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Abstract: An overall treatment with dental implant consist of several essential 
parts, including a superstructure containing fixture (part of the implant embedding 
in the bone), abutment (a machined tapered prepared superstructure attached to the 
fixture), a retainer (which hold the aesthetic portion of the restoration) and the 
crown (aesthetic part of the restoration). In this common kind of restoration, crown 
is cemented to metal framework. However, in this research a novel method of 
design of dental implant is presented which includes only two components: 
Integrated implant, and Crown. The new design is based on an integrated implant 
which enables dentist to fit the crown by a snap-fit ringinstantly. In order to carry 
out stress analysis, the finite element method (FEM) is applied on implant and 
bones to verify different loading conditions. The results of FEM analysis indicate 
thatthe proposed design undergoes different loading conditions successfully. 
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1 INTRODUCTION 

Since dental implants were introduced for rehabilitation 
of the completely edentulous patients in the late 1960s, 
an awareness and subsequent demand for this form of 
therapy has increased significantly [1].The use of 
implants have revolutionized dental treatment 
modalities and provided excellent long term results [2]. 
In evaluation of the long-term success of a dental 
implant, the reliability and the stability of the implant 
and bone play a great role. In general, the success of 
the treatment depends on many factors affecting the 
bone and implant [3]. Prosthetic components are 
subjected to a complex pattern of horizontal and 
vertical force combinations [4]. Analyzing force 
distribution at the bone–implant interface is an essential 
step in the overall analysis of loading, which 
determines the success or failure of an implant. The 
finite element analysis (FEA) allows researchers to 
predict stress distribution in the contact area of 
implants with compact and spongy bones. 
With the increasing demand and clinical applications of 
dental implants, more and more implant–abutment 
interface related designs and performance issues have 
been investigated and reported [5], [6]. Currently, there 
are over 20 different geometric variations of implant–
abutment interface commercially available [7]. 
However, long-term follow-up studies on implants 
indicate that many complications occur after the 
prosthetic phase [5]. These complications include loss 
of osseointegration [8], abutment screw loosening [9], 
abutment screw fracture [10], and similar issues [11], 
[12]. Simon et al. determined the success rate of 
implants restored as single molar and premolar crowns, 
and reported that dental implant failure rate to be 4.6%, 
of which 7% was related to abutment screw loosening 
[8]. Binonet al. observed a direct correlation between 
implant/abutment hexagonal rotational misfit and screw 
loosening [13]. 
An overall treatment with dental implant consist of 
several essential parts, including a superstructure 
containing fixture (part of the implant embedding in the 
bone), abutment (a machined tapered prepared 
superstructure attached to the fixture), a retainer (which 
hold the aesthetic portion of the restoration) and the 
crown (aesthetic part of the restoration) as shown in 
Fig. 1. In this common kind of restoration, retainer is 
cemented to abutment, where in this mechanism, the 
components that have been cemented to each other may 
be disengaged and also the fabrication process is time 
consuming due to the sum of components which must 
be assembled [9]. Hence due to the abovementioned 
shortcomings, a new mechanism in dental implant 
restorations is proposed in order to resolve these draw 
backs. The proposed dental implant mechanism 

consists of two major components: implant and crown, 
where the crown easily fits to the implant by a snap-fit 
ring mechanism. In this new dental implant mechanism 
abutment and metal framework are avoided hence 
loosening of cemented components are not expected. 
Hence, in this mechanism due to reduction of parts 
assembled to each other, time of remedy reduces as 
after embedding implant to the patient bone, crown fits 
to implant by a snap-fit ring instantly. So the novel 
mechanism of dental implant helps in reduction of 
remedy time, increasing implant embedding quality and 
accuracy. 
 

