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1 INTRODUCTION 

The wheelset motion is considered to be stable if for a 
slight lateral displacement or yaw angle the wheelset 
moves back to its central position after a damped 
oscillatory parasitic motion. Instability occurs if for 
some small irregularities an excited vibration takes 
place, so that the maximum amplitudes increase and the 
parasitic motion is finally restricted by flange contact. 
This motion is known as hunting, a common mode of 
instability in rail vehicles, which is a significant 
hindrance to high speed rail vehicle operations.  
The hunting phenomenon begins as a self excited 
lateral yaw oscillation of the wheelset when the vehicle 
speed surpasses a certain critical speed. Therefore, the 
term critical speed as used in this paper, refers to the 
speed of the vehicle beyond which hunting appears as 
an undamped motion of the wheelset constrained by the 
wheel flange and the rail. 
A history of vehicle stability implies a retrospective 
view on 150 or even 200 years [1]. The kinematic 
motion of a single wheelset with conical profiles has 
been well understood at least since Stephenson [2]. H. 
True et al, investigated Cooperrider’s mathematical 
model of a railway bogie running on a straight track 
due to its interesting nonlinear dynamics [3]. In their 
article a detailed numerical investigation was made of 
the dynamics in a speed range, where many solutions 
existed, but only a couple of which were stable. M. 
Ahmadian and S. Yang presented an analytical 
investigation of Hopf bifurcation and hunting behavior 
of a rail wheelset with nonlinear primary yaw dampers 
and wheel-rail contact forces [4]. They demonstrated 
that the nonlinearities in the primary suspension and 
flange contact contribute significantly to the hunting 
behavior, and both the critical speed and the nature of 
bifurcation are affected by the nonlinear elements.  
H. Yabuno et al, shown by using the center manifold 
theory and the method of normal form, that the 
nonlinear characteristics of the bifurcation in a 
wheelset model with two degrees of freedom are 
governed by a single parameter, hence each nonlinear 
force need not to be detected when examining the 
nonlinear characteristics [5]. Also, they proposed a 
method of determining the governing parameter from 
experimentally observed radiuses of the unstable limit 
cycle. Next, they experimentally investigated the 
variation of the parameter due to the presence of linear 
spring suspensions in the lateral direction and discuss 
the variation of the nonlinear characteristics of the 
hunting motion, which depends on the lateral stiffness. 
In this paper, effects of non-linear suspension on 
dynamic behavior of a railway wheelset have been 
studied. Nonlinear dynamic model of wheelset motion 
has been derived. Four coordinates are used and two 

constrains have been found, therefore, two degrees of 
freedom are remained. Contact forces between the 
wheels and rails have been calculated using 
Vermeulen-Johnson theory. Constant creep coefficients 
have been taken into consideration. Lateral suspension 
is dry friction which has been modeled by using 
Kolesch theory. Runge-kutta method has been used for 
solving the equations and results are presented to obtain 
limit cycles due to hunting behavior of the wheelset.  

2 MODELING 

According to Figure 1, four coordinates, vertical (z) 
and lateral (y) motions, and yaw (ψ) and roll (φ) 
rotations are considered. XYZ is a fixed coordinate 
system, and xyz  and zyx ′′′ are body coordinate 
systems. zyx ′′′ coordinate is introduced due to rotation 
of yaw around Z axis, and xyz  coordinate are due to 
the rotation of roll around x axis. In this condition, 
transformation matrix is: 
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There are also two coordinates to define the contacts of 
wheelset that are shown in Figure 2. The left and right 
contact forces are defined in the left and right contact 
coordinates respectively, and the parameters defined in 
these coordinates are demonstrated by subscripts cl and 
cr, respectively. It should be noticed that wheelset 
moves in straight line with constant velocity V and 
contact surface between wheel and rail is assumed to be 
a point contact.  
Details of this contact points are shown in Figure 2. 
Wheel moves with constant velocity, so speed of 
rotation of its pitch rotation is constant. Thus angular 
velocity of wheelset can be shown as three rotational 
velocities. 
 

K̂ 1 ψω =  ,       î 2 ϕω =  ,       ĵ3
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Therefore, the total angular velocity of the wheelset in 
the body wheelset coordinate is defined as : 
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Fig. 4 Relation between 1r , 2r , 3r , 4r  and Gr  

 
Matrices such as T , T ′ , U , and U ′  are 
transformation matrices for transforming wheelset 
coordinate to left contact surface coordinate, wheelset 
coordinate to right contact surface coordinate, left 
contact surface coordinate to wheelset coordinate, and 
right contact surface to wheelset coordinate, 
respectively. For calculating forces and contact 
momentums, at first the velocity in contact point should 
be calculated. For instance the velocity of left side 
contact point is defined as from relative velocity 
equation: 
 

cl G clV V rω= + ×                                                           (9) 
 
