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1 INTRODUCTION 

Carbon nanotubes (CNTs) are known to possess 
exceptional mechanical stiffness and strength. The axial 
Young’s modulus of both single wall carbon nanotubes 
(SWNTs) and multi wall carbon nanotubes (MWNTs) 
can be as high as 1–1.2 TPa [1], as compared to 
diamond at about 1.2 TPa, steel at 200 GPa, and copper 
at 100 GPa. Jin and Yuan [2] calculated Young’s and 
shear modulus for SWNTs equal to 1.236 TPa and 0.492 
TPa respectively, by using molecular dynamics 
simulations. Their tensile strength is about 100–200 GPa 
[3], as high as about 100 times greater as compared to 
annealed steel at 700 MPa and annealed copper at 200 
MPa. CNTs have demonstrated the potential for order-
of-magnitude increases in strength and stiffness relative 
to standard carbon fibres which have been used 
successfully in fiber reinforced polymers [4].  
Composite materials reinforced by either SWNTs or 
MWNTs have been fabricated where significant 
enhancement in mechanical, electrical and thermal 
properties have been reported [5-7]. These mechanical 
properties motivate further study of possible 
applications for lightweight and high strength materials, 
especially in aerospace components. Different 
assumptions used for displacement fields of plates, 
whereupon different theories for plate analysis have 
been devised like, three dimensional elasticity solution, 
the classical laminate plate theory (CLPT), the first 
order and higher order shear deformation theories 
(FSDT and HSDT).  
Considerable research has focused on the buckling 
analysis of composite plates under mechanical and 
thermal loads based on the CLPT [8-10]. Using the 
classical plate theory, which neglects the effects of 
transverse shear deformation, the calculations of the 
buckling loads are rather simple and generally may 
result in closed-form solutions. The thermal and 
mechanical buckling of FGM circular plates based on 
the first order shear deformation plate theory is studied 
by Najafizadeh and Hedayati [10]. Krizevsky and 
Stavsky [11] derived the equations of laminated annular 
plates by using Hamilton variational principles. 
Derivation of the Equilibrium and stability equations of 
a FGM circular plate under thermal loads, based on the 
third order shear deformation (TSDT) plate theory is 
carried out by Najafizadeh and Heydari [12]. They 
concluded that the critical buckling temperature for the 
FGM plate is generally lower than the corresponding 
value for the homogeneous circular plate and transverse 
shear deformation has considerable effect on the critical 
buckling temperature, especially for a thick plate.  
In other article, Najafizadeh and Heydari used the 
higher order shear deformation plate theory (HSDT) to 
study the buckling of FGM circular plates under 
uniform radial compression [13]. Ma and Wang [14] 

studied nonlinear bending and post buckling of a 
functionally graded circular plate under mechanical and 
thermal loadings based on the von Karman plate theory. 
Also Singhatanadgid and Ungbhakorn [15] derived the 
scaling laws for buckling of polar orthotropic annular 
plates subjected to radial compressive and torsional 
loads. The buckling loads obtained from the scaling 
laws are identical to those of the theoretical solution.  
Axisymmetric bending and buckling of perfect 
functionally graded solid circular plates based on the 
unconstrained third-order shear deformation plate theory 
are studied by Saidi et al., [16]. Ozakca et al., obtained 
the buckling analysis of circular and annular plates 
using the finite element method (FEM) [17], [18]. The 
results illustrate that the FEMs can be used with 
confidence for the buckling analysis of circular and 
annular plates.  
In this paper, buckling behaviour of composite circular 
and annular plates reinforced by carbon nanotubes, 
subjected to compressive and torsional loads on the 
inner and outer edges is presented. The material 
properties of composite plates reinforced by single-
walled carbon nanotubes are obtained using the Mori-
Tanaka method and the results are obtained with three 
different methods including classical laminate plate 
theory, third order shear deformation theory and 
ANSYS software. Moreover the effects of CNTs 
arrangement, CNTs volume fraction, boundary 
condition and aspect ratio of plate on critical buckling 
loads are discussed. 