 

 

 

 
 

 

 

Fig. 1 3D solid model of implant, abutment, metal 
framework, occlusal material, bone and gingiva, respectively 

[16] 
 
In this new dental implant mechanism, abutment and 
metal framework are excluded and hence loose-fitting 
of cemented parts are not expected to occur. Hence, 
due to the reduction of parts that are being assembled, 
operation time is reduced significantly, leading to 
quality and accuracy improvement of embedded 
implant. In this research, several scenarios are being 
investigated in order to succeed the final novel design 
of the new dental implant mechanism. Upon 
achievement of the proposed design, FEA method is 
applied in order to analyses it under different loading 
conditions. Hence in this research, three-dimensional 
(3-D) finite element analysis (FEA) is utilized 
extensively for quantitative evaluation of stress on the 
implant and its surrounding bone [5], [7], [14-16]. In 
other words, FEA is selected in this study to examine 
the effect of the static and dynamic combination of 
loading on the stress distribution for an implant-
supported fixed partial denture and supporting bone 
tissue of the new dental implant complex. 

2 DESIGN PROCESS OF NEW DENTAL IMPLANT 
MECHANISM 

Basically in design of a new mechanism, all possible 
challenges that may influence its performance must be 
taken into consideration. In this research, for designing 
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of new dental implant mechanism, several scenarios 
have been investigated and finally an optimum design 
has been proposed. 

 

 

 

 

 

 

 

 

Fig. 2 Standard dental implant 
 

For the proposed implant design, different changes 
have been made in the standard implant in such a way 
that the task of abutment and metal framework are 
integrated at the new dental implant mechanism (Fig. 
2). 

 

 

 

 

 

 

 

 

 

Fig. 3 New dental implant 
 

At the top section of new implant a circular groove is 
generated to hold the snap-fit ring firmly (Fig. 3). The 
snap-fit ring that is designed for this mechanism is 
shown In Fig. 4. In the inner section of crown, a similar 
groove has been made with sharp corner in order to 
make a perfect match with the integrated implant body 
(Figs. 5& 6). Hence, by the proposed mechanism in this 
research, crown may be assembled to the implant body 
by a snap-fit ring mechanism effortlessly.  
During the implant operation, while embedding the 
new dental implant into the patient bone takes place, 
first, spongy and compact bone of patient are drilled by 
surgeon and then the new implant is embedded in. 
Next, the patient has to wait for several weeks before 
completion where the solid integration between the 
implant and bone takes place. Thereafter, snap-fit ring 

is placed in the implant groove where the sharp corner 
of snap-fit ring supports the crown securely and firmly. 
The embedding process of this new dental implant 
mechanism is shown in Fig. 6, and the assembly 
process of implant, snap-fit ring and crown is shown 
from different views in Fig. 7.  

 

 

 

 

 

Fig. 4 Snap-fit ring 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Crown and its inner groove 

 

 

 

 

 

 

 

 

 
Fig. 6 Embedding process of new dental implant 

mechanism in patient bone 

3 FINITE ELEMENT MODELING  

3.1. CAD modeling 
A 3-D model of a mandibular section of bone with 
missing second premolar and its superstructures were 

Compact bone 

Spongy bone 

Gingiva 
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used in this study. A mandibular bone model was 
selected, simulating A-2 type bone, according to the 
classification system of Lekholm and Zarb [17]. A 
bone block, 24.2 mm high and 16.3 mm wide, 
representing the section of the mandible in the second 
premolar region was modeled. It consisted of a spongy 
bone and compact bone by 2 mm of gingiva where the 
implant was positioned in the modeled spongy and 
compact bone block. Next, the crown fits to implant by 
a snap-fit ring. The implant and its superstructure were 
modeled by using Solid Works CAD software as shown 
in Figures 2-7. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Assembly process of implant, snap-fit ring and 
crown in new dental implant mechanism 

 

3.2. Finite element analysis 

3.2.1. Finite element modeling 
Finite element model required in FE analysis is created 
by discrediting the CAD geometric model as shown in 
Fig.8 into smaller and simpler elements. The finite 
element models are shown in Fig.8.  
The FEM model consists of total178017nodes and total 
of 126544elements. The physical interactions at 
implant–bone, implant–snap fit ring, implant–crown, 
and snap fit ring–crown during loading are taken into 

account through bonded surface-to-surface contact 
features of Cosmos Works software. The finite element 
analysis has been performed by using FEM commercial 
code of Cosmos Works software. 

