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Abstract: In this paper, optimal swing up of a double inverted pendulum (DIP) 
with two underactuated degrees of freedom (DOFs) is solved using the indirect 
solution of optimal control problem. Unlike the direct method that leads to an 
approximate solution, the proposed indirect method results in an exact solution of 
the optimal control problem, but suffers from its limited convergence domain 
which makes it difficult to solve. In order to overcome this problem, an inversion-
based method is used to obtain the required initial solution for the indirect method. 
In the proposed methodology, dynamic equations are derived for a general inverted 
pendulum using Euler-Lagrange formulation. Then the necessary optimality 
conditions are derived for a DIP on the cart using the Pontryagin’s maximum 
principle (PMP). The obtained equations establish a two-point boundary value 
problem (TPBVP) which solution results in optimal trajectories of the cart and 
pendulums. In order to demonstrate the applicability of the presented method, a 
simulation study is performed for a DIP. The simulation results confirm the 
superiority of the proposed method in terms of reduced effort. 
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1 INTRODUCTION 

Pendulum systems represent a typical benchmark 

problem faced in the control field. Since it is an 

underactuated system with a highly nonlinear structure 

used to validate different nonlinear and linear 

controllers, it has found a wide range of applications 

such as those in rocket propellers, self-balancing 

robots, tank missile launchers, stabilization of ships, 

design of earthquake resistant buildings, etc. A vast 

deal of contributions has been presented on the 

stabilization and swing up of different types of inverted 

pendulums [1]. For the stabilization problem, there are 

numerous control techniques such as PI state feedback 

controller, LQR controller, feedback linearization, and 

many other control methods [2]. Beside the 

stabilization aspect, the swing up problem has gained 

an increasing deal of attention during the recent past. 

The entire deal of the research works dealing with the 

swing up problem can be categorized into two groups: 

non-optimal swing up and optimal swing up.  

Nowadays, many approaches have been presented for 

the non-optimal swing up problems, including energy-

based method [3], smooth controllers [4], siding mode 

control [5], feedforward-feedback control [1], [6], and 

integral back-stepping sliding mode control [7]. Unlike 

the non-optimal swing up problems, when it comes to 

the optimal swing up instances, a desired cost function 

must also be minimized. Linear and nonlinear 

programming ([8], [9]), and ant colony optimization 

method [10] have been reported for the optimal swing 

up of the inverted pendulum.  

Al-Jana et al. presented performance optimizing of a 

double inverted pendulum (DIP) via a uniform neuro 

multiobjective genetic algorithm as a direct method 

[11]. A suboptimal nonlinear control law based on 

passivity analysis and dynamic programming was 

presented for a rotary Pendubot pendulum for which 

switch control law was not required [12]. Time-optimal 

control of single inverted pendulum has been presented 

by some researchers [13-16]. The energy-optimal 

trajectory planning for the Pendubot and Acrobot was 

presented by Gregory et al. [17]. Recently, Horibe et al. 

adressed the problem of optimal swing up of a single 

inverted pendulumn via stable manifold method [18].   

The approaches followed to solve the optimal control 

problems are generally classified as either direct or 

indirect methods. Direct methods are based on the 

conversion of the optimal control problem into a 

parameter optimization problem, while the indirect 

ones explicitly solve the optimality condition stated in 

terms of the Pontryagin’s maximum principle (PMP), 

the co-state equation and suitable boundary conditions. 

Compared to the indirect methods, the direct methods 

have been proved to be quite robust and globally 

convergent, but rather computationally more expensive. 

In contrast, the indirect methods suffer from limited 

domain of convergence but result in an accurate 

solution ([19], [20]). Most of the previous works 

dealing with optimal swing up have employed the 

direct methods [8-12], leading to solely approximate 

solutions.  

The indirect methods lead to a two-point boundary 

value problem (TPBVP) which is usually sensitive to 

the initial condition, with its limited domain of 

convergence. Recently, with the development of 

various methods for solving the TPBVP, indirect 

methods have been extensively applied to come with 

highly accurate optimal trajectories for fully actuated 

robot manipulators ([17], [19], [20]), but, to the best of 

our knowledge, only a few works have focused on 

underactuated systems, possibly due to the further 

difficulty of the convergence problem in an 

underactuated system rather than a fully actuated one. 

