive efforts have been made for AFM 

nanomachining like different techniques such as Dip-

Pen Nanolithography (DPNL) [1], thermal affecting 

[2], mechanical nanomachining [3], and the field 

emission. 

Due to their widespread use in macroscale, mechanical 

machining methods have attracted particular attention. 

The implementation of computer numerical control 

(CNC) techniques using SPM at the nanoscale has been 

investigated in a number of studies [4], [5]. Two 

methods that are used in mechanical AFM 

nanomachining are as follows: plowing the sample 

surface using the static force-displacement indentation 

(FDI) method and using the dynamic plowing 

lithography (DPL) method. The later method is used 

for creating groove on the surface of soft and polymer 

samples [6]. The advantage of the static method lies in 

its capability in machining a variety of materials, 

whereas its disadvantage is low tool life and low 

machining speed compared to the dynamic method 

(DPL). The dynamic method can only be used for 

machining polymers and other soft materials. The 

ridges formed along the grooves are much larger in the 

dynamic method compared to the static method, and 

the ridge density in the DPL method is much lower 

than that in the FDI method. A number of techniques 

have been proposed to eliminate them or reduce their 

size, which are not applicable in the FDI method [6], 

[7]. Thus, higher speeds and longer tool life have made 

the dynamic method a better choice in the 

nanomachining of polymers compared to the static 

method. Accordingly, several researches have been 

conducted to optimize this method, through studying 

damping, force, and beam stiffness coefficient, duration 

of the contact between the tip and the sample surface, 

as well as the beam deformation [8-20].  

One of the main components of this nanomachining 

process that directly affects the machining results is the 

cantilever that acts as a spring to which the tip is 

attached. The most important parameter in a beam is its 

stiffness. The higher the stiffness, the greater force 

exerted by the tip to the surface (considering a constant 

displacement) and, consequently, the greater the plastic 

deformation (the amount of material removed from the 

sample surface) [21]. The beam stiffness is also directly 

related to its natural frequency (which is the beam 

working frequency). Increased beam stiffness increases 

the machining speed. Increasing the machining speed is 

very important especially in top-down manufacturing, 

which is generally slow, and can further expand its 

applications. Beam stability is another important 

parameter in the DPL process. Beam stability can be 

evaluated through calculating the ratio of the second 

mode frequency to that of the first mode. Higher 

frequency of the second mode compared to the first 

mode means that second vibrational mode is distant 

from the first mode which causes the beam to remain in 

the first vibrational mode. The final parameter is the 

maximum stress induced in the beam. The 

nanomachining depth (groove depth) is determined by 

the vibration amplitude of the beam, which is known 

and constant. It is desired to have less stress in the 

beam structure for a constant deflection (vibration 

amplitude) because lower stress causes increase in the 

beam’s life or allows the nanomachining depth to be 

increased. In this research, effect of the AFM beam 

geometrical shape on its stiffness coefficient, resonant 

frequency, stability and maximum stress was studied 

using the finite element method. 

2 MODELING OF THE AFM CANTILEVER 

In this research, finite element analysis method was 

used to evaluate effect of the AFM beam geometry on 

the DPL nanomachining process through the following 

parameters: 1. Stiffness coefficient of the beam: An 

increased stiffness coefficient increases the beam 

stiffness and the force is exerted on the sample surface 

and consequently allows machining of the harder 

materials. 2. The natural or resonance frequency: the 

greater the resonance frequency, the higher the 

machining speed. 3. Beam stability: Increase in the 

beam stability raises accuracy and repeatability of the 

machining process and the tool life. 4. The stress 

induced in the beam: a low stress value ensures longer 

beam life and allows for increasing the depth of 

nanomachining. A 225×35×7 commercial cantilever 

(Pointprobe NCL, Nanosensors, Wetzlar-Blankenfeld, 

Germany) with a natural frequency of 156 KHz and 

spring constant of 30 N/m [7] was used for modelling 

as the base dimensions. As it is shown in the Fig. 1, 

Effect of the different beam geometries including base 

cantilever, cantilevers with half and twice the width of 

the base cantilever, V-shaped beam with angles of 30, 

60, 90 and 120°, X-shaped beam, square beam 

(membrane) with four constrained sides, and circular 

beam (membrane) with constrained circumference was 

studied.  

3 RESULTS AND DISCUSSION 

3.1. Stiffness Coefficient 

Stiffness coefficient or spring constant of the AFM 

beam is an important parameter in DPL nanomachining 
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process. Several studies have measured the spring 

constant and evaluated its impact on machining [9], 

[19], [22]. According to Eq. (1), stiffness coefficient 

(K) is directly related to the force applied by the beam 

on the sample surface. An increased stiffness increases 

the applied force (F) and the deformation generated in 

the sample, as well as machinability of the process, and 

allows for machining of the harder materials [9]. 