2 MATERIAL PROPERTIES 

A major step in the development of CNT composites is 
to obtain their mechanical properties as accurately as 
possible. It can be seen from the literature that huge 
efforts have been dedicated to this specific field and 
investigations are still ongoing [19]-[21]. Due to its 
simplicity and accuracy even at high volume fractions of 
the inclusions, the Mori-Tanaka method [19] is 
employed in this study. CNTs are assumed to be aligned 
and straight with uniform dispersion in polymer matrix 
and the bonding at the nanotube–polymer interface is 
taken to be perfect. The elastic behaviour of an 
elementary cell of the composite material can be 
expressed as [19]: 
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Where k, l, m, n, and p are the Hill’s elastic moduli, σij 
and εij are the stress and strain components, respectively. 
n is the uniaxial tension modulus, k is the plane-strain 
bulk modulus, l is the associated cross modulus, m is the 
transverse shear modulus, and p is the axial shear 
modulus, respectively, as specified in Ref. [19]. A 
composite with a CNTs volume fraction cr, matrix 
Young’s modulus Em, and the Poisson’s ratio νm is 
considered. Using the Mori–Tanaka method, the Hill’s 
elastic moduli are found to be: 
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Where kr, lr, mr, nr, and pr are the Hill’s elastic moduli 
for the CNTs.  
 
 

Table 1 Elastic properties of SWNTs as composite’s 
reinforcing phase and polystyrene as a matrix [1] 

Material Properties Matrix phase SWNTs 
Isotropic Young’s modulus (Em) 1.9 GPa - 

Poisson’s ratio (νm) 0.3 - 
kr - 30 GPa 
lr - 10 GPa 
mr - 1 GPa 
nr - 450 GPa 
pr - 1 GPa 

 
The composite plate is composed of polystyrene as a 
matrix and the CNTs are modeled as long, transversely 
isotropic fibres based on the analytical result of Popov 
et al. [1]. The elastic properties of SWNTs and 
polystyrene matrix are listed in Table 1. The reduced 
transformed stiffness coefficient for the matrix is [22]: 
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Where [T] is the transformed matrix which is given by:  
 

[ ]

2 2

2 2

2 2

cos sin 0 0 0 -sin2
sin cos 0 0 0 sin2

0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 -sin cos 0

sin cos sin cos 0 0 0 cos -sin

T

θ θ θ
θ θ θ

θ θ
θ θ

θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

  (4) 

3 ANALYTICAL SOLUTION 

The CLPT is used to work out the analytical solution as 
it is simply used for moderate thick cross ply laminated 
plates. According to the Fig. 1, ‘a’ and ‘b’ are the radii 
of inner and outer edges and h denotes the thickness of 
the plate respectively. The boundary condition on edges 
can be simply supported or clamped. Annular composite 
plate is subjected to the uniform compressive and 
torsional loads along inner and outer edges (pi, po, and 
Qs respectively). 
 

 

Fig. 1 Annular plate under torsional and compressive loads 
 

The total potential energy of the plate in as much as the 
internal strain and the surface traction is given by [23]: 
 

{ } { } { } { }T T
V AdV t dAε σ ϕΠ = +∫ ∫              (5) 

 
The first term in the right hand side of Eq. (5) is the 
strain energy which V denoting the volume of the plate. 
The second term produced by surface traction and A is 
the portion of plate surface over which tractions are 
prescribed. {φ} is the displacement vector and {t} is the 
surface traction. The constitutive relating stress and 
strain can be written as [22]: 
 
{ } [ ]{ }Cσ ε=                 (6) 
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Where [C] is the elastic tensor whose components are 
given by [22]: 
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Where k denotes the number of the layer. According to 
Eqs. (6) and (7), the strain energy can be written as: 
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The relations between the strain and the displacement 
for the CLPT are given by [23]: 
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Where ur0 and uθ0 are the displacements of the mid-plane 
in r and θ directions respectively which are assumed to 
be zero because there is no coupling between the in-
plane and the out-of-plane displacements. w (r,θ) 
indicates the displacement in z direction or the lateral 
deflection of the composite plate. Substituting Eq. (9) 
into Eq. (8) yields: 
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Where Dij is the bending stiffness matrix which its 
elements are expressed as [15]: 
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The surface traction is obtained as: 
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Where Nr and Nθ are the resultant forces in r and θ 
directions respectively, and comma indicates the partial 
derivative. According to the levy solution [23], it is 
important to find suitable function for the lateral 
deflection. It is assumed that the lateral deflection can 
be written as the following separate function of r and θ 
variables [15]: 
 