In recent attempts to solve this problem, energy-

optimal trajectory planning [17] and stable manifold 

method [18] were adopted for systems with only one 

underactuated degree of freedom (DOF), leaving 

the indirect solution of the optimal control problem for 

underactuated systems with more than one 

underactuated DOFs yet to be addressed. In this paper, 

a general inverted pendulum on the cart with n-1 links 

is considered.  

Following the indirect method, the necessary 

conditions for optimality are derived from the PMP. 

The obtained equations are compiled into a TPBVP that 

is then solved by bvp4c command in MATLAB. In 

order to overcome the convergence problem, an 

inversion-based method is proposed to obtain a proper 

initial guess. Optimal swing up of a DIP is presented 

and the obtained results are compared with previous 

works. The rest of this paper is outlined as follows: the 

next section describes the dynamic equations and 

optimality conditions for a general inverted pendulum. 

Optimality conditions of DIP are derived in Section 3. 

Section 4 addresses simulation results for DIPs. 

Finally, conclusions are drawn in Section 5. 

2 DERIVING THE NECESSARY OPTIMALITY 

CONDITIONS 

Schematic model of a classical inverted pendulum with 

n-1 links is shown in “Fig. 1ˮ. As shown in the figure, x 

is the position of cart, u is the applied force to the cart 

and i  is the angular position of the link i from vertical 

axis. General dynamic equation of this system can be 

described as: 

 

( ) ( , ) ( ) ,D q q b q q h q τ    (1) 
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Where  1 1... n

nq x R     is the vector of joint 

positions, 1 1... n

nq x R  
    is the vector of 

joint velocities, n nD R   is the inertia matrix, 

( , ) nb q q R  is the centripetal, coriolis and friction 

forces, ( ) nh q R  describes the gravity effects and 

[ 0 ... 0] nτ u     R   represents the force vector. By 

defining the state vector as: 

 

1

2

,
x q

x
x q

   
    

  
 (2) 

 

“Eq. (1)ˮ can be rewritten in state space form as: 

 

1

2

( )
( , ) ,

( , )

1

2

x f x,τ
x = f x τ

x f x τ

   
    

   
 (3) 

 

Where: 

  

1 2 2 1 2 1, ( , ) ( ) ,f x   f p x x K x τ    (4) 

  

 -1

1 2 1 1 2 1( , ) - ( ) ( , ) ( ) ,p x x D x b x x h x   

-1

1 1( ) ( ).K x D x  
(5) 

 

Optimal swing up of an inverted pendulum is an 

optimization problem which can be stated in the form 

of the optimal control problem. The goal is to swing up 

the pendulum from the hanging down position to the 

standing up position in such a way to minimize the 

predefined objective function. 

 

 
Fig. 1 Schematic view of a classical inverted pendulum 

with n-1 links. 

 

So, the optimal control problem for a dynamic system 

can be stated as follows [21]: Find the continuous 

admissible control history 
0: , m

fτ t t R      

generating the corresponding state trajectory 

0: , n

fx t t R     which minimizes the cost function: 

 

0

( , ) ( , , )
ft

f f
t

J x t L x τ t dt   , (6) 

 

Subject to the system dynamics: 

 

( , )x f x u , (7) 

 

The given initial condition: 

 

0 0( )x t x , (8) 

 

And the prescribed final conditions: 

 

( )f fx t x . (9) 

 

Here, 
nx R is the state vector, mτ R is the control 

vector,  is an acceptable region in 
mR , 0t  and ft  are 

initial and final times, respectively, 0x and fx  are 

predefined initial and final states, respectively, and 

 and L are scalar continuously differentiable functions 

in which   is the final state penalty term and L is the 

integrand of the cost function. By introducing the co-

state vector 
nλ R , the Hamiltonian function of the 

system can be defined as follows: 

 
TH L λ f  . (10) 

 

According to PMP, for the optimal trajectories ( )*x t  

and ( ),*τ t there is a non-zero co-state vector 
*( )λ t  for 

which the following conditions along the optimal 

solution must be satisfied: 

 

* *, , 0
H H H

x λ
λ x u

  
   
  

 (11) 

 

Where the superscript (*) denotes the extremals of 

X( )t  and ( )λ t . By substituting the “Eq. (4) into Eq. 

