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Abstract: A mechanism is reactionless or dynamically balanced when there is no 

shaking force and shaking moment applied to the base during mechanism 

movement. The theory for designing reactionless 2 degree-of-freedom (DOF) 

planar parallel manipulator is discussed in this paper. The legs of the manipulator 

are four-bar 2-DOF mechanisms with revolute joints. The dynamic balancing 

conditions of the manipulator are derived, considering that the time rate of the total 

linear and angular momentum have to be vanished. The dynamic balancing 

equations first are obtained and illustrated through a numerical example and finally 

verified by computer simulation using ADAMS software. 
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1      INTRODUCTION 

Manipulators could be classified according to the type 

of kinematic chains which are used for their 

implementations. Serial manipulators are based on 

open kinematic chains, while parallel manipulators are 

based on closed kinematic chains. Each type of robotic 

manipulator has its advantages and drawbacks and is 

suitable for different applications. In order to their 

abilities, parallel manipulators have received 

considerable attentions by researches [1-4]. As 

compared with serial manipulators, parallel 

manipulators are characterized by low moving inertia, 

high stiffness, high dexterity, compact size and high 

power to weight ratio and hence they can be controlled 

with a high bandwidth. Parallel manipulators are 

excellent for applications requiring large load capacity 

or high speed and accuracy [5]. However, similarly to 

other robotic devices, they exert forces and moments 

on their base during movement, causing vibration and 

associated noise, wear, fatigue as well as disturbances 

in the supporting structure of the mechanism [6]. These 

reaction forces and moments, so-called shaking forces 

and shaking moments, are not desired in many 

applications. In order to eliminate the undesired 

shaking forces and moments, reactionless mechanism 

has been proposed. A mechanism is said to be 

reactionless or dynamically balanced if for any motion 

of the mechanism, there is no shaking force and 

moments at its base at all-time [5]. 

Static balancing is an approach that has to be 

considered former to dynamic balancing. A mechanism 

is statically balanced while potential energy is constant 

for all possible configurations. This property is very 

convenient for robotic manipulators with large constant 

payloads, since it means that the mechanism is 

statically stable for any configuration, i.e. zero actuator 

torques are required whenever the manipulator is at 

rest. Interested readers may be referred to [7-9], [4]. In 

order to obtain dynamically balanced manipulators two 

major conditions must be satisfied: 

1) Time rate of linear momentum of the manipulator 

should be vanished, so the center of mass of the 

system must be inertial fixed. 

2) Time rate of angular momentum of the manipulator 

about the center of mass of the system has to be 

vanished, too. The former is equal to resultant 

shaking forces, while the later is resultant shaking 

moments. 

Regarding the importance of dynamic behavior of 

parallel manipulators and based on the literature, there 

are many researches on the dynamic balancing of the 

parallel manipulators. As in [10], authors proposed a 

method for dynamic balancing of Hexapods for high-

speed application. The proposed method was aimed at 

minimizing the changes in the Hexapods inertia over 

the workspace. Optimum dynamic balancing of planar 

parallel manipulators has been addressed by [11], based 

on sensitivity analysis. They addressed the optimum 

dynamic balancing of planar parallel manipulators 

exemplified with 2-DOF parallel manipulator 

articulated with revolute joints. The dynamic balancing 

was formulated as an optimization problem such that 

while shaking force balancing is accomplished through 

analytically obtained balanced constraints, an objective 

function based on the sensitivity analysis of shaking 

moment with respect to the position, velocity and 

acceleration of the links is used to minimize the 

shaking moment.  

Reference [12] presented the synthesis of novel 

reactionless spatial 3-DOF and 2-DOF mechanisms 

without any separate counter-rotation, using four-bar 

linkages. Reference [13] also addressed the design of 

reactionless 3-DOF and 2-DOF parallel manipulators 

using 3-DOF parallel mechanism (Parallelepiped) as 

legs. Reference [14] presented the theory of design of a 

reactionless 3-DOF planar parallel manipulator, using 

parallelogram mechanism as legs. There are more 

researches on the dynamic balancing of manipulators 

which can be found in [15-24]. 

In this work, theory of design of a 2-DOF planar 

parallel manipulator is discussed. Three four-bar 2-

DOF mechanisms act as the manipulator's legs, and 

move a thin triangular platform. If all four links of the 

proposed leg have the same length, then this 

mechanism can be referred to as pantograph.  The 

organization of the paper is as follows: in the next 

section, the reactionless conditions of the manipulator 

is discussed and formulated. Then the theory of design 

of the manipulator based on these conditions is 

addressed. Finally, through a numerical example a 

reactionless manipulator is designed and its dynamic 

balancing is shown and verified by computer 

simulation.  