 
 

 
 

Fig. 8 Finite element model of spongy and compact bone, 
implant, snap-fit ring and crown 

 
 

In this work, Ti–6Al–4V for implant fixture, cobalt–
chromium alloy for snap-fit ring, feldsphatic porcelain 
for crown are used in the finite element analysis. The 
structures in the model were all assumed to be 
homogeneous and isotropic and to possess linear 
elasticity. Mechanical properties of materials used in 
this study are shown in Table 1. 

 
 

Table 1 Mechanical properties of materials used in the study 
Material Young’s 

Modulus 
(GPa) 

Poisson 
ratio 
(ν) 

Yield 
strength 
(MPa) 

Ti-6Al-4V 110 0.32 800 
Cobalt 

chromium 
alloy 

220 0.30 720 

Feldsphatic 
porcelain 

61.2 0.19 500 

Compact bone 14.7 0.30 130 
Spongy bone 1.4 0.30 130 

Gingiva 0.0196 0.30 - 
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Fig. 9 Applied loads and boundary conditions of FEM 

model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Dynamic loading variations during masticatory in 
1sec 

 
3.2.2. Loading and boundary conditions 
Static and dynamic analyses of the implant should be 
conducted to ensure the design safety. In the literature, 
implants are often worked according to the results of 
static analysis. Static finite element analyses are mostly 
conducted under masticatory forces. However, dynamic 
effects may add up at least to 10–20% more loading on 
implant which must be taken into account in order to 
avoid fracture or fatigue failure of the implant. To 
investigate how static and dynamic analysis results may 
differ from each other, implant is analyzed under static 
masticatory and dynamic loading.  
Three dimensional loading of an implant during 
masticatory is respectively 17.1 N, 114.6 N, and 23.4 N 
in a lingual, axial, and mesiodistal direction, simulated 

average masticatory force in a natural, and oblique 
direction (Fig. 9). 
These components represented masticatory force of 
118.2 N in an angle of approximately 75º to the 
occlusal plane [16]. This 3-D loading acted on the 
lingual inclination of buccal cusp of the crown. The 
force magnitudes, as well as the acting point, were 
chosen based on the work of Mericske-Stern [16]. The 
FEM model was fixed at the bottom and two side 
surfaces of mandibular as shown in Fig. 9. 
Time history of the dynamic loading components for 
one second is demonstrated in Fig. 10. These 
estimations were based on the assumption that an 
individual has three episodes of chewing daily, each 15 
minutes in duration at a chewing rate of 60 cycles per 
minute (1 Hz). This is equivalent to 2700 chewing 
cycles per day or roughly 610 cycles per year [18], [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Stress distribution in assembly model of compact 
and spongy bones, implant, snap-fit ring and crown during a) 

static and b) dynamic loading 
 

a
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(b) 

(a) 

bone during static and dynamic loading were 21.2 MPa 
and 20.2 MPa, respectively. For the static and dynamic 
loading, the maximum stress values within the spongy 
bone were 16.3% and 15.5% of the yield strength, 
respectively. The maximum stress values at the spongy 
bone of two loading conditions were well below the 
yield strength (yield strength for spongy bone, is 130 
MPa). 
 
 
 
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Fig. 16 Stress distribution of the spongy bone during  
a) static and b) dynamic loading 

5 DISCUSSION  

The finite element method is one of the most frequently 
methods used in stress analysis in industry and science. 
It is commonly utilized for analyzing hip joints, knee 
prostheses, and dental implants [16]. The results of the 
FEA computation depend on many individual factors, 

