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Abstract: Free vibration of simply supported circular cylindrical shell made of 
Functionally Graded Material (FGM) under internal pressure was investigated. The 
effective material properties are assumed to vary continuously along the thickness 
direction according to a volume fraction power law distribution. First order shear 
deformation theory based on Love's first approximation theory was utilized in the 
equilibrium equations. The effects of FGM parameters such as material 
configuration and power law exponent, internal pressure as well as geometrical 
parameters such as thickness to radius and length to radius ratios on the vibration 
behavior were investigated. The validation of the results was achieved by 
comparing with those available in the literature. The results show that the vibration 
characteristics of Functionally Graded (FG) shells are greatly influenced by FGM 
parameters. Moreover, internal pressure and geometrical parameters considerably 
influence the frequency behavior regarded to different values of FGM parameters. 
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1 INTRODUCTION 

The advantage of using functionally graded materials 
(FGMs) is that they are able to withstand high 
temperature-gradient environments while maintaining 
their structural integrity. FG shells as primary structural 
component material in advanced industries have been a 
subject of considerable interest and concern in recent 
years. Loy et al. studied the influence of volume 
fractions and configurations of the constituent materials 
on the natural frequencies of FG cylindrical shells [1]. 
Their analysis was carried out with strain-displacement 
relations from Love’s shell theory and the eigenvalue 
governing equation is obtained using Rayleigh-Ritz 
method.  
It was pointed out that FG shell frequency behavior is 
similar to homogenous shells. Pradhan et al. studied the 
effects of boundary conditions and volume fractions on 
the natural frequencies of the FG cylindrical shell using 
Rayleigh method [2]. Their analysis was achieved 
similar to Ref., the only difference is that they used 
modal beam function instead of trigonometric function 
used by Loy et al. in axial direction [1]. They showed 
that boundary conditions have considerable effect on 
the frequencies of the FG shell.  Ng et al. presented the 
dynamic stability analysis of FG cylindrical shell under 
periodic axial loading [3]. A system of Mathieu-Hill 
equations was obtained using a normal-mode expansion 
of the equations of motion. It was also found that 
reasonable control can be achieved on the natural 
frequencies and dynamic instability regions by 
correctly varying the material composition.  
Liew et al. investigated the linear and nonlinear 
vibration of a coating-FGM-substrate cylindrical panel 
with general boundary conditions subjected to a 
temperature field [4]. The theoretical formulation was 
based on geometric nonlinearity in von-Karman sense 
and the first order shear deformation theory. Numerical 
results were presented for three-layer cylindrical panels 
which consist of an aluminum substrate and a zirconia 
coating with an aluminum-zirconia graded layer 
sandwiched in between. It was shown that both the 
linear and nonlinear vibration behavior of the 
cylindrical panel are greatly influenced by vibration 
amplitude, out-of-plane boundary conditions, and 
geometric parameters. Darabi et al. presented a simple 
solution of the dynamic stability of FG shells under 
periodic axial loading based on large deflection theory 
[5].  
The equations of motion were solved by Galerkin 
procedure. Bolotin’s method was then employed to 
obtain the steady-state vibrations for non-linear 
Mathieu equations. It was confirmed that the 
characteristics of large deflection were significantly 
influenced by volume fraction distribution, 

circumferential wave number and shell aspect ratio. It 
was found that reasonable control could be achieved on 
the steady-state vibrations amplitudes by correctly 
varying the power law exponent of volume fractions. 
Ansari and Darvizeh presented general analytical 
approaches to investigate the effect of boundary 
conditions on the free vibration behavior of FG shells 
[6].  
Theoretical formulation was developed based on first 
order shear deformation theory. The modal forms were 
assumed to have the axial dependency in the form of 
Fourier series whose derivatives were legitimized using 
Stoke’s transformation. They compared the results with 
those reported by and good agreement was observed 
[2]. It was cleared that alteration of the natural 
frequency of a FGM shell is easily viable by varying 
the volume fraction of its constituent materials.  
Haddadpour et al. applied the Galerkin method to 
investigate free vibration analysis of FG cylindrical 
shells including thermal effects [7]. The equations of 
motion are based on Love’s shell theory.  
The natural frequencies of FG cylindrical shells were 
determined in four sets of in-plane boundary 
conditions. They compared the natural frequencies with 
those reported by [1] and close agreement was 
observed. Their results show that while the critical 
mode numbers remain unchanged, increasing the power 
law index for all boundary conditions influences 
natural frequencies. Khalili et al. studied the forced 
vibrations of FG cylindrical shell using first order shear 
deformation theory [8]. They studied the effect of 
power law exponent on the transient response of strains 
as well as displacements of the shell under locally 
applied lateral impulse load and showed this effect is 
considerable. 
None of the preceding studies, however, dealt with the 
effect of internal pressure on the free vibrations of FG 
thin shells. Therefore, a comprehensive study and 
understanding of free vibrations of initially stressed FG 
thin shells is essential. The present work addresses an 
analytic solution to the free vibration problem of FG 
cylindrical shell under internal pressure. 