2      DYNAMIC BALANCING OF THE MECHANISM 

The 2-DOF manipulator discussed here is composed of 

three legs which are connected to the base and to a 

common thin triangular moving platform Fig. 1. Each 

leg comprises four links with length of 
1L , 

2L ,

 

3L , 
4L

 
and masses of 

1m , 
2m ,

 

3m  and 
4m connected by 

revolute joints 
1j , 

2j ,

 

3j  and 
4j . Joint angels 

1 , 
2 , 

3  and 
4  are corresponded to links 1, 2, 3 and 4, 

respectively.  It is obviously clear from the Fig. 2 that 

1 =
2  and 

3 =
4  and 

31 LL  . The mass of moving 

platform is 
PM . To analysis dynamic balancing of this 
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manipulator, two mentioned conditions are 

mathematically presented here: 

 
Table 1 list of symbols 

Symbo

l 

Quantity 

M Shaking force 

G Shaking moment 
.

cr  Velocity of the center of mass of manipulator 

m  Total mass of manipulator 
.

ar  Position vector of ith link  

ia  Distance of ith counter-weight from its 

corresponded link 

cH  Angular momentum 

i

cH  Angular momentum of ith leg about center of 

mass of the manipulator 
ij

oH 1
 Angular momentum of jth link of ith leg about 

its center of mass 

 

ik  Radius of gyration 

 

  0/ .GtGF                                               (1) 

                                               

  0/ .

CCG HtHM                                      (2) 

 

The linear momentum can be considered as Eq. (3): 

 
.

cmrG                                                                        (3) 

 

By inertial fixing the center of mass of manipulator and 

restriction its motion in a plane normal to direction of 

gravity, the first condition can be satisfied. The 

procedure of fixing the center of mass of mechanism is 

discussed in the next section. 

 

 
Fig. 1 The 2-DOF planar parallel manipulator with three 

2-DOF four-bar legs 

 
Fig. 2 Four-bar 2-DOF mechanism with revolute joints 

3     THE FIRST CONDITION 

The procedure to satisfy the first condition for the 

planar parallel manipulator with three legs and 

triangular platform is as follow: 

Distribute the mass of moving platform at three points 

connected to the legs. This should be done in a way that 

the effect of inertia and mass of the platform can be 

replaced by these three points. To satisfy this condition, 

three conditions which are presented by [22] have to be 

considered. These conditions are:  

The sum of the point mass should be the same as 

the mass of platform; 

The center of mass of platform with respect to a 

fixed point will be the same as center of mass of 

the all point masses  

The moment of inertia of the point masses about 

the center of mass of platform is the same as the 

moment of inertia of platform about its center of 

mass.   

Regarding these conditions, mass of each of these three 

points would be 3/pM  From now on, the effect of 

platform is replaced by these three point masses at end 

of the legs. 

Locate the center of mass of each leg at its base. It can 

be done by adding three counter-weights, at the 

opposite extended direction of links 1, 2 and 3 as 

shown in Fig. 3. 
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Fig. 3 Locating the center of mass of leg at the base using 

three counter-weights 

 

The position vector of the center of mass of leg 
oir is: 

)(

)(3/)(

)(

33223222111

241124114

13223222111

eaeLmaeameam

eLeLMereLm

ereLmermermMr

aa

p

oi






                   (4) 

So these constraints have to be satisfied: 

0
3

311143311 31
 amamL

M
Lmrmrm aa

p         (5) 

0
3

224442322 32
 LmamL

M
rmLmrm aa

p      (6)  

4 THE SECCOND CONDITION 

Time rate of total angular momentum of the 

manipulator with respect to its center of mass has to be 

vanished. While the center of mass of manipulator is 

fixed, total angular momentum of manipulator with 

respect to its center of mass has to be fixed i.e.: 

0tan  tConsHc
                                                    (7) 

With this in mind that effect of platform is replaced by 

three point masses at end of each leg, so total angular 

momentum would be: 





3

1i

i

cc HH                                                                 (8) 

The angular momentum of ith link with respect to 

center of mass of manipulator is related to ith link 

about its base: 

1
1

.

coico

i

oi

i

c rmrHH                                                (9) 

 

The center of mass of manipulator is fixed as well as 

base of the legs. Thus the velocity vector 
1

.

cor vanishes: 

i

oi

i

c HH                                                                    (10) 

Angular momentum of ith leg about its base can be 

rewritten as: 

.
3

1

.
4

1 3
i

i

aiip

p

p

i

ij

oi

i

oi amar
M

rHH 


                 (11) 

Where: 

111 eaa                                                                   (12) 

222 eaa                                                                  (13) 

33223 eaeLa                                                          (14) 

And 

2411 eLeLrp                                                           (15) 

The total angular momentum is a vector which is 

parallel to the gravity vector. Regarding to Cartesian 

coordinate, the angular momentum of ith leg can be 

revaluated as: 

 

))(cos( .

