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Abstract: The current study presents a new analytical method for buckling 
analysis of rectangular and annular beams made up of functionally graded 
materials with constant thickness and Poisson’s ratio. The boundary conditions of 
the beam are assumed to be simply supported and clamped. The stability equations 
were obtained by using conservation of energy. The critical buckling load and first 
mode shape were obtained using Variational Calculus method. Increasing in 
buckling capacity and improvement in the behavior of functionally graded beams 
in comparison to homogenous beams have been investigated. After simplifying 
results, Duffing differential equation for homogeneous beam without oscillations 
was obtained and validity of this new work was proved. 
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1 INTRODUCTION 

The current study presents a new analytical method 
based on Variational Calculus for buckling analyses of 
rectangular and annular functionally graded (FG) 
beams with various boundary conditions. The thickness 
and Poisson’s ratio across the thickness are assumed to 
be constant. The volume fraction and power laws for 
expressing smooth and continues variations of 
mechanical properties of FG beam are used for 
rectangular and annular sections respectively. The 
stability equations were obtained by using conservation 
of energy. The critical buckling load and first 
dimensionless mode shape have been obtained. 
Buckling capacity increase and improvement in the 
behavior of functionally graded beams in comparison 
to homogenous beams have been investigated. After 
simplifying results, Duffing differential equation for 
homogeneous beam without oscillations was obtained 
and validity of this new work was proved. 

B.V. Sankar in 2001 [1] made an elasticity solution for 
a FG beam subjected to transverse loads. He assumed 
that Young’s modulus of the beam varies exponentially 
through the thickness for obtaining an exact solution 
for the elasticity equations. Sankar shows stress 
concentrations are less than homogeneous beams when 
the softer side of the functionally graded beam is 
loaded. 

An asymptotic solution for buckling and initial 
postbuckling behavior of sandwich beams including 
transverse shear was shown by H. Huang and George 
A. Kardomateas in 2002 [2]. The asymptotic procedure 
by H. Huang and George A. Kardomateas is based on 
the nonlinear beam equation (with transverse shear 
included), and closed-form solutions are derived. 

Analysis of postbuckling behavior of beam-column 
structures by stochastic finite elements has been 
performed by L. Graham-Brady and Benjamin W. 
Schafer in 2003 [3]. First-order stochastic perturbation 
expansions and Monte Carlo simulation techniques are 
used to study the effects of random elastic moduli on 
the postbuckling response of simple frame structures.  

Thermal buckling and postbuckling of Euler–Bernoulli 
beams supported on nonlinear elastic foundations was 
investigated numerically by S. R. Li and R. C. Batra in 
2007 [4]. The nonlinear boundary-value problems for 
postbuckling of beams are transformed into initial-
value problems and analyzed by the shooting method. 
Free vibration of simply supported FG beam was 
investigated by M. Aydogdu and V. Taskin in 2007 [5]. 
Applying Hamilton’s principle Aydogdu and his 

colleague found out the governing equations and 
frequencies were obtained based on Navier type 
solution method.  

An analysis of the stability of circular cylindrical 
columns/beams composed of FG materials was made 
where shear deformation is taken into account by Y. 
Huang and X.-F. Li in 2010 [6]. In this work the effects 
of radial gradient on buckling loads of elastic columns 
with circular cross-section made of FG materials are 
elucidated. The results obtained by Y. Huang and X. F. 
Li, show a very good agreement with the results of the 
Timoshenko beam theory or Reddy–Bickford beam 
theory. 

2 BASIC EQUATIONS 

The Poisson’s ratio, ν, across the beam thickness is 
assumed to be constant. When a beam is subjected to 
pure bending, there exists a fibre without any stresses 
which is referred to as the neutral axis (N.A.). In the 
functionally graded beam with rectangular section, the 
neutral axis does not coincide with the mid axis. In the 
current paper, stress, strain and mechanical properties 
of the functionally graded beam across the thickness of 
the beam are measured from the neutral axis; because 
this coordinate transformation will simplify the 
equations. Fig. 1 shows the neutral axis of a 
functionally graded beam with rectangular section 
which is located in position e from the mid axis. 