2 DEFINITION OF MATERIAL PROPERTIES FOR 
FG SHELLS 

The volume fraction of the constituent materials is 
considered to vary continuously along the shell 
thickness. The material properties P can be expressed 
as a function of temperature as [1]: 
 

(1) P= )1( 3
3

2
21

1
10 TPTPTPTPP ++++−
−  
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Where 2110 ,,, PPPP −  and 3P  are the coefficients of 
temperature T ( K ) expressed in Kelvin and are unique 
to the constituent materials. For a cylindrical shell with 
a uniform thickness h and a reference surface at its mid 
surface with the thickness direction coordinate z, the 
volume fraction of each constituent material can be 
written as: 
 

(2)N
f h

hzV )2( +
=

 
 
Where N  is the power law exponent, ∞≤≤ N0 . For a 
FG material with two constituent materials, the 
Young's modulus E , Poisson’s ratioν and mass density
ρ can be expressed as: 
 

(3) 
221 )2)2(()( EhhzEEE N ++−=
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3 GOVERNING EQUATIONS 

A circular cylindrical shell with mean radius of R, 
thickness h and length L is shown in Fig. 1.  
 

 
Fig. 1 Geometry of cylindrical shell and referenced 

coordinate system 
 
The origin of the orthogonal coordinate system ( zx ,,ϕ
) is placed at the mid surface at the end of the cylinder. 
The displacements of the cylinder in the x ,ϕ  and z
directions are defined by u, v and w, respectively. The 
deformations of the shell are assumed to be small. 
Based on First order Shear Deformation Theory 
(FSDT), the equilibrium equations for a cylindrical 
shell are as follows [9]: 
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Where ‘,’ denotes differentiation with respect to time or 
coordinate. In the above equations, xβ  and ϕβ  are the 
slopes in the plane of zx−  and z−ϕ , respectively. P
is internal pressure. The terms 1I , 2I  and 3I are defined 
as: 
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In Eqs. (4) to (8), the stress resultants

{ }ϕϕ xx
T NNNN ,,= , moments { }ϕϕ xx

T MMMM ,,= , 
and transverse shear forces ( ϕQQx , ) are defined as: 
 

(10)[ ]AQ
e

DB
BA

M
N

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

,
κ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

z

xz

ϕγ
γ

 

 
Where the extensional stiffnesses )6,2,1,( =jiAij , 
coupling stiffnesses )6,2,1,( =jiBij , bending 
stiffnesses )6,2,1,( =jiDij  and transverse shear 
stiffnesses )5,4,( =jiAij are: 
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Where 0k  in Eq. (11) is the shear correction factor 
introduced by Mindlin and is equal to 122π  [9]. In Eq. 

(10), { }ϕϕ γεε xx
Te ,,= and { }ϕϕ κκκκ xx
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and curvature vectors of the mid surface, which are 
both related to the displacements of the cylindrical shell 
by Love's first approximation theory as defined in Ref. 
[9]: 
 

(13)
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The boundary conditions for the cylindrical shell which 
is simply supported along its curved edges at 0=x  and

Lx =  are considered as: 
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In order to satisfy the boundary conditions, xwvu β,,,
and ϕβ  are defined by double Fourier series as: 
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In Eqs. (15), mnω ( sec/rad ) are the natural angular 
frequencies related to mode number (m, n) where m is 
the axial half wave number and n is the circumferential 
wave number. Also, mnA , mnB , mnC , mnD  and mnE are 
the constant amplitudes of vibrations regarded to the 
natural mode shapes and are calculated using the 
property of the orthogonality of mode shape with 
respect to mass matrix. 