including material properties, boundary conditions, 
interface definition, and also on the overall approach to 
the model [20]. It is apparent that the presented model 
was only an approximation of the clinical situation. The 
basic purpose of the bioengineering in dentistry which 
analyzed biomechanical principles in in-vitro studies 
was to extrapolate the findings relevant to the risk 
factors instead of experiencing them empirically in 
clinical applications. However, the stress levels that 
actually cause biological response, such as resorption 
and remodeling of the bone, are not comprehensively 
known. Therefore, the data of stress provided from 
finite element analysis require substantiation by clinical 
research [21]. 
Modeling the exact geometry of the implant complex, 
including the thread helix of screw and screw bore, was 
essential for finite element analysis [21]. Several 
assumptions were made in the development of the 
model in the present study. The structures in the model 
were all assumed to be homogeneous and isotropic and 
to possess linear elasticity. When applying FEA to 
dental implants, it is important to consider not only 
axial loads and horizontal forces but also the 
combination loadings (oblique occlusal force) must be 
considered [22]. So in this study, 118.2 N force was 
applied to 75◦ angular to crown that simulates chewing 
force at oblique direction.  
All interfaces between the components were assumed 
to be bonded [6] (and the references cited therein). 
Bones loss and early implant failure after loading 
results most often from excess stress at the implant–
bone interface [23]. This phenomenon is explained by 
the evaluation of finite element analysis of stress 
contours in the bone. The mechanical distribution of 
stress occurs primarily where bone is in contact with 
the implant [1]. To investigate how static and dynamic 
analysis results differ from each other, implant is 
analyzed under static load and dynamic chewing load. 
The other works that supported this study are Zhang 
and Chen's work and Kaybasiand et al. Zhang and 
Chen compared dynamic loading with static loading in 
three dimensional FEA models with a range of different 
elastic moduli for the implant. Their results showed 
that, comparing the static loading model, the dynamic 
loading model resulted in higher maximum stress in 
bone-implant interface as well as a greater effect on 
stress levels when elastic modulus was varied [24]. 
Moreover, Kayabasiand et al. investigated static, 
dynamic and fatigue behaviors of the dental implant. 
Their results showed that dynamic effects may add up 
to about 10-20% or addtional loading to the implant, 
which must be taken in to account in order not to cause 
fracture or fatigue failure on the prosthesis [16]. A 
finite element study demonstrated that the maximum 
stresses in bone concentrated at the connection between 
the implant and bone. Maintenance of bone levels may 



Int  J   Advanced Design and Manufacturing Technology, Vol. 6/ No. 3/ September - 2013  31 
 

© 2013 IAU, Majlesi Branch 
 

be achieved by proper implant and prosthesis design. 
This aspect may be better understood by the use of 
computer aided analyses and relevant studies [25]. 

6 CONCLUSION 

In this research a new dental implant was presented 
which constitutes of only two components: integrated 
implant, and the crown fitted to the implant by a snap-
fit ring mechanism. This new design is based on 
simplifying the mechanism of attachment of retainer to 
the abutment enabling dentist to install the restoration 
easily. The results of FEM were presented and proved 
to satisfy different loading conditions successfully. One 
of the most important factors in the implant design is 
the investigation of static and dynamic behaviors of 
dental implant. In this study, static and dynamic 
behaviors of this new dental implant are investigated. 
For the loading conditions tested, the maximum stress 
values did not reach the yield strength of implant, snap 
fit ring, crown and spongy and compact bone materials. 
It seems that the implant resists all static and dynamic 
loading conditions with no trouble during loading. 
The maximum Von-Misses stresses for the implant in 
static and dynamic loading were 170.3 MPa and 177.1 
MPa, respectively (yield strength for Ti-6Al-4V, is 800 
MPa). The maximum Von-Misses stresses for the snap-
fit ring in static and dynamic loading were 311.5 MPa 
and 341.2 MPa, respectively (yield strength for Cobalt-
Chromium, is 720 MPa). 
The maximum Von-Misses stresses for the crown 
during static and dynamic loading were 326.1 MPa and 
273.9 MPa, respectively (yield strength for Feldsphatic 
porcelain, is 500 MPa). The maximum Von-Misses 
stresses for the compact bone during static and dynamic 
loading were 31.9 MPa and 37.4 MPa, respectively 
(yield strength for compact bone, is 130 MPa). The 
maximum Von-Misses stresses for the spongy bone 
during static and dynamic loading were 21.2 MPa and 
20.2 MPa, respectively (yield strength for spongy bone, 
is 130 MPa). In both static and dynamic loading, the 
maximum stress values for all components of the two 
loading conditions were well below the yield strength 
of the materials. Therefore, the dental implantsmay be 
designed and studied in computer environment before 
theyare implemented on the patients. This will save 
time for the design and prevents any possibledamage 
caused by miss-implementation of implants. 
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