 

 

 

 

 

 

 

 
Fig. 1 Origin of y-coordinate for rectangular section 

 
 
It is assumed that Young’s modulus (i.e. E) varies 
along the thickness of the beam with rectangular 
section similar to the functionally graded plate (FGP), 
and follows the volume fraction definition as Eq. (1), 
where the subscripts m and c denote the metallic and 
ceramic constituents, respectively, and n is a material 
constant (which can take values greater than or equal to 
zero). 
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The FG beam is subjected to pure bending, thus the 
summation of all infinitesimal forces caused by 
bending stress (i.e. σ) must be set equal to zero. 

( ) ( ) 0=−= ∫∫
AA

dAyEydAy κσ  
(2) 

In Eq. (2), A denotes the cross sectional area and κ is 
curvature of FG beam. Because of the same mechanical 
properties of prismatic FG beam in each section, the 
curvature of FG beam is constant. Therefore Eq. (2) 
reduces to Eq. (3). 
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After substituting Eq. (1) by Eq. (3), and after some 
mathematical manipulations, Eq. (3) gives us the 
amount of e for FG beam with rectangular section as 
bellow: 

( ) ( )( )( )cmmc nEEnEEnhe ++−= 24  (4) 

Equation (5) shows the curvature of FG beam with 
rectangular section.  

( )∫=
A

dAyEyM 2κ  (5) 

In the above equation, M denotes bending moment in 
cross section and is constant. After substituting Eq. (4) 
in denominator of Eq. (5), the curvature of FG beam 
with rectangular section will be obtained as bellow: 

IEM R
*=κ  (6) 

In Eq. (6) the parameter I is moment of inertia for 
rectangular homogeneous beam and is equal to bh3/12. 
The parameter *

RE is presented as bellow: 
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In the above equation, the constants A1 through A4 are 
defined as follows: 
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It is assumed that Young’s modulus varies along the 
thickness of FG beam with annular section similar to 
the functionally graded cylindrical reservoir, and 
follows the power law as in Eq. (9), where the E0 and p 
are constants and both are dependant to the fabrication 
method of FG material (p can takes negative real 
values). Also the origin of polar coordinate is the center 
of the ring, and parameter r is radius of the cross 
section in polar coordinate. 

( ) prErE 0=  (9) 

In FG beam with annular section, r1 and r2 are inner 
and outer radiuses respectively. Equation (10) shows 
that in FG beam with annular section similar to the FG 
beam with rectangular section the summation of all 
infinitesimal forces vanish. 
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Equation (11) shows the curvature of FG beam with 
annular section. 

( ) ( )∫=
A

dArErM 2sin θκ  (11) 

After substituting Eq. (9) in denominator of Eq. (11), 
the curvature of FG beam with annular section will be 
obtained as bellow: 

IEM A
*=κ  (12) 

In Eq. (12) the parameter I is moment of inertia for 
annular homogeneous beam with inner and outer 
radiuses equal to r1 and r2 respectively and is equal 
to ( ) 44

1
4

2 rr −π . The parameter *
AE  is as bellow: 
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The external work done by compressive axial load can 
be determined by Eq. (14). In the Eq. (14) P, L and Y 
are the axial load, length and deflection of the FG beam 
respectively. 'Y denotes the first derivative of 
deflection with respect to x. The x axis locates at the 
neutral axis and is parallel to the neutral axis. 
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After approximating above integration by two terms of 
Taylor series, Eq. (14) was changed as bellow: 

( )∫=
L

E dxYPW
0

2' 2  (15) 

The internal work can be shown as following equation. 
''Y denotes the second derivative of deflection with 

respect to x. 

∫=
L

I dxMYW
0

" 2  (16) 

In above equation M can be replaced by the equivalent 
expressions in Eqs. (6) and (12) for the FG beams with 
rectangular and annular cross sections respectively. The 
curvature of the FG beam i.e. κ is equal to "Y  
approximately. By using conservation of energy the 
axial load i.e. P, can be obtained as bellow: 

( ) ( ) ( )∫∫=
LL

FG dxYdxYIEP
0

2'

0

2"*  (17) 

The parameter *
FGE  for FG beams with rectangular and 

annular sections is equal to Eqs. (7) and (13) 
respectively. Also the parameter I is moment of inertia 
for homogeneous beams with similar shape and 
dimensions. 

3 FORMULATION 

For transforming axial load in Eq. (17) to the critical 
buckling load, Eq. (18) must be satisfied. 

( )( ) ( )( ) ( ) 0
0
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In the bellow equation, ( )xη  is an arbitrary function 
that at least has one derivative and ( ) ( ) 00 == Lηη .  