( ) ( ) ( ),w r f r gθ θ=              (13) 

 
For the simply-supported boundary conditions on two 
edges (S-S), the lateral deflection is written as [15]: 
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The value of i and j depends on a kind of boundary 
condition. If both inner and outer radii have clamped 
edges, i and j are supposed to be 2 and if they have 
simple edges, i and j are one and for the case in which 
inner radius has simple edge and outer has clamped one, 
i is 1 and j is 2. Based on the minimum total potential 
energy, the plate has stable state when [23]: 
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Where Am and Bm are the deflection amplitude, and n 
and m are the number of half sine waves in r and θ 
directions, respectively. Substituting the solution w(r,θ) 
from Eq. (14) into Eq. (10) and Eq. (12) leads to the set 
of equation which is arranged in the form of a 
generalized eigenvalue problem as: 
 

1 2

3 4

0m

m

f f A
f f B
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

             (16) 

 
Where f1, f2, f3, and f4 are function of material properties 
and plate dimensions. 

4 FINITE ELEMENT METHOD 

For a moderately thick plate, using a higher order shear 
deformation theory would lead to better results. In the 
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3rd order shear deformation theory developed by Reddy 
[24], [25] the strain equations would not need a shear 
correction factor which is required in the first order 
shear deformation theory. The theory of Reddy used in 
the present study is based on the following displacement 
field. 
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Here u, v, and w denote the displacement components in 
the r, θ, and z directions, respectively. These equations 
can be reduced by satisfying the stress-free conditions 
on the top and bottom faces of the plate, which are 
equivalent to εrz=εθz=0 at z=h/2. Thus,  
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Substituting Eq. (18) into nonlinear strain-displacement 
relations (Eq. (9)) gives the kinematic relations as: 
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And it can be expressed in the following form: 
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After achieving the variation of the total potential 
energy of the plate and the surface traction from Eqs. (5) 
and (12) respectively, the displacement is interpolated 
by [26]: 
 

( ){ } [ ]{ }eNφ = Φ                (23) 
 
Where {Фe} is the vector of unknown nodal values and 
the [Bi] matrix is given by [26]: 
 

[ ][ ] [ ]i iB d N=                             (24) 
 
The shape function matrix [N] is [26]: 
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             (25) 
 
Where N1 to N8 are the Serendipity element shape 
functions. Also the displacement in the case of each 
element is given by: 
 

( ) (1) (1) (1) (1) (1) (8) (8) (8) (8) (8)
0 0 0 0 0 0{ } ...e T

x y x yu v w u v wψ ψ ψ ψΦ =

        
       (26) 

 
Substituting Eqs. (23) and (24) into the variation of the 
total potential energy (Eq. (5)) yields: 
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The stiffness matrix and the load vector for each 
element are given by: 
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According to Bodyanski method, the stress with respect 
to the strain is plotted and the region where the slope of 
the curve increases sharply denotes the critical buckling 
load. 

5 RESULTS AND DISCUSSIONS 

The buckling of an annular composite plate reinforced 
by CNTs is studied. The results are obtained with three 
different methods including classical laminate plate 
theory, third order shear deformation theory and 
ANSYS software for three different kinds of boundary 
conditions, and the effects of boundary conditions are 
perused on the critical loads. Fig. 2 is the plot for a plate 
which is under torsional moment on inner and outer 
radius. The effect of plate’s aspect ratio and CNTs 
volume fraction on the torsional critical load is 
illustrated. The buckling load declines at low volume 
fractions, although the critical load rises along with 
volume fraction.  
The most stable state is achieved as a consequence of 
being clamped edges on both inner and outer radius. In 
addition simple edges on both inner and outer radius 
cause to lowest critical moment. Also the effect of the 
thickness-to-inner radius ratio on the critical buckling 
torsional load for different CNTs volume fraction is 
shown in Fig. 3. The critical buckling load goes up 
exponentially and the slope of the curves increases 
sharply at high volume fractions as the thickness of 
plate rises. This figure is also drawn for three boundary 
conditions and it follows the same pattern as the 
previous figure. 
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Fig. 2 The effect of CNTs volume fraction and aspect ratio 
on the torsional buckling loads for circular/annular composite 
plate for different boundary conditions (a) (C-C), (b) (S-C), (c) 

