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Abstract: In this study, feedback linearization (FL) for 6R manipulator is 
designed, simulated and implemented. The presented input-output FL controller 
has achieved the desired performance for the complicated nonlinear terms in the 
arm‟s dynamic equations. Simulations were used to test the performance of the 
controller for point-to-point motion as well as continuous trajectory. The results of 
the point-to-point motion simulations and experiments were compared, where it 
indicates that the proposed approach preserved smooth motion in a very short 
process time with good accuracy. The dynamic load carrying capacity (DLCC), 
which is a criterion to determine FL controller performance on 6R robot, is also 
investigated, based on saturated torque of the motors and allowable error bounds. 
Moreover, it was shown that the control law is able to accurately represent closed-
loop equations and simultaneously imposed desirable behavior on 6R robot.  
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1 INTRODUCTION 

Designing an appropriate robot controller is a 

challenging task due to its complicated nonlinear 

dynamics and coupling between joints. Finding a control 

strategy to handle a robot confidentially has a long 

history. Besides, implementing the prevalent linear 

controllers and computed torque methods, the most 

common control structures involve optimal controllers 

based on the numerical solutions to the nonlinear 

Hamilton-Jacobi-Bellman [1, 2] and Riccati equations 

[3] to minimize the cost function of the system. 

Uncertainty in robot modelling and the use of more 

complicated control methods with nonlinear structures 

to achieve robust designs, such as a sliding mode 

controller [4] and the H¥  
robust controller [5], decrease 

the vibration amplitude. In recent years, there is a new 

trend to use intelligent controllers such as genetic 

algorithms [6], and fuzzy controllers [7], which are non-

model based methods for nonlinear systems and robots; 

however, their implementation is still difficult to 

perform.  

Due to the presence of complex nonlinear terms in the 

dynamic equations of robots, related research trends is 

to use initial feedback in order to eliminate the nonlinear 

dynamics effects of the system and transform it to a 

linear form. Achieving a linear model by FL is always a 

focus for robot designers. The application of flexible 

joint manipulator is discussed in refs. [8, 9]; and 

concerning the flexible joint cable robot, this method is 

implemented as well [10]. Such a control law is also 

applied to biped robot for asymptotically stable periodic 

walking [11] which is a rich open problem [12]. 

Employing FL controller to improve the performance of 

gait rehabilitation robot is another application of such a 

powerful control strategy [13]. However, to the best of 

our knowledge most of these research efforts have not 

been involved experimental results. 

In this study, a nonlinear FL controller for a robot with 

six revolute joints has been designed and implemented. 

The manipulator was controlled by PID algorithm [14, 

15] and the SDRE controller [16]. The main 

contribution of this paper is to formulate input-output 

FL controller for the 6R robot manipulator besides 

investigating theoretically and experimentally the 

performance of the proposed controller in the presence 

of uncertainty (DLCC). Such a control structure 

practically removes the nonlinear dynamic effects and 

decreases coupling between the joints by transforming 

them into six independent linear systems.  

This paper is organized as follows: Section 2 presents 

the FL control structure, which includes FL theory and 

briefly presenting the model. Simulation results are 

presented in Section 3 and experimental results are 

explained in Section 4. Section 5 reports the summary 

and conclusions.  

2 FEEDBACK LINEARIZATION CONTROLLER 

DESIGN FOR 6R ROBOT 

The aim of designing a nonlinear controller is to track 

an arbitrary desired trajectory or to regulate a desired 

set-point. Section 2.1 is a brief overview of input-output 

FL approach [17] and derives the FL control law for 6R 

robot.  

2.1. INPUT-OUTPUT FEEDBACK LINEARIZATION 

CONTROL THEORY 

Consider a nonlinear system described as follows: 
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where ntx )( , mtu )(  and pty )( are states, 

inputs and outputs of the system, respectively.  f(x), g(x) 

and h(x) assume to be the smooth functions of x with 

appropriate dimension. To design input-output FL 

controller, the output y and the control input u should be 

related through a linear differential equation. Since Eq. 

(1) indicates that the input and output of the considered 

system are not directly related, an explicit relationship 

between the input and the output is generated by 

successive differentiation of the output. Therefore, The 
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In Eq. (4), )(/)()( x  is the Jacobi matrix and the 

continuous Lie derivative )()(0 xhxhL
f

 . If the 

nonlinear system in Eq. (1) is controllable, there exists 

i=r (r is the relative degree of the system) that for some 

x the following equation is satisfied: 

LgL f
r-1h(x) ¹ 0,                                                              (5) 

and the control law is in the form of: 
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By applying the control law from Eq. (6) in Eq. (2), the 

linear relation is achieved as: 

,)( vy r                                                                         (7) 

where v is the new control input. For issues that require 

tracking of desired input (yd), v can be defined as: 
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where e=y-yd 
is the tracking error. The coefficients ki 

(for r=1,2,…,r–1) must be chosen such that all roots of 

the polynomial equation of error in 
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the complex plane. 