( ) ( ) ( )xxyxy ξη+=&&  (19) 

The value of ∫
L

fdx
0

 in the bellow integration is 

minimum if ξ  approaches to zero, in which f is 

assumed to be a function of x , )(xy , and )('' xy  in 
general.  

( ) ξξ ∂∂∫→

L

dxyyyxf
0
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0 ,,,lim &&&&&&  
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After some manipulations, equation (20) was changed 
to Euler–Lagrange equation. 

( ) 022
"' =∂∂+∂∂−= xfxfffg

YYY
 (21) 

In Eq. (21) yf , 'y
f and ''y

f  are partial derivatives of 

function f  with respect to y , 'y  and ''y  respectively. 
For numerator and denominator in Eq. (17), the 
function f  in Eq. (21) was assumed equal to 

2'' )(yfn =  and 2' )(yfd =  respectively. Therefore 

( ) ( ) IEfgPfg FGnd
*=  and the ordinary differential 

equation can be obtained as follows:  

( ) ( ) ( ) 022*44 =+ dxxYdIEPdxxYd FG
 (22) 

After replacing E  instead of *
FGE  (i.e. n=p=0), the 

above ODE is changed into an especial case of Duffing 
equation for homogeneous beam without oscillation. 
Therefore the validity of this new work was proved. 
Solution for the above ODE is as follows: 

( ) kxckxcxccxY cossin 3210 +++=  (23) 

In which k is equal to (P/E*
FG)1/2.  

4 RESULTS AND DISCUSSION 

In Fig. 2(a), buckling of simply supported FGB was 
considered. By satisfying boundary conditions for first 
mode shape of buckling in Fig. 2(a), the constants 0c , 

1c  and 3c  were omitted. In this figure at 2Lx = , 
dimensionless deflection (i.e. 2cy ) is equal to one. 
Therefore critical buckling load for this case is equal to 

2* )( LIEFG π . In Fig. 2(b), buckling of clamped FGB 
was considered. By satisfying boundary conditions, 
dimensionless deflection for this case is 

)1)2(cos( −± Lxπ . Therefore critical buckling load 
for clamped FGB is 2* )(4 LIE FG π . In Fig. 2(c), 
buckling of simply supported FGB with freedom for 
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drift at one end was considered. Dimensionless 
deflection for this case is )1))2((cos( −± Lxπ  and 
critical buckling load is 4)( 2* LIEFG π . In Fig. 2(d), 
buckling of clamped FGB with freedom for drift at one 
of the ends was considered. Dimensionless deflection 
for this case is )1)(cos( −± Lxπ  and critical buckling 
load is 2* )( LIE FG π . Critical load for FG beam with 
pinned and clamped ends after satisfying boundary 
conditions can be obtained. For this case a nontrivial 
solution exists when **tan FGFG EPEP = . The 
lowest amount of P is 2* )(04575.2 LIE FG π . 
 
 
 
 
 

 

 

 

 

 

 
 
 

Fig. 2 Buckling of FGB with various boundary conditions 
 

Buckling critical load for FG beam under the same 
condition is E*

FG/E times the homogeneous beam. 
Therefore the ratio of the mentioned expression for 
comparison between FG and homogeneous beams with 
similar boundary condition, shape and dimensions must 
be elaborated. For FG beam with rectangular cross 
section the ratio of P =E*

FG/E is dependant to the ratio 
of E =Em/Ec. If E  is greater than one then FG beam has 
a greater buckling critical load with respect to the 
homogeneous beam made of ceramic or vice versa. If 
the ratio of E  is less than one then FG beam has greater 
buckling critical load with respect to the homogeneous 
metallic beam or vice versa. For the case that E =1, the 
ratio of P  is equal to one The dimensionless plot in 
Fig. 3 shows three sample diagrams corresponding to 
ratios of E  less than, equal to and greater than one.  
Fig. 3 shows the comparison between critical buckling 
loads of FG beam and homogeneous beam made of 
ceramic.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 P  for rectangular ceramic beam  
 

Fig. 4 shows comparison between critical buckling 
loads of FG beam and homogeneous metallic beam. In 
Fig. 3 by approaching n to infinity the dimensionless 
parameter P  approaches to 1 and for 0=n  the 
parameter P  is equal to E . In Fig. 4 the variation of P  
with respect to n  has occurred in a vice versa manner. 
By approaching n  to infinity P  approaches to E/1  and 
for 0=n  the parameter P  is equal to 1. 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 4 P  for rectangular metallic beam  
 