4 FREE VIBRATIONS ANALYSIS 

In order to solve the free vibration problem, first the 
displacement components, Eqs. (15), are put into the 
strain and curvature relations, Eqs. (13), and the result 
into the stress resultants, Eq. (10). Then the stress 
resultants, Eq. (10), are substituted in the governing 
equations of motion, Eqs. (4) to (8). After performing 
the mentioned substitutions, the governing equations 
could be simplified in the following form: 
 

(16)[ ]{ } { }0=UL  
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ijL are the differential operators and are shown in 
Appendix. Eq. (16) is an eigen value problem in which 
the eigen values are the natural frequencies, mnω , and 
the corresponding eigen vectors are named the mode 
shapes. Eq. (16) could be rewritten in the following 
form: 
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Where ijK  and ijM  are stiffness and mass matrices, 
respectively. By setting determinant of coefficients in 
Eq. (18) equal to zero, the characteristic frequency 
equation is derived as: 
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Where iδ  are constant coefficients. By solving 
equation (19), the natural frequencies, mnω , are 
calculated. By substituting these natural frequencies 
back into Eq. (18), constant amplitudes of free 
vibrations regarded to the natural mode number (m, n) 
are obtained. The smallest natural frequency is called 
fundamental frequency, ωf. 

5 RESULTS AND DISCUSSION 

The material properties are listed in Table 1. 
Comparison of the present free vibration analysis with 
Ref. results for a FG cylinder made of Stainless Steel 
(SS) and Nickel (N) has been made in Table 2 [1]. 
Results of the present method in Table 2 are very close 
to that of Ref. [1]. Again consider a FG cylinder made 
of Silicon Nitride (SN) (material no. 1) at its outer 
surface and Stainless Steel (SS) (material no. 2) at its 
inner surface (SS-SN FG shell). Hereinafter, 
everywhere otherwise stated, geometrical parameters of 
the shell are considered to be mLR 1== and

mh 002.0= . 
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Table 1 Properties of materials a [7] 

  
E  ν  ρ

(Pa)  ( 3mkg ) 

St
ai

nl
es

s S
te

el
 (S

S)
 

0P  91004.201 ×  3262.0  8166 

1−P  0 0 0 

1P  410079.3 −×  410002.2 −×−  0 

2P  710534.6 −×−  710797.3 −×  0 

3P  0 0 0 

Si
lic

on
 N

itr
id

e 
(S

N
) 

 

0P  
91043.348 ×  24.0  2370 

1−P  0 0 0 

1P  410070.3 −×−  0 0 

2P  710160.2 −×  0 0 

3P  1110946.8 −×−  0 0 

N
ic

ke
l (

N
) 

 

0P  
91095.223 ×  31.0  8900 

1−P  0 0 0 

1P  410794.2 −×−  0 0 

2P  910998.3 −×−  0 0 

3P  0 0 0 

aThe properties were evaluated at T=300 K  
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Table 2 Comparison of natural frequencies (Hz) for different values of power law exponent (N) for simply supported SS-N FG 

cylindrical shell 

circumferential wave number 
N=1 N=30 

Ref.[1] Present Ref.[1] Present 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

13.211 

4.4742 

4.1486 

7.0330 

11.238 

16.453 

22.633 

29.770 

37.861 

46.904 

13.2111 

4.4759 

4.1496 

7.0326 

11.2367 

16.4520 

22.6331 

29.7707 

37.8621 

45.9065 

13.526 

4.5836 

4.2536 

7.2085 

11.516 

16.859 

23.192 

30.505 

38.795 

48.061 

13.5256 

4.5830 

4.2511 

7.2056 

11.5134 

16.8571 

23.1905 

30.5039 

38.7945 

48.0616 

( 1, 0.002, 20m h R L R= = = , P=0) 
 
 

 
Fig. 2 Effect of N on the natural frequencies vs. 

circumferential wave number (n); m=1, P=0 
 
The Effect of power law exponent (N) on the natural 
frequencies versus circumferential wave number (n) for 
axial half wave number m=1 is shown in Fig. 2. 
According to this figure, by increasing the value of N 
from zero (pure SS) to infinity (pure SN), all the 
natural frequencies increase approximately in the same 
manner (about 2.2~2.3 times). In addition, all 
frequencies corresponded to FG shells lie between 
those of pure SS and pure SN shells.  