2.2. CONTROLLER DESIGN FOR 6R ROBOT 

The kinematics and dynamics of the equations for the 

6R robot are shown in Fig. 1. This section considers the 

state space equation with the structure shown in Eq. (1): 

 

  ,0

,
)(

0

)(),()(

2

1

6666

1

1

66

1211

1

2








































X

X
IY

U
XMXGXXCXM

X
X

(9) 

Where X1 is the state vector for angular motion and X2 is 

the state vector for angular velocity. In Eq. (9), 
66

1
)( RXM  is the inertia matrix, 16

21
),( RXXC is 

the centrifugal and Coriolis force, 16

1
)( RXG is the 

effect of gravity, U is the effect of torque on the rotors, 

and 112RX  is the state of the system: 
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Since 0)( xhLL
fg

, the relative degree of the system is 

2 (r=2). By substituting Eq. (6), the FL control law for 

6R robot is achieved by following relation: 
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where 16 RYV  is the new input vector and: 
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The input control of FL control law is achieved by: 
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Fig. 1   6R manipulator [1] 

 

By applying input-output FL control law in Eq. (16) to 

the robot system of Eq. (9), the robot state-space 

equations are converted to the following linear form: 
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According to the linear state-space equation for the 

structure of the robot, each input is applied to a joint by 

a second-order differential equation and the overall 

robot process can be described by 6 decoupled 

subsystems. Therefore, there is not any unobserved 

internal dynamics, although the robot has 12 state 

variables. New input v can be produced by the following 

equation to achieve good tracking for each joint of the 

robot: 

vi = yid -kidei -kipei;i =1,2...6,                                 (19) 

where yid=θid is the desired angle of the i
th

  joint and   

idii
yye   is the tracking error of the i

th
 joint. The 

structure of the proposed closed-loop 6R robot is shown 
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in Fig. 2 where 16 R
d

 and Θ are the vector of the 

desired path and the joint angles of the robot, 

respectively. 

 

Fig. 2    FL control loop for 6R robot 

 

In this section, a suitable design for a nonlinear 

controller based on input-output feedback linearization 

was carried out to achieve the desired performance and 

proper tracking of the robot. In the next section, the 

accuracy of design is examined using simulations and 

experiments. 

3 SIMULATION OF FEEDBACK LINEARIZATION 

CONTROL METHOD 

This section investigates the simulation results of FL 

control for point-to-point motion and trajectory tracking 

problems. 

3.1. POINT TO POINT MOTION 

Let us consider Pi(0.3501,0.5119,0.6501) and 

Pf(0.5253,–0.3212,0.3092) as the initial and end points, 

respectively. Using inverse kinematics relations, the 

desired joint angles for the initial and final points are: 



T
id

 0.02331.4994-0.0157-

0.031400.3611-0.9534
                      (20) 



T
fd

0.39541.0965-0.5338-

0.56520.09420.6623-
                       (21) 

The robot dynamic load carrying capacity is determined, 

beginning with an initial value for load mp and 

increasing it step-by-step until the system error 

remained in acceptable bound. Under actual and 

laboratory conditions, the limited applied torque to each 

link is restricted using the following equations: 
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in which Umax and Umin are the maximum and minimum 

stall torques of the joints, respectively; ω is the joint 

angular velocity; Us and ωs are the saturated torque of 

the motor and no-load speed of the motor (Table 1). The 

flowchart in Fig. 3 shows the simulation steps of FL 

controller for point-to-point motion. 

Table 1 Motor Characteristics [14] 

Joint ).( mNU s
 )/( srads  

1 114 1.32 

2 98 1.04 

3 382.2 0.73 

4 40.4 9.01 

5 40.4 9.01 

6 40.4 9.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Flowchart of FL for point-to-point motion 

The simulation time for point-to-point motion is 

assumed to be 4.5s. Figs. 4 and 5 show the robot path 

from the initial point to the end point and the torques 

applied to the robot joints, respectively. 

Select point of start (Pi), terminal 

(Pf) and initial Load (mp) 

 

Solve inverse kinematic equations  

to calculate joints desired start (Θid) and 

terminal (Θfd) angles 

Solve state space equations of robot (Eq. (9))  

by applying feedback linearization control law 

(Eq. (16)) 

Is 
fd  
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Add 
pm  

to load 

 

Set last mp as DLCC 

 

Start 

 

End 
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Fig. 4     Path of end-effector from the initial point to  

end point 
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Fig. 5   Torque applied to joints in point-to-point motion 

 

Figure 4 demonstrates that the design has led to 

continuity and smoothness of the robot joint angles (a 

goal of the design) and that the robot has reached the 

end point with good accuracy. The torque applied to the 

joints for point-to-point motion was within the 

calculated range (Fig. 5) and the maximum dynamic 

load carrying capacity was 660g (assuming 10 mm 

maximum error in end-effector).  