Fig. 5 shows three sample diagrams corresponding to 
ratios of E  less than, equal to and greater than one for 
dimensionless depth of neutral axis (i.e. he / ) vs. n . 
By approaching n  to infinity, dimensionless depth of 
neutral axis in rectangular FG beam approaches to zero. 
The extreme amount of he /  occurs for 2/1)2( En = . 
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Fig. 5 Dimensionless depth of N.A. for rectangular FGB 
 

Fig. 6 shows the comparison between critical buckling 
loads of FG annular beam and homogeneous beam. The 
parameter P  in FG beam with annular section when p 
has approached to negative infinity approaches to zero 
for 11 ≥r  and approaches to infinity for 11 <r . For 

11 <r  and little amounts of =r r2/r1 the parameter P  
increases as p decreases. For 11 <r  and great amounts 
of r the parameter P  has a local minimum. For p=0 
the FG beam with annular section is transformed into a 
homogeneous beam and parameter P  for this case is 
equal to 1. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6 P  for FG and homogeneous annular beams 
 

Fig. 7 shows the local minimum of dimensionless 
parameter P  for =r 5 and =1r 0.5. 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 7 Local minimum for P  in annular FGB 

5 CONCLUSION 

This paper has presented a novel method for analyzing 
the buckling behavior of rectangular and annular FG 
beams. The main contributions of this research can be 
summarized as follows: 

 

• Exact analytical solutions for buckling of 
functionally graded beams with rectangular 
and annular cross sections were presented. The 
critical buckling load and dimensionless first 
mode shape were obtained using variation 
calculus for arbitrary boundary conditions. 
Validity of solutions was proved by 
simplifying the results and obtaining well-
known relations. 

• This work proves that dimensionless first 
mode shape of buckling for prismatic 
functionally graded beams is similar to 
prismatic homogeneous beams. Because of 
symmetrical conditions for prismatic 
functionally graded beams, first mode shape in 
this case is similar to first mode shape of 
homogeneous beams and also is dependent 
upon boundary conditions of the beam.    

• Increasing or decreasing in capacity of 
rectangular functionally graded beams in 
comparison to the capacity of rectangular 
homogeneous beams was investigated for all 
the possible conditions. Critical buckling load 
of rectangular functionally graded beam made 
of constituent volume fractions of metal and 
ceramic ( E =Em/Ec<1) has increased by 
increasing n . Critical buckling load of 
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rectangular functionally graded beam for n >0 
is between critical buckling load of metallic 
and ceramic beams.  

• Increasing or decreasing the capacity of 
annular functionally graded beams in 
comparison to the capacity of annular 
homogeneous beams was precisely 
investigated for all the possible conditions. For 

11 <r  and little amounts of r2/r1 critical 
buckling load of annular functionally graded 
beams with respect to critical buckling load of 
annular homogeneous beams has increased by 
decreasing p. For 11 <r  and great amounts of 
r2/r1 critical buckling load of annular 
functionally graded beams with respect to 
critical buckling load of annular homogeneous 
beams for little amounts of absolute of p 
decreases and afterwards increases after a 
local minima by increasing the absolute 
amount of p.   

REFERENCES 

[1] Sankar, B. V., “An Elasticity Solution for Functionally 
Graded Beams”, Composites Science and Technology, 
Vol. 61, 2001, pp. 689–696. 

[2] Huang, H. and Kardomateas, G. A., “Buckling and 
Initial Postbuckling Behavior of Sandwich Beams 
Including Transverse Shear”, AIAA, Vol. 40, 2002. 

[3] Graham-Brady1, L. W. and Schafer, B., “Analysis of 
Post-Buckling Behavior of Beam-Column Structures Via 
Stochastic Finite Elements”, 16th ASCE Engineering 
Mechanics, 2003. 

[4] Li, S. R. and Batra, R. C., “Thermal Buckling and 
Postbuckling of Euler–Bernoulli Beams Supported on 
Nonlinear Elastic Foundations”, AIAA, Vol. 45, No. 3, 
2007. 

[5] Aydogdu, M. and Taskin, V., “Free Vibration Analysis 
of Functionally Graded Beams with Simply Supported 
Edges”, Materials and Design, Vol. 28, 2007, pp. 1651–
1656, 

[6] Y. Huang, X. F. L. “Buckling of Functionally Graded 
Circular Columns Including Shear Deformation. 
Materials and Design”, Vol. 31, 2010, pp. 3159–3166. 

 

 


