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Abstract: A finite volume-lattice Boltzmann algorithm is applied to study skin 
friction behaviour in different channel flows. For this purpose, cell centred scheme 
is adapted to discretize the Boltzmann equation and consistent boundary conditions 
are also addressed, which resulted in a wider domain of stability. A simulation of 
flow in a two dimensional channels with different geometries are carried out. The 
results are compared with previous valid results in which favourable agreement 
was observed. The results showed that skin friction in plane Poiseuille flow 
converged to 24/Re, but skin friction distribution in suddenly enlarged channels 
regain symmetry after some distance downstream of the expansion plane. 
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1 INTRODUCTION 

The lattice Boltzmann method (LBM) serves as an 
alternative to Navier–Stokes equations. From its birth 
over 20 years ago, LBM have been used successfully in 
simulating the various flows. The obvious advantages 
of using LBM are the simplicity of programming, the 
parallelism of the algorithm and the capability of 
incorporating complex microscopic interactions [1]. As 
a different approach from the conventional 
computational fluid dynamics, the LBM has been 
demonstrated to be successful in simulations of 
complex fluid flows [2]. 
The fundamental philosophy of the lattice Boltzmann 
equation (LBE) is to construct simple models based on 
kinetic theory that preserve the conservation laws and 
necessary symmetries such that the emerging behavior 
of these models obeys the desired macroscopic 
equations. The kinetic nature of the LBM leads to the 
following features that distinguish the LBM method 
from any other conventional CFD method. First, the 
convection operator of the LBE model is linear in 
phase space, similar to that of the Boltzmann kinetic 
equation but different than the Euler or the Navier-
Stokes equations. Second, the pressure is obtained 
through an equation of state, as opposed to solving a 
Poisson equation in the incompressible Navier-Stokes 
equations. Third, with the Navier-Stokes equations, the 
constitutive relations are input from empirical data, 
while with the LBE method, the constitutive relations 
emerge as a result of proper modelling of inter-particle 
potentials. Fourth, unlike the Navier-Stokes or Euler 
equations, in which macroscopic conservation laws are 
discretized, the LBM utilize a set of discrete particle 
velocities such that the conserved quantities are 
preserved up to machine accuracy in the calculations. 
Several references are available to obtain an entry to 
the theory and methodology of LBE [2], [3]. 
In LBM, the physical spatial structure of the lattice is 
intrinsically coupled to the velocity discretization of 
particle distribution function. The advantage is the 
Lagrangian, exact treatment of advective transport, and 
hence, a zero numerical diffusion. On the other hand, 
straightforward integration of the LBE on a structured 
or unstructured mesh is not possible. This leads to 
difficulty in adapting the mesh to complex flow-
structures such as separation, vortices, shears flows and 
boundary layers etc., and to satisfy boundary conditions 
on irregular geometries [4]. Such difficulty may be 
overcome by decoupling the numerical mesh from the 
lattice structure, and taking recourse to, one of finite 
difference, finite element or finite volume approaches 
[5-7]. But the finite volume approach is gaining 
popularity owing to their robustness and flexibility to 
handle complex flow domains. 

In this paper, we will consider a finite-volume 
formulation of LBM for study skin friction distribution 
in channel flows. A cell-centered approach is used for 
space discretization and consistent boundary conditions 
are also addressed. The performance of the formulation 
is systematically investigated by simulating plane 
Poiseuille flow and suddenly enlarged channel flow. 
For each of these flows, the present scheme is validated 
with the literature results. 

2 FINITE VOLUME FORMULATION OF LBM 

The lattice Boltzmann equation (LBE) can be directly 
derived from the Boltzmann equation by discretization 
in phase space without borrowing the concept of 
particles jumping from site to site as in the LGA model 
[4]. The commonly used LBM models can be regarded 
as specific discretizations of the LBE on regular 
lattices. The flexibility gained in unlocking the spatial 
and velocity lattices from each other provides us in 
designing our cell centered finite-volume scheme. A 
popular kinetic model is the single relaxation time 
approximation, the so-called Bhatnagar–Gross–Krook 
(BGK) model [8]. 
 