(10)ˮ and defining 
T

T T

1 2λ λ λ    , the necessary 

condition (11) can be rewritten as follows: 
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1 2

2 1 2 1

,
( , ) ( )

x x 0
u

x p x x K x

     
      

     
 (12) 

  

 

 

T

2

1 1

T

1 2

2 2

( ) ,

L
p Ku λ

x x
λ t

L
λ p λ

x x

  
   

  
  

  
    

(13) 

  

T

2 0.
L

K λ
u


 



 

(14) 

 

For an inverted pendulum with n-1 links, “Eqs. (12) 

and (13)ˮ represent 4n equations dealing with states 

and co-states, respectively, and “Eq. (14)ˮ leads to a 

single equation dealing with control u. Also for the 

swing up problem, there are 4n fixed boundary 

conditions as follows: 

 

     

     

     

     

0 1 1

1 1

0 1 1

1 1

(0) 0 ... 0

( ) ...

(0) 0 ... 0

( ) ... .

n

f f f n f

n

f f f n f

q t x

q t x t t t

q t x

q t x t t t

 

 

 

 









   

 
 

   

 
 

 (15) 

 

Where: 

 

(0) ( ) (0) ( ) 0,f fx x t x x t     

 

And: 

 

       0 0 0, , 1 1i i i f i ft t i n            

 

By substituting the control value u obtained from “Eqs. 

(14) into Eq. (12) and (13)ˮ a set of 4n ordinary 

differential equations is obtained which in combination 

with the 4n boundary conditions (15) form a TPBVP. 

Finally, the derived TPBVP is solved to obtain 2n 

states and 2n co-states. In the next section, the 

optimality conditions for a single inverted pendulum 

and a DIP are derived in detail. 

3 DERIVING THE EQUATIONS FOR DIP 

A schematic illustration of a DIP on a cart is shown in 

“Fig. 2ˮ. The position of the cart is x and the angle of 

rotation of the link i from the vertical axis is , 1,2i i  . 

The generalized forces associated with the generalized 

coordinates x, 1  and 2  are defined as follows: 

1 ,Q u 2 1 1 2 2 1( ),Q c c     

3 2 2 1( ),Q c      
(16) 

 

Where u is the force applied to the cart, and lc  and 2c  

are the damping coefficients of the first and second 

joints, respectively. 

Using the Euler-Lagrange equations, one can write 

dynamic equations for DIP as follows: 

 

11 12 13 1 1 1

12 22 23 1 2 2 2

13 23 33 2 3 3 3

D D D x b h u

D D D b h u

D D D b h u





         
         

  
         
                  

 (17) 

 

Where: 

 

 

 

 

   

 

11 1 2 12 1 1 2 1 1

2 2

13 2 2 2 22 1 1 2 1 1

2

23 2 1 2 1 2 33 2 2 2

2 2

1 1 1 2 1 1 1 2 2 2 2

2

2 2 1 2 2 1 2 1 1 2 2 1

2

3 2 1 2 1 1 2 2 2

, cos ,

cos , ,

cos , ,

sin sin ,

sin ,

sin

D M m m D m a m l

D m a D m a m l I

D m l a D m a I

b m a m l m a

b m l a c c

b m l a c





 

   

     

   

    

   

   

   

    

     1 ,

 

 1 2 1 1 2 1 10, sin ,h h m a m l g     

3 2 2 2 1 2 3sin , , 0, 0.h m a g u u u u     

(18) 

 

In the above relationships, M is the cart mass, im  is the 

mass of link i, iL  is the length of link i, iI  is the 

moment of inertia of link i about its center of mass, and 

ia  is the center of mass of link i, i = 1, 2. Now, by 

defining the state vector as follows: 

 

 
T

1 2 3 4 5 6

T

1 2 1 2 ,

x x x x x x x

x x   

 

 
 

 (19) 

 

One can write the equation of motion in the state space 

form as below: 

 

1 1 4 2 2 5 3 3 6

4 4 5 5 6 6

, , ,

( , ), ( , ), ( , ),

x f x x f x x f x

x f x u x f x u x f x u

     

  
 

(20) 

 

Where: 

 
1

3 11 12 13 1 1 1

4 12 22 23 2 2 2

5 13 23 33 3 3 3

.

f D D D u b h

f D D D u b h

f D D D u b h


          
          

            
                    

 (21) 
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Fig. 2 A double inverted pendulum on a cart. 