3.2. CIRCULAR TRAJECTORY TRACKING 

A circular path is defined for end-effector movement to 

test and verify the operation of FL tracking control. The 

simulation time for circular motion is assumed tf=2 

seconds and mp = 0.3 kg is the load. In this part both 

maximum allowable torque and maximum allowable 

error were regarded for simulation. In the first case, 

controller coefficients are chosen in such a way to avoid 

saturation. In the second case, maximum error (emax) is 

assumed to be less than 10mm; to decrease error, larger 

values for the proportional and derivative coefficients of 

the controller were selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6    Flowchart of FL for maximum permitted torque 

(error) in circular motion 
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The flowchart of design process and simulation for 

maximum allowable torque and error are shown in Fig. 

6, where  T
zdydxdd

pppV   is the desired Cartesian 

velocity vector and J(Θd) is the Jacobian matrix 

corresponding to the desired joint angles for the robot. 

 

 

 
Fig. 7   End-effector motion in a circular path for 

maximum permitted error and torque 

 

 

Fig. 8   Motor torque in a circular path for maximum 

permitted error and torque 

To decrease error and achieve better accuracy in the 

maximum permitted error simulation, larger coefficients 

were determined for the controller. As a result, torques 

were exceeded the maximum permitted bound. The 

tracking error was calculated as in Eq. (24): 

e(t) = (xd (t)- x(t))2 + (yd (t)- y(t))2 + (zd (t)- z(t))2 ,

 

(24) 

where e(t) is the tracking error,  Tddd tztytx )()()(  

are the desired Cartesian coordinate vectors, and 

 Ttztytx )()()(  are the coordinates of the end-

effector (Fig. 9). 
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Fig. 9    Motor torque in a circular path for maximum 

permitted error and torque 

 

As it was shown in Fig. 9, the end-effector for the 

second case (maximum permitted error) allowed 

3.7)(
23.3max


t
tE mm which was in the specified 10 mm 

range and the design showed better accuracy than for 

the first case (maximum permitted torque). The penalty 

for achieving high accuracy was the use of greater 

control signals and generating greater driving torques. 

An appropriate design should be a compromise of these 

two issues (precision and limits of actuator signal). 

 

 
 

Fig. 10   6R robot manipulator [14] 
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4 IMPLEMENTATION OF FEEDBACK 

LINEARIZATION CONTROL ON 6R ROBOT 

The algorithm in Fig. 3 was used to implement the FL 

control on the 6R robot (Fig. 10) for  st 34.4,0 . The 

results are shown in Figs. 11 and 12 for joint angle 

variations and trajectory of the end-effector from the 

initial point to the end point, respectively. 

 

 

 

 

 

 

 

 

Fig. 11   Angular positions of links for simulation and 

experiment 
 

0

0.2

0.4

0.6

-0.2

0

0.2

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

 

X (m)
Y (m)

 

Z
 (

m
)

Actual path

End point

Start point

Simulation path

 
Fig. 12   Simulated and experimental trajectories of   

end-effector 

Figures 11 and 12 confirmed that, the result of practical 

implementation of FL has provided good performance; 

despite the differences between the results of the 

simulation and the experiments, the robot eventually 

reached the end point (target). 

5 CONCLUSION 

In the present study, a FL approach for 6R robot is 

designed, simulated and implemented to improve 

tracking performance. FL control removed the nonlinear 

terms of the robot, eliminated interference between the 

dynamics of the joints, and created a simple structure for 

the robot. Simulating point-to-point motion and tracking 

in a circular path allowed evaluation of the performance 

of the proposed design. For point-to-point motion, by 

selecting an initial value for the load and determining 

the proportional-derivative coefficients of the controller, 

the load was enhanced to achieve acceptable system 

error and the torques applied to the joints did not reach 

the saturation bound.  

The simulation results showed that the FL controller 

performed appropriately to achieve the target in the 

presence of an uncertain dynamic load. For a circular 

trajectory, choosing large values for the proportional 

derivative coefficients of the controller decreased the 

error rate for a specified load to any desired level, 

saturating the driving torques. The best tracking and 

performance is a compromise between the torques and 

error limitations. The simulations showed smooth 

motion, no-chattering and high precision along with 

good tracking of the robot in a continuous path. It can be 

practically implemented and the simulation results 

indicated that the performance of the robot achieved the 

target using point-to-point motion.  
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