( )1.                 1,...,eqi
i i i i

f v f f f i n
t τ

∂
+ ∇ = − − =

∂
              (1) 

 

where n  is the number of different velocities in the 
model, eqf  is the particle equilibrium distribution 
function associated with motion along the ith direction 
in velocity space, 

iv  the velocity in the ith direction, τ  
is the relaxation time and the right hand side of the 
equation is the collision operator.  
In the LBM, only a small set of discrete velocities are 
used to approximate the Boltzmann kinetics of the 
continuum velocity. So, to solve for f numerically, 
equation (1) is first discretized in the phase space using 
a finite set of velocities without violating the 
conservation laws. For 2D flows, the nine velocity 
model denoted as the D2Q9 model, has been widely 
used. The discrete velocities are given by 00 =v  and 

( )iiiiv θθλ sin,cos=  with ( ) 21 ,1 πθλ −== iii  for i=1~4 
and ( ) 425 ,2 ππθλ +−== iii  for i=5~8 (see Fig. 1). 
The macroscopic density ρ  and velocity u are 
determined by ∑= i ifρ  and ∑= i iivfuρ  respectively. 

The macroscopic pressure is given by equation of state 
of an ideal gas as ρ2

scp =  and the corresponding 
kinematic shear viscosity is related to the relaxation 
time by τν 2

sc=  [9]. 
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Fig. 1 Discrete velocity vectors of D2Q9 model 

 
The equilibrium distribution for D2Q9 model is defined 
by: 
 

( ) ( ) ( ) ( )2
1 2 3 4, . . .eq

i i i if x t w c c v c v cρ ⎡ ⎤= + + +⎣ ⎦u u u u      (2) 

 

where ( )2 4 2
1 2 3 41, 1 , 1 2 , 1 2s s sc c c c c c c= = = = −  and 

3ccs =  is the speed of sound in the lattice. iw  is the 
weighting factor and equals 4/9 for i=0, 1/9 for i=1~4 
and 1/36 for i=5~8. 
Now we choose 2D unstructured rectangular meshes to 
illustrate how the cell centered FV scheme is 
constructed. Fig. 2 shows a generic situation in which 
quadrilateral meshes surround an arbitrary cell. The 
scheme we report here is a cell-centered finite volume 
method. 
 

 
Fig. 2 Schematic of the FV discretization with cell-

centered lattice 
 

The integration of the first term in equation (1) is 
approximated as: 
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Where 
JIA ,
 is the area of abcd. In the above equation, 

we have made an approximation that if  is constant 
over the area abcd to avoid having to solve a set of 
equations. This is a common practice in the finite 
volume methods. By using the Divergence theorem and 
upwind scheme, integration of the second term of 
equation (1) will give fluxes though the four edges ab, 
bc, cd, and da [10]. 
 

( ) ( )

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

( )∑

∫∫

⋅≈

⎪⎩

⎪
⎨
⎧

<

≥
+

⎪⎩

⎪
⎨
⎧

<

≥
+

⎪⎩

⎪
⎨
⎧

<

≥
+

⎪⎩

⎪
⎨
⎧

<

≥

=⎥
⎦

⎤
⎢
⎣

⎡
∂

⋅∂
+

∂
⋅∂

=∇

−−

++

k
kiki

daidaiJIi

daidaiJIi

cdicdiJIi

cdicdiJIi

bcibciJIi

bcibciJIi

abiabiJIi

abiabiJIi

abcd

iiyiix

abcd
ii

fNv

NvifNvf

NvifNvf

NvifNvf

NvifNvf

NvifNvf

NvifNvf

NvifNvf

NvifNvf

dxdy
y

fv
x

fvdAfv

0..

0..

0..

0..

0..

0..

0..

0..

.

1,

,

,1

,

1,

,

,1

,

                            (4) 
 
Where ( )kk xjyiN Δ−Δ=  and dacdbcabk ,,,= . 
Assuming the linearity of eq

ii ff , over each internal 
cell, the integration over the collision term of equation 
(1) results in the following formula: 
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Where eq

iii fff −=Δ . Note that the integration of the 
collision terms in boundary cells takes the following 
form: 
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            (6) 

 
A modified fifth order, Runge-Kutta scheme is used to 
advance the if  in time. This scheme can be applied as 
follows: 
 

11 −+ Δ+= k
ik

n
i

n
i fff α                                                     (7) 

1,5.0,2898.0,1602.0,0695.0 54321 =====∴ ααααα  
 
Where k=1,…,5 and n denote the time step. Therefore:  
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Where ( ) ( )∑∑ −−− −= Fluxes
k

iCollisions
k

i
k
i ffQ 111 . Thus the 

new-time particle distribution function is calculated as 
follows: 
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The time step based on the CFL (Courant–Friedrichs–
Lewy) criterion is given by: 
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Where the term CFL is set to less than 0.7 for more 
stability and , ,,I J I Jx yΔ Δ  are the projected lengths of the 
minimal area cell on the x and y directions respectively.  