 

 
Fig. 3 Effect of P on the natural frequencies vs. 

circumferential wave number (n); m=1, N=1 
 
It is to be noted that when P=0, the value of N do not 
affect n corresponded to the fundamental frequency. 
The effect of internal pressure on the natural 
frequencies of the shell considered in Fig. 2, for m=1 
and N=1, is shown in Fig. 3. As can be seen from this 
figure, by increasing the value of P, the natural 
frequencies far away from n=0 increase considerably, 
but the natural frequencies corresponded to 5<n  
remain almost unchanged.  
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This phenomenon is due to the fact that by applying 
internal pressure, the amount of strain energy required 
for free vibrations at higher values of circumferential 
wave numbers, increases. Furthermore, it is to be noted 
that the n related to ωf  becomes smaller by increasing 
P. Also, by increasing P, the value of ωf is increased 
about 1.95 times. Fig. 4 shows the variation of ωf 
versus P for different values of N. As can be seen from 
this figure, by increasing the value of P for pure SN 
shell, ωf  is increased by 54.5% and for pure SS shell, 
ωf  is increased by 71.3%. For the values of ∞<< N0 , 
ωf  is increased between 54.5% to 71.3%. 
 

 
Fig. 4 Effect of N on ωf vs. P 

 
In Fig. 5, the effect of N on percentage increase of fω
regarding FG shells in comparison with fω  with 
respect to pure SS shell is studied by increasing the 
amount of P.  
 

 
Fig. 5 Percentage increase of ωf  for FG shells in 

comparison with ωf  for pure SS shell vs. P 

As can be seen from this figure, there is a decreasing 
trend by increasing P from )(0 kPaP = to 

)(100 kPaP = . In the case of FG shell (N=0.1), the 
decrement is 1.6% and in the case of pure SN shell, the 
decrement is 22.3%. For the values of N ( ∞<< N1.0
), the decrements lie between 1.6% and 22.3%. Fig. 6 
depicts simultaneously percentage increase of fω  
regarding FG shell (N=0.1) in comparison to fω with 
respect to pure SS shell (right axis) as well as the 
circumferential wave number n (left axis) by increasing 
P.  
 

 
Fig. 6 Percentageincrease of ωf  for FG shell (N=0.1) in 

comparison to ωf for pure SS shell as well as the 
corresponding values of n 

 
According to this figure, as the value of P increases, 
there is a decreasing trend in percentage increase of fω  
regarding to FG shell in comparison to fω with respect 
to pure SS shell. But, the opposite trend occurred 
within the specific ranges of P in which n corresponded 
to the fundamental mode shape differs for N=0 and 
N=0.1 (i.e. )(16~12 kPaP = and )(66~52 kPaP = ). 
By increasing the internal pressure, alteration in the 
fundamental mode shape number occurred at the 
beginning and the end of the mentioned ranges for pure 
SS (N=0.0) shell and FG shell (N=0.1), respectively. 
Indeed, increasing the value of P within the mentioned 
ranges has less effect on the shell with greater overall 
stiffness (i.e. FG shell N=0.1).  
In addition, a similar trend shown in Fig. 6 was 
observed for values of N greater than 0.1. Variation of 

fω  versus N for different values of P is illustrated in 
Fig. 7 for two FGM configurations (i.e. SS-SN and SN-
SS). As can be seen from this figure, at N=1.0, the 
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values of fω  regarding SS-SN shells are almost equal 
to the values of fω corresponding to SN-SS shells.  
 

 
Fig. 7 Variation of ωf  vs. N for different values of P 

 
Also, the slopes of fω -N graph regarding SS-SN shells 
are almost equal to the slopes of fω -N graph 
corresponding to SN-SS shells. The validity of this 
interesting result was further investigated within the 
geometrical ranges 01.0~002.0/ =Rh  as well as 

10~1/ =RL . As expected, by increasing the value of 
N, fω  related to SS-SN shell is increased. In contrast, 
by increasing the value of N, fω with regard to SN-SS 
shell is decreased. In both cases, by increasing P, fω  is 
increased. Fig. 8 shows the variation of fω  versus h/R 
for different values of P and N.  
As can be observed in this figure, by increasing the 
value of P from )(0 kPaP = to )(100 kPaP = , for 
N=0.0, fω  is increased to 71.3% at h/R=0.002 and 
2.1% at h/R=0.01. Also, for N=1.0, fω  is increased to 
61.1% at h/R=0.002 and 1.7% at h/R=0.01. This 
percentage increments in fω  reveals that the internal 
pressure has more effect on fω  at lower values of h/R 
and this effect is more at lower values of N. Fig. 9 
shows the variation of fω  versus L/R for different 
values of P and N. As can be observed in this figure, by 
increasing the value of P from )(0 kPaP =  to

)(100 kPaP = , for N=0.0, fω  is increased to 71.3% at 
L/R=1 and 251.8% at L/R=10. Also, for N=1.0, fω  is 
increased to 61.1% at L/R=1 and 227.0% at L/R=10. 
This percentage increments in fω  reveals that the 
internal pressure has more effect on ωf at higher values 

of L/R and this effect is more significant at lower 
values of N. 
 