(S-S) 
 

Table 2 shows a comparison between the results of the 
analytical solution and FEMs (TSDT and ANSYS) 
while the plate is subjected to compressive load. The 
highest critical axial buckling load occurs at Cr=0.1 for 
each aspect ratio (inner to outer radius ratio). Similar to 
Fig. 2 the effect of aspect ratio and CNTs volume 
fraction on the compressive critical load is illustrated in 
Fig. 4. This figure is drawn for three aspect ratios. What 
is more, the plate would be more stable if the ratio of 
inner-to-outer radius doubles. Also Fig. 5 follows the 
same pattern as Fig. 3 and shows the effect of the 
thickness-to-inner radius ratio on the critical buckling 
compressive load for different CNTs volume fraction. 

 
Fig. 3 The effect of thickness to inner radius on the 

torsional buckling loads of composite circular plate for three 
CNTs volume fraction and different boundary conditions:  a) 

C-C, b) S-C, c) S-S 
 
 

The related values of buckling loads shown in Fig. 2 are 
given in Table 3. As it is observed when the inner to 
outer radius increases, the plate achieves more stable 
state. Furthermore, an increase of CNTs volume fraction 
from 1% to 10% leads to about 56% increase in 
buckling load for aspect ratio of 0.4. The critical 
compressive buckling loads obtained with three 
different methods are shown in Table 4. The results are 
given for three volume fractions of CNTs. It is clear that 
the critical compressive buckling load goes up with 
increasing the CNTs volume fraction. Also the effects of 
three different kinds of boundary conditions on the 
buckling loads are perused in Table 4.  
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Table 2 Comparison between analytical and finite element 
methods results and the effect of volume fraction and aspect 

ratio on compressive buckling of plate 

Aspect 
Ratio 

CNTs 
Volume 
fraction 

TSDT 
Pcr (kN) 

ANSYS 
Pcr (kN) 

CLPT 
Pcr (kN) 

a/b=0.1 0.01 635.34 642.24 679.16 
 0.05 991.35 980.27 1069.7 
 0.1 1402.256 1398.1 1582.9 

a/b=0.2 0.01 685.101 671.2 711.5 
 0.05 1011.53 980.47 1018.6 
 0.1 1312.35 1290.36 1434.48 

a/b=0.3 0.01 692.24 680.24 771.83 
 0.05 889.74 867.5 1015 
 0.1 1310.58 1276.04 1355.9 

a/b=0.4 0.01 826.104 801.94 877.23 
 0.05 979.36 959.36 1069 
 0.1 1260.54 1952.13 1352.4 

 
 

 
Fig. 4 CNTs volume fraction versus compressive buckling 

loads for three ratios of inner-to-outer radius 

As a result, the highest critical axial buckling load 
occurs at Cr=0.1 for each boundary condition. The 
results of the analytical method and the two FEMs are 
quite compatible with each other (Table 2 and Table 4). 
As seen in the mentioned tables, in most cases the 
results of TSDT is closer to the analytical solution as 
compared with the ANSYS results. However, the FEM 
results show a lower critical buckling load than those 
calculated by analytical method due to elimination of 
shear strain in the classical plate theory. 
The effect of orientation angle of CNTs on the critical 
torsional buckling load for three aspect ratios and three 
boundary conditions is demonstrated in Fig. 6. The plate 
is in the most stable state as a result of arranging CNTs 
into circumferential direction. 