3 BOUNDARY CONDITIONS 

In order to transform hydrodynamic boundary 
conditions to the boundary conditions for the 
distribution functions, additional lattices at the edge of 
each boundary cell are introduced. Then, boundary 
nodes are treated like internal nodes, except that the 
fluxes over boundary edges also have to be evaluated 
[11]. As indicated in Fig. 3, physical boundaries of the 
computational domain are defined to be aligned with 
the lattice grid lines. The inlet boundary conditions at 

1=I  are given by: 
 

( )
( ) 65.0

65.0   ,   32
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uffffuff
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(11) 

 
At the outlet boundary i.e. xNI = , the unknown 
distribution functions are extrapolated as follows: 
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( ) ( )JNIfJNIf
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xixi
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,
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                      (12) 

 
The above described scheme is also known as Zou and 
He boundary conditions, suggesting the name of the 
original authors proposing this idea [12]. 
No-sleep boundary condition is achieved by 
implementing a bounce-back algorithm on the links [2]. 
This means that incoming particle portions are reflected 
back towards the nodes they came from (Fig. 3). In 
other words: 
 

86 ff =    ,   42 ff =    ,   75 ff =             (13) 
 

 
Fig. 3 Physical boundaries of the solution domain and 

lattice model on typical boundaries 

4 SIMULATION RESULTS 

The computer code with the cell-centered FV-LBM has 
been used to simulate plane Poiseuille flow and sudden 
expansion flow. The results are presented and discussed 
in this section. 

Plane Poiseuille Flow:  
This is a pressure-driven flow in a duct with flat 
parallel walls. At a large upstream distance from the 
inlet the velocity distribution is assumed to be uniform 
and parabolic over the width of the channel (Fig. 3). 
We assume that the velocity in the inlet section is 
uniformly distributed over its width, 2a, and its 
magnitude is aveU . The Reynolds number is defined as 

νHU avr=Re  where H=2h is channel height and ν  is 
viscosity. 
Owing to viscous friction, boundary layers will be 
formed on both walls and their width will increase in 
the downstream direction (developing region). The 
result velocity profile will consist of two boundary 
layer profiles on the two walls joined in the centre by a 
line of constant velocity. The boundary layers develop 
with increasing x until they reach the centerline. The 
flow is then said to be hydro-dynamically fully 
developed. The analytical solution of flow shows that 
the velocity profile gradually changes to a parabolic 
profile at the fully developed region [13]. This profile 
is defined as following: 
 

( ) ( )( )2
max 1 hyUyu −=                              (14) 

 

Where 

avrU
dx
dphU 5.1

8

2

max =⋅=
μ

                           (15) 
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Once the flow is fully developed the velocity profile 
does not vary in the flow direction. In fact in this region 
the pressure gradient and the shear stress in the flow are 
in balance. The length of the duct between the start and 
the point where the fully developed flow begins is 
called the developing length.  

 
 

 
Fig. 4 Schematic of Plane poiseuille flow 

 
Fig. 5 shows a part of the computational domain and 
velocity vectors in which the lattice Boltzmann 
equation for the incompressible laminar duct flow is 
solved. The results of the simulation display essentially 
laminar growth at the low Reynolds numbers. 
 

 
Fig. 5 Velocity vectors of plane poiseuille flow at Re=29 

 
Fig. 6 is a plot of the normalized streamwise velocity 
profiles at different streamwise locations. The 
velocities and lengths are normalized by the flow 
maximum velocity and the channel height, respectively. 
What is apparent from Fig. 6 is a uniform velocity 
profile entering at the inlet boundary and then gradually 
evolving to a velocity profile that is much smoother 
and, in fact, is parabolic.  
In fluid dynamics, the Darcy–Weisbach equation is a 
phenomenological equation, which relates the head loss 
or pressure loss due to friction along a given length of 
pipe or open duct to the average velocity of the fluid 
flow. This equation contains a dimensionless friction 
factor, known as the Darcy friction factor [13]. The 
Darcy friction factor for laminar plane Poiseuille flow 
is given by the following formula: 
 

hRe24=λ                (16) 