2

.

121

.

2

.

1   CBAH i

oi
              (16) 

 

)
3

(

2

4

2

33

2

11

2

44

2

13

2

33

2

11

2

11

L
M

amamrm

LmKmrmKmA

p

aai

iiii




                        (17) 

 

)
3

(

2

1

2

33

2

22

2

24

2

44

2

33

2

22

2

22

L
M

Lmam

LmKmrmrmKmB

p

aa

iiiii




          (18) 

)
3

( 41323424313 LL
M

aLmrLmrLmC
p

aii          (19) 

The total angular momentum can be vanished by proper 

choice of geometrical parameters and adding counter-

rotations or through a proper trajectory planning. While 

the total angular momentum of the system about its 

center of mass is the same as sum of angular 

momentums of legs about their bases, thus, in the first 

method, angular momentum of each leg about its base 

has to be vanished.  

 

3,2,1;0  iH i

oi
                                                       (20) 

 

To vanish angular momentum of each leg, two counter-

rotations are mounted at the base of each leg. The 

inertia parameter of each counter-rotation is as follows: 
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)
3

(

2

4

2

33

2

11

2

44

2

13

2

33

2

11

2

111

L
M

amamrm

LmKmrmKml

p

aai

iiii




                        (21) 

)
3

(

2

1

2

33

2

22

2

24

2

44

2

33

2

22

2

222

L
M

Lmam

LmKmrmrmKml

p

aa

iiiii




          (22) 

Also this constraint must be considered: 

0
3

41323424313  LL
M

aLmrLmrLm
p

aii
            (23) 

5 NUMERICAL EXAMPLE 

In this section, a numerical example is proposed. The 

required data is presented in Table 2. The parameters 

which are desired to be obtained would be mass of 

counter-weights, distance of each counter-weight from 

its connected link as well as inertial parameters of 

counter-rotations. However, there will be several 

answers sets to this example, by defining a proper 

objective function and applying an optimization 

procedure, best answer set could be found. Interested 

readers may refer to [5].  

 
Table 2 The data set of proposed example 

Member Length/Area Mass Radius of 

gyration 

Link1 0.2 m 0.18 Kg 0.058 m 

Link2 0.2 m 0.18 Kg 0.058 m 

Link3 0.2 m 0.18 Kg 0.058 m 

Link4 0.3 m 0.27 Kg 0.087 m 

Platform 0.0017 2m   0.3 Kg - 

 

Regarding the obtained equations, the answer set is as 

follow: (However, other answer sets can be considered, 

too.) 

  

{ 1a =0.2 (m); 1am =0.1075 (Kg); 2a =0.2 (m); 

2am =1.065 (Kg); 3a =0.2 (m); 3am =0.4425 (Kg); 1l = 

0.04729 (Kg ); 2l = 0.08134915 (Kg )}        

 

The verification of dynamic balancing of mechanism is 

performed using ADAMS software. By defining the 

mechanism in ADAMS/View environment, as shown 

in Fig 4. and then applying obtained answer set to the 

mechanism, dynamic simulation is performed for 

several trajectories. It should be noted that counter-

weights and counter-rotations are not shown in this 

view. To verify dynamic balancing property, the 

reaction forces applied to the base are plotted during 

simulated ten seconds and reaction moments applied to 

the base are plotted during simulated ten seconds 

shown in Fig. 5 & Fig. 6 & Fig. 7. 

 

Fig. 4 Simulating 2-DOF four-bar mechanism acting as 

manipulator's leg in ADAMS 

 

As one could see, it is obviously clear from blow 

figures, that reaction forces and moments are very 

small.  

 
Fig. 5 X Reaction force applied to base during ten seconds 

 

 
Fig. 6 Y Reaction force applied to base during ten seconds 

 

 
Fig. 7 Reaction moments applied to base during five 

seconds 
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6 CONCLUSION 

This paper provided the design and theory for a 

dynamically balanced planar parallel mechanism. The 

system center of mass was inertial fixed using counter-

weights. Therefore, the total linear momentum and 

angular momentum of the system vanished using 

proper choice of inertia and geometric parameters of 

counter-rotations mounted at the base of each leg. 

Designed mechanism was tested using ADAMS 

software and it was shown that the proposed 

manipulator is dynamically balanced. 
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