Where 
 

^ . ^ . ^
GV V I y J z K= + +                                                    (10) 

 

( ) ( )

( ) ( )

11
cl

21 31

12
cl

22 32

  sin cos
î
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Obtaining the velocity of the right side contact is 
similar to the left one. Also rotational velocity in the 
left side contact point is defined as : 
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Then, dynamical creep of the wheelset can be defined 
as : 
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Creep coefficients are constant (f11, f22, f12, f33) and 
creep forces are obtained as xcx fF ξ33−=′  
 

spycy ffF ξξ 1211 −−=′                                           (14) 
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These forces are hypothesized as limit factors, and the 
condition of limitation is defined as [6] 
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Also contact forces and momentums are defined as: 
  

cxcx FF ′= ε  

cycy FF ′= ε                                                               (16) 

czcz MM ′= ε  
 
In this article, the contact force due to nonlinear spring 
is simulated using a spring with dead band, where the 
mathematical model is : 
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In which, TK  is the rail stiffness factor and δ  is the 
clearance of the wheel flange. Figure 5, shows the 
clearance of the flange as a dead band between the 
wheel and the rail [4]. 

 

 
 

Fig. 5 Clearance and lateral distance between wheel and 
rail [4] 

 
For suspending in lateral direction, nonlinear 
suspension has been used that commonly is utilized in 
freight bogies (Y25). In this condition Kolsch method 
may be used [7]. 
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According to the modified Euler equations, equations 
of motion can be written as [8] : 
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Where: 
 

( sin )clz cr r S γ= − +  
cosclyr L S γ= −                                                       (20) 

sincrz cr r S γ= − +  
( cos )cryr L S γ= − +  

3 LATERAL SUSPENSION 

For modeling some freight bogies (Y25), a special kind 
of friction damper has been used. Figure 6, shows the 
mechanical model of the element [9]. The model 
contains two springs with stiffness 0C  and gC , and a 

dry friction part H . When a displacement is raised in   
y direction, the first spring 0C , will be deformed until 
the maximum static friction force in the damper be 
raised. Before this time, the element works similar to a 
single spring with stiffness hC : 
 

0h gC C C= +                                                            (21) 
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Fig. 8 Lateral displacement graph of wheelset at critical 

velocity (hunting) 
 

 
Fig. 9 Limit cycle graph of wheelset at critical velocity 

(hunting) 

 

 
Fig. 10 Lateral displacement graph of wheelset at v=20 m/s 

 

 

 

 
Fig. 11 Limit cycle graph of wheelset at v=20 m/s 

5 CONCLUSION 

In this paper, nonlinear characteristics of suspension 
are investigated. While the stiffness of spring gC  
=107500 N/m, critical velocity is equal to 15.7 m/s and 
limit cycle in terms of velocity has been shown in Fig. 
12. 
Fig. 13 shows critical velocity when gC =215000 N/m, 
also Figure 14 shows limit cycle in terms of velocity 
when gC =537500 N/m and critical velocity is 36.5 
m/s. 
Figure 15 shows limit cycle in terms of velocity when 

gC =645000 N/m, and critical velocity is 40.1 m/s.  
 

 

Fig. 12 Limit cycle for gC =107500 N/m 
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Fig. 13 Limit cycle when gC =215000 N/m 
 

 

Fig. 14 Limit cycle when gC =537500 N/m 
 
As the results show, with increasing the gC , critical 
velocity is increased. But there is a limitation on the 
value of gC . The limitation is the frequency of 
oscillation of wheelset, because with increasing the 
stiffness gC , the frequency of oscillation of wheelset 
also is increased. 
 

 
Fig. 15 Limit cycle when gC =645000 N/m 

 
To analyse the variations of damper forces (H), three 
different cases are considered and critical velocities has 

been investigated according to Figure 16. H depends on 
kinetic friction coefficient of sliding surfaces of 
suspension system, weight of the wheelset, and applied 
load on the axle of the wheelset. Variation of the 
kinetic friction coefficient is small. Variation of axle 
load of the wheelset is more affected on value of H. 
Therefore the empty wagon is more critical than the 
full loaded wagon in view of velocity. Also the effect 
of H is not analogous to the effect of stiffness gC . 

With increasing the values of H and gC , the critical 
velocity of wheelset will rise, but the effect of H on the 
critical velocity is too small, and the growth of 
damping force (H) will not affect on critical velocity 
like other parameters of suspension. Therefore, 
increasing slipping dry friction coefficient or axial load 
of wheelset will not change the critical velocity as an 
important dynamical parameter of wheelset. Also when 
velocity is more than critical velocity, the limit cycle 
will appear and in this condition, there is an attractor in 
the system. 
 

 
Fig. 16 Bifurcation graph for three different values of dry 

friction damper force 
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