 
Fig. 5 Thickness-to-inner radius versus the compressive 

buckling loads for three volume fractions of CNTs 
 

Table 3 The effect of inner to outer radius on the critical 
torsional buckling loads of annular composite plates, kN/m 
Aspect Ratio Cr= 1 % Cr= 5 % Cr= 10 %

a/b=0.1 5.015 7.84 11.961 
a/b=0.2 8.23 13.24 18.96 
a/b=0.3 17.125 24.067 32.14 
a/b=0.4 38.934 46.63 61.003 

 
Table 4 Comparison between analytical and FEM results and 

the effect of volume fraction and boundary condition on 
compressive buckling of plate 

B.Cs CNTs Volume 
fraction 

TSDT 
Pcr (kN) 

ANSYS 
Pcr (kN) 

CLPT 
Pcr (kN) 

S - S 0.01 51.241 54.1327 59.546 
 0.05 212.84 201.95 218.38 
 0.1 401.324 397.268 417 

C - S 0.01 110.03 108.957 114.7 
 0.05 382.47 379.16 393 
 0.1 732.42 727.89 741.03 

C - C 0.01 17.304 16.284 19.015 
 0.05 63.39 61.14 65.59 
 0.1 119.67 118.38 123.83 

 
Since the angle is raised to reach into radial direction, 
the critical moment falls for all aspect ratios. The higher 
inner-to-outer ratio leads to a more stable state for each 
direction of the CNTs. However, the greatest difference 
between four aspect ratios is acquired when the CNTs 
are arranged into circumferential direction and it is 
diminished as the orientation angle rises. Similar to 
previous figure, critical compressive buckling loads is 
drawn in Fig. 7 and the effect of nanotubes orientation 
and different aspect ratios is demonstrated.  
The values of torsional buckling loads for angles of 0o, 
15o, 30o and 45o and four different aspect ratios are 
given in Table 5. The most significant difference 
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between four aspect ratios creates when the CNTs are 
arranged into circumferential direction and it decrease 
since the angle is raised to reach into radial direction. 
 

 
Fig. 6 The effect of nanotubes orientation angle on the 

torsional buckling load for different aspect ratio and different 
boundary conditions: a) C-C, b) S-C, c) S-S 

 
Table 5 The effect of CNTs orientation angle and aspect 
ratio on the torsional buckling loads of annular composite 

plates, kN/m 
Aspect Ratio θ= 0o θ= 15o θ= 30o θ= 45o

a/b=0.1 182.38 160.18 107.16 52.72 
a/b=0.2 346.16 303.8 202.68 99.113 
a/b=0.3 699.85 613.73 408.33 198.44 
a/b=0.4 1545 1353.8 898.4 434.06 

 
Fig. 7 Orientation angle versus compressive buckling load 

for different ratios of inner-to-outer radius 

6 CONCLUSION 

In this article, the buckling analysis of circular/annular 
composite plates reinforced by CNTs under torsional 
and compressive loads is presented. Third order shear 
deformation method accurately predicts the behaviour of 
CNTs reinforced annular composite plates, whereas the 
ANSYS and CLPT overestimate buckling loads. It is 
determined that for all the boundary conditions 
considered, the inner-to-outer radius ratio of a/b=0.4 
and the orientation angle of 0o parallel to circumferential 
direction yield the highest critical buckling load. A 
circular hole reduces the stability of the plate and the 
buckling load decreases by increasing the ratio of inner-
to-outer radius. The following conclusions may be 
drawn from the results for both compressive and 
torsional buckling loads obtained from different 
solvency methods: 
• The critical buckling loads obtained based on the 

analytical method and the FEMs are quite 
compatible to each other. In most cases the results of 
TSDT is closer to the analytical solution as 
compared with the ANSYS results. The critical 
buckling loads resulting from analytical method are 
higher than those for finite element methods because 
of eliminating shear strain. 

• The slope of the buckling load curves increases 
sharply at high CNTs volume fractions as the 
thickness of plate rises. Also the plate would be 
more stable if the ratio of inner-to-outer radius 
increases. 

• For both compressive and torsional loads, it is 
obvious that the critical buckling load goes up with 
increasing the CNTs volume fraction. For example, 
increase of volume fraction from 1% to 10% leads to 
about 56% increase in buckling load. 
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• The highest critical buckling load occurs for the case 
in which both inner and outer edges have clamped 
support. In addition edges with simply supported 
conditions on both inner and outer radius cause to 
lowest critical moment. 

• The plate is in the most stable state as a result of 
arranging CNTs into circumferential direction. 
However, the greatest difference between different 
aspect ratios is acquired when the CNTs are 
arranged into circumferential direction and it is 
diminished as the orientation angle rises. 
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