KxF                                                                         (1) 

Where, x is deflection of the beam. According to       

Eq. (2), an increased stiffness coefficient increases the 

natural frequency of the beam which, in turn, increases 

the nanomachining speed.  

m

K
                                                                      (2) 

In order to calculate the stiffness coefficient of different 

beam geometries, a known 10
-4

 N force was applied to 

the free end of the beam, and the displacement was 

determined through the finite element method. The 

spring constant was then calculated using Eq. (1).  

 

 

Fig. 1 The studied AFM cantilevers; straight cantilever  

(as base dimension): a, cantilever with half of the width of 

base cantilever: b, and twice the width of base cantilever:      

c, U-Shape cantilever: d, 30, 60, 90, and 120 degree V-Shape 

beams: e, f, g, and h, respectively, triangular beam:                

i, X-Shape beam: j, square membrane: k, and circular 

membrane: l 

The results are presented in Fig. 2. The stiffness 

coefficient calculated for the straight beam with 

dimensions similar to the base dimensions was 36.11 

N/m which is very close to the value reported by [7]. 

This validates the presented model in this research. 

A comparison between the stiffness coefficients 

calculated for different beam geometries showed that 

the circular membrane has the highest stiffness 

coefficient. Further investigations showed that the 

beams that were constrained in more than one side have 

higher stiffness coefficients compared to those that 

were constrained in only one side. Therefore, they can 

be used to increase the stiffness coefficient of the 

vibrating beam and improve the machining efficiency. 

Among the beams constrained at one side, the 90° V-

shaped beam geometry is the best geometry that has the 

highest stiffness coefficient. Another point observed in 

this study was that in straight beams, an increased beam 

width increases the stiffness coefficient and, 

consequently, the machining force. 

However, it should be noted that increase in the 

stiffness coefficient reduces the sensitivity in sensing 

applications of the AFM cantilever because this would 

require higher interatomic forces to overcome the 

spring constant for maintaining optimal performance of 

the AFM in topography applications. Therefore, this 

issue should be noted in applications other than 

nanomachining. 

As it can be seen in Fig. 2, the stiffness coefficient 

increases in the following order with beam shape: the 

straight beam with half-width of the base cantilever (b), 

straight cantilever (a), 30° V-shaped beam (e), straight 

beam with twice-width of the base cantilever (c), U-

shape cantilever (d), 60° V-shaped beam (f), triangular 

beam (i), 120° V-shaped beam (h), 90° V-shaped beam 

(g), X-shaped beam (j), square membrane (k),  and the 

circular membrane (l). 

 

 

Fig. 2 The Stiffness coefficients calculated for different 

beam geometries 
 

3.2. Resonant frequency 

In order to improve efficiency in both machining and 

surface evaluation modes, the AFM beam must vibrate 
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at its natural frequency. Considering the importance of 

this issue, several studies have been conducted on AFM 

beam vibration [11], [12], [18], [20]. In the present 

study, vibrational analysis of the AFM beam with 

various geometric shapes was performed using the 

finite element method and the natural frequency of the 

beams was determined. Results of this simulation 

including the first mode shape of the studied AFM 

beams are shown in Fig. 3. As previously mentioned, 

an increase in the natural frequency is desirable since it 

can increase the nanomachining speed.  

 

 

Fig. 3 First mode shape of the studied AFM beams 

 
Figure 4 represents the natural frequency of the beams 

calculated for different geometric shapes. In straight 

beams, increasing width enhances the stiffness; 

however, it does not considerably affect the natural 

frequency. Unexpectedly, using two straight beams 

connected via a joint to form a U-shaped beam 

significantly reduces the natural frequency of the beam 

as a whole. It was observed that the circular membrane 

has the highest natural frequency. Among the beams 

constrained on one end (side), the 120° V-shaped beam 

has the highest frequency. It was observed that the 

natural frequency calculated for the base cantilever 

(base dimensions) is in a good agreement with the 

natural frequency computed by reference 7. This also 

shows the validity of the modeling performed in this 

research. 

According to the Fig. 4, among the AFM beams, the 

circular membrane (l) has the highest natural 

frequency, followed by 120° V-shaped beam (h), 

square membrane (k), 90° V-shaped beam (g), 30° V-

shaped beam (e), triangular beam (i), X-shaped beam 

(j), 60° V-shaped beam (f), straight beam with twice-

width of the base cantilever (c), base cantilever (a), 

straight cantilever with half-width of the base 

cantilever (b), and U-shaped beam (d). 