Where ν.hU aveh =Re . Note that the above equation is 
valid only for fully developed region. The Darcy 
friction factor is also known as the Moody friction 
factor and is four times larger than the Fanning or skin 
friction factor (i.e 

fC4=λ ). 
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Fig. 6 Streamwise velocity profiles for plane poiseuille 

flow at different locations and Re=29 

 
Fig. 7 shows the distribution of Darcy friction at 
Re=29. One can see that the graph is approached to 
value 827.0Re24 =h  at fully developed region. The 
relative error is less than 1.7% which demonstrates that 
the present scheme predicts accurately the friction 
distribution along an open channel flow. 
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Fig. 7 Darcy friction distribution at Re=29 along plane 

Poiseuille flow 

 
Channel with a Sudden Expansion: 
Incompressible laminar flow in a symmetric plane 
sudden expansion is a classical fluid flow problem 
which admits multiple solutions. This fact has been 
demonstrated both numerically and experimentally by 
several authors. For Reynolds numbers less than a 
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certain critical value, the flow in the sudden expansion 
is symmetric with two equal sized eddies whose length 
increases linearly with Reynolds number. For Reynolds 
numbers higher than the critical value, the flow 
undergoes a symmetry-breaking pitchfork bifurcation 
rendering the symmetric solution unstable [15-17].  
Fig. 8 shows a schematic two-dimensional plot of the 
flow channel in the experiment. The expansion ratio 
and the Reynolds number are defined as ER=H/h=3 
and ν2Re max hU=  respectively. At the entrance, a 
parabolic velocity profile is enforced. The initial 
conditions for the velocity field are set to be 
asymmetric with respect to the symmetric x-axis of the 
channel, 01.00 =>yu , 00 =<yu  and 0=v . The 
asymmetry of the initial condition determines the 
branch taken by the asymmetric final state. 
 

 

 

Fig. 8 Schematic of the sudden expansion channel flow 

 
The velocity vectors and streamline contours plot for 
Re=26 are depicted in Fig. 9. At this Reynolds number, 
two same recirculation regions form downstream of the 
expansion. 
 
 

 

(a) 
 

 

(b) 

 

Fig. 9 a) Velocity vectors and b) Streamline contours for 
the sudden expansion channel flow at Re=26 

 
Fig. 10 is a plot of the streamwise velocity profiles, 
compared at three streamwise locations at Re=26. Good 
agreement between experimental and numerical results 
is shown in Fig. 10. One can see that the velocity 
profile gradually evolving to a fully developed profile 
by getting away from the inlet. 
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Fig. 10 Velocity profiles at different streamwise locations 

comparison to experimental data [15] 

 
 
Early experiments showed that a transition 
phenomenon from symmetric to asymmetric steady 
state occurred as the Reynolds number was increased to 
value above critical Reynolds number [15-17]. In other 
words, the symmetric flow lost stability to one of a pair 
of steady asymmetric solutions, with either the upper or 
lower circulation region becoming longer. Fig. 11 
shows velocity vectors and streamline contours for 
Re=80 compared with experimental results of Fearn et 
al. [15]. 
 

 

 

(a)  
 

 

(b) 
 

 

(c) 

Fig. 11 a) Velocity vectors, b) Streamline contours and c) 
Experimental results for the sudden expansion channel flow 

at Re=80 
 
Now, we evaluate the skin friction distributions in the 
main channel for different Reynolds numbers. The skin 
friction is defined as following: 
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25.0 avewf UC ρτ=               (17) 
 

Where wτ  is the wall shear stress and ρ  is the fluid 
density. Skin friction distributions in the downstream 
channel of ER=3 are given in Fig. 12.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
 

Fig. 12 Skin friction distributions for ER=3 at a) Re=25,  
b) Re=60 and c) Re=80 

 
The skin friction distribution reveals that the flow 
regains symmetry after some redeveloping length 
downstream of the expansion plane, at which the skin 
friction attains its fully developed value of 

( ) ( )2Re12 HhC f ×=  [18]. It is apparent that skin 
friction values, in the redeveloping region, exhibit 
major departures from their fully developed value. 

5 CONCLUSION 

A cell centered finite volume formulation of LBM has 
been presented on D2Q9 lattice to study skin friction 
distributions of channel flows. Also, consistent 
boundary conditions based on cell centered finite 
volume are addressed. Using the present method, we 
simulate plane poiseuille flow and sudden expansion 
flow. A good agreement between present results and 
analytical or experimental solutions is observed. It is 
shown that the Darcy friction distribution in plane 
poiseuille flow is approached to hRe24  at fully 
developed region whereas the skin friction distribution 
in sudden expansion channel flow is attained to 

( ) ( )2Re12 HhC f ×=  at fully developed region. 
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