 
Fig. 8 Variation of ωf  vs. h/R for different values of  

P and N 
 

 
Fig. 9 Variation of ωf  vs. L/R for different values of 

 P and N 
 
In Fig. 10, variations of ωf  as well as 1I  (mass per unit 
area) versus N are plotted simultaneously. As depicted 
in this figure, by increasing the value of N, ωf 
increases, in contrast, 1I  decreases. Since the overall 
stiffness of the FG shell is increased by increasing N, 
beside the decreasing trend of mass, justify the 
increasing trend in ωf  versus N. The effect of N on the 
bending vibration relative to amplitudes in radial 
direction regarded to ωf are investigated in Fig. 11. As 
shown in this figure, the relative amplitude regarded to 
pure SN shell is about 1.85 times greater than that for 
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pure SS shell. So N has a considerable effect on the 
amplitudes of free vibrations. The effect of P on the 
bending vibration relative to amplitudes in radial 
direction regarded to ωf are investigated in Fig. 12. As 
shown in this figure, the relative amplitude almost is 
not affected by variation of P. So the effect of P on the 
amplitudes of free vibrations is unimportant. 
 
 

 
Fig. 10 Variations of ωf  as well as I1 vs. N (P=0) 

 
 

 
Fig. 11 Effect of N on the bending vibration relative 

amplitudes in radial direction (P=0) 
 

 
Fig. 12 Effect of P on the bending vibration relative 

amplitudes in radial direction (N=1.0) 

6 CONCLUSION 

A study on the free vibrations of internally pressurized 
functionally graded (FG) circular cylindrical shells 
composed of Stainless Steel (SS) and Silicon Nitride 
(SN) with two different configurations, SS-SN as well 
as SN-SS, has been presented. The analysis was carried 
out using First order Shear Deformation Theory 
(FSDT) based on Love’s first approximation theory. A 
validation of the analysis was achieved by comparing 
results with those available in the literature.  
The study shows that the natural frequencies for all 
values of N lie between those of pure SS and pure SN 
cylindrical shells. Increasing the value of P, causes the 
natural frequencies far away from n=0 to increase. In 
addition, the internal pressure has more effect on 
fundamental frequency ( fω ) at higher values of L/R, in 
contrast, it has more effect on fω  at lower values of 
h/R. In both cases, this effect is more significant at 
lower values of N. The analysis indicates that 
fundamental frequency mode number could be affected 
by both N and P. Finally, the values of ωf regarding SS-
SN shells are almost equal to the values of ωf 
corresponding to SN-SS shells. Also, the slopes of ωf-N 
graph related to SS-SN shells are almost equal to the 
slopes of ωf-N graph corresponding to SN-SS shells. 

7 APPENDIX 

Differential operators ijL are as follows: 

ttxxx RIP
R
AARAL ,1,

66
,16,1111 )()()2()( −+++= ϕϕϕ  
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ϕϕϕ ,
26

,6612,162112 )()()(
R
AAARALL xxx +++==  

ϕ,
26

,123113 )()(
R

APRALL x ++=−=  

ttxxx RI
R

BBRBLL ,2,
66

,16,114114 )()()2()( −++== ϕϕϕ

ϕϕϕ ,
26

6612,165115 )()()(
R

BBBRBLL xxx +++==  

tt

xxx

IRI
R

H

P
R

AARAL

,21
44

,
22

26,6622

)2(

)()2()(

+−−

+++= ϕϕϕ

 

ϕ,
4422

,45263223 )()( PR
R

H
R
AHALL x ++++=−=  

45,
26

,6612,164224 )()()( H
R

BBBRBLL xxx ++++== ϕϕϕ

tt

xxx

IRI

H
R

BBRBLL

,32

44,
22

,26,665225

)(

)()2()(

+−

+++== ϕϕϕ  

ttxxx RI
R
AP

R
HHRHL ,1

22
,

44
,45,5533 )()()2()( −−+++= ϕϕϕ  

ϕ,
26

45,12554334 )()(
R

BHBRHLL x −+−==  

ϕ,
22

44,26455335 )()(
R

BHBRHLL x −+−=−=  

ttxxx RIRH
R

DDRDL ,355,
66

,16,1144 )()()2()( −−++= ϕϕϕ

 
RH

R
D

DDRDLL xxx 45,
26

,6612,165445 )()()( −+++== ϕϕϕ

 
ttxxx RIRH

R
DDRDL ,344,

22
,26,6655 )()()2()( −−++= ϕϕϕ  
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