 

 

Fig. 4 The Natural frequency for different beam 

geometries. 

 

3.3. Stability 

Oscillators generally tend to vibrate around their 

natural frequency. However, in some cases, they may 

exit from their initial frequency mode and vibrate under 

undesirable conditions in other frequency modes. When 

beams vibrate at higher frequencies, the mode shape 

also changes, and the tip and the sample can be 

damaged. Therefore, in designing AFM beams, the 

second natural frequency is better than the first natural 

frequency. 

To address this problem, the frequencies of the first and 

second resonance frequency modes were calculated 

using the finite element method. Then, ratio of natural 

frequency of the second mode to that of the first mode 

was obtained. As this ratio increased, stability of the 

AFM beam enhances.  

 

 

Fig. 5 Ratio of the second to first mode of the natural 

frequency for different beams. 

 

Fig. 5 indicates ratio of the second to first mode of the 

natural frequency for different beams. It is observed 

that, in terms of stability, V-shaped beams are the best 

selection after the straight beams. Although square and 

circular membranes are better options considering 
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stiffness coefficient and natural frequency, they have 

low stability. Therefore, they are not recommended for 

noisy environments. It was also observed that in 

straight beams, an increased width increases stability. 

As can be seen in Fig. 5, the straight beam with twice-

width of the base cantilever (c) has the highest stability 

among the AFM beams, followed by the base 

cantilever (a), 60° V-shaped beam (f), 30° V-shaped 

beam (e), triangular beam(i), 90° V-shaped beam (g), 

120° V-shaped beam (h), straight cantilever with half-

width of the base cantilever (b), X-shaped beam (j), U-

shaped beam (d), circular membrane (l) and square 

membrane (k). 

 

 

Fig. 6 The Von Mises stress induced in the studied AFM 

beams with different shapes 

3.4. Von Mises Stress analysis 

Oscillators in the atomic force microscope are set to a 

certain displacement amplitude. The displacement is in 

a way that it does not damage the beam; however, 

reducing the displacement excessively decreases the 

efficiency of AFM. At a certain tip displacement, lower 

maximum stress values are more desirable, because it 

increases the beam life, and the beam can be used in 

larger displacements. To measure this parameter, a 

fixed 5 µm displacement was applied to the free end of 

the beam (to the center of the X-shaped beam, square 

and circular membranes) and the maximum von Mises 

stress induced in the beam was calculated using the 

finite element method. Results of this simulation are 

shown in Fig. 6. 

As it can be seen in Fig. 7, the circular membrane (l) 

has the highest maximum stress among the AFM 

beams, followed by the square membrane (k), 120° V-

shaped beam (h), X-shaped beam (j), 90° V-shaped 

beam (g), 60° V-shaped beam (f), triangular beam (i), 

30° V-shaped beam (e), U-shaped beam (d), straight 

beam with twice-width of the base cantilever (c), base 

cantilever (a) , straight cantilever with half-width of the 

base cantilever (b). 

Therefore, the maximum and minimum stresses 

occurred in the circular membrane and straight 

cantilever with half-width of the base cantilever, 

respectively. As a result, the straight cantilever with 

half-width of the base cantilever is the best choice with 

regards to the beam life and the potential to be used in 

larger displacements. 

 

 

Fig. 7 Maximum von Mises stress induced in the studied 

beams for a constant displacement 

7 CONCLUSION 

In this paper, effect of the AFM beam geometry on the 

DPL nanomachining capabilities was analysed using 

the finite element method. The characteristics of 

stiffness coefficient, resonance frequency, stability, and 

maximum stress were investigated for 12 AFM 

cantilevers with different geometry shapes. This 

Analysis showed that the square and circular vibrating 

membranes are more suitable among the geometries 

constrained in the circumference, and 120° and 90° V-

shaped beams among the beams fixed at one end with 

regards to stiffness and oscillation frequency. Using 

such geometries increases speed and efficiency of the 

DPL nanomachining. However, these oscillators are not 

desirable in terms of stability and maximum stress. 

Therefore, straight and V-shaped beams (rather than 

120 and 90 degree) are recommended for the DPL 

nanomachining where unfavourable oscillations and 

noises exist. In straight beams, increasing the beam 

width improves nanomachining characteristics but 
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decreases the beam life. In general, triangular beam is 

found to be more suitable for the DPL nanomachining 

applications considering the four parameters of 

stiffness coefficient, resonant frequency, stability, and 

maximum stress. 
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