 

Here, minimum-effort optimal control problem is 

considered. So, by defining the co-state vector as 

 
T

1 6λ   and dynamic equations in the state 

apace form as  
T

1 6f f f , the Hamiltonian 

function can be obtained using Eqs. (10), (20) and (21), 

as follow: 

 
6

2

1

0.5 i i

i

H u f


   (22) 

Then, the co-state equations are obtained by 

differentiating the Hamiltonian with respect to the 

states, as follows; 

 

,   1, ,6.i

i

H
i

x



  


 (23) 

 

Next, using “Eq. (11)ˮ, the optimal control law is 

obtained by differentiating the Hamiltonian function 

with respect to control u as: 

 

   

 

2

4 22 33 23 5 12 33 13 23

6 13 22 12 23

2 2

11 22 33 11 23 12 33

2

12 13 23 13 22

.

2

D D D D D D D

D D D D
u

D D D D D D D

D D D D D

 



   
 
   


   
   

 (24) 

 

Finally, “Eq. (24)ˮ is substituted into “Eqs. (20) and 

(23)ˮ to obtain twelve nonlinear ordinary differential 

equations in terms of states and co-states. These twelve 

equations along with the following boundary 

conditions: 

1 1 2 2

3 3 4 4

5 5 6 6

(0) 0,  ( ) 0, (0) 0,   ( ) ,

(0) 0,   ( ) , (0) 0,   ( ) 0,

(0) 0,   ( ) 0, (0) 0,   ( ) 0.

f f

f f

f f

x x t x x t

x x t x x t

x x t x x t





   

   

   

 (25) 

 

construct a TPBVP. 

4 SIMULATION RESULTS FOR DIP 

Here, using the equations derived in the previous 

section, the optimal swing up problem is solved for the 

DIP. However, solving the obtained boundary value 

problem is a challenging task due to the large number 

of complicated nonlinear equations. Moreover, such 

boundary value problems have a very limited domain 

of convergence and are sensitive to initial guess. Here, 

a simple inversion-based method is proposed to solve 

the problem conveniently.  

To this end, as a first step, the problem is solved using 

the inversion-based feedforward control proposed by 

Graichen [1]. Then, taking the solution as an initial 

guess, the derived TPBVP in the previous section is 

solved to obtain the optimal swing up. In order to 

demonstrate the efficiency of the proposed method, the 

obtained results of optimal swing up are compared with 

those obtained from the inversion-based method.  

Considering the DIP shown in “Fig. 2ˮ with all 

required parameters given in “Table 1ˮ, the swing up 

problem is solved according to boundary conditions 

(25) within the time interval [0 ], 2.2f ft t t s  . All 

the mechanical parameters and boundary conditions are 

similar to those given in [1]. 

In order to obtain the inversion-based solution of DIP 

as reported in [1], by considering the cart acceleration 

as the input to the system, u x , the dynamic equation 

(17) can be rewritten as follow: 

 

1

22 23 2 2 121

23 33 3 3 132

x u

D D C G D
u

D D C G D









          
             

            

(26) 

 

Where the first equation represents the input–output 

dynamics, and the latter two equations represent the 

internal dynamics. Then the following output trajectory 

is considered. 

  

   

  

1 3 2 4

4

1

cos

cos 1 ,

f

i f

i

x p p p p t t

p i t t






     


 (27) 
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Where 1 2 3, ,p p p
 

and 4p  are free parameters. This 

function satisfies the four boundary conditions dealing 

with the cart trajectory in “Eq. (25)ˮ. By substituting 

“Eq. (27) into Eq. (26)ˮ, the internal dynamics with the 

8 remaining boundary conditions dealing with the link 

trajectories constructs a TPBVP which can be solved to 

obtain 8 unknown variables including the internal 

dynamic trajectories 
1( )t  and 

2 ( )t  and the free 

parameters 1 2 3, ,p p p  and 4p . Accordingly, the free 

parameters are obtained as follows: 

 

1 2 3 40.1014, 0.1865, 0.0924, 0.1355p p p p       

 

For optimal swing up, the TPBVP consists of “Eqs. 

(20), (23) and (24)ˮ, which are solved to obtain the cart 

and link trajectory and also the optimal control applied 

to the cart. 

  
Table 1 Mechanical parameters of the DIP studied in this 

research. 

Parameters Values Unit 

Mass, cart M = 0.8 Kg 

Mass, link  = 2m 0.853, =1m

0.510 
Kg 

Center of mass, 0.223 = 2, a0.215 = 1a m 

Moment of 

inertia, 
0.019 = 2I 0.013, = 1I 2kg.m 

Friction constant, 0.005 = 2= c 1c N.m.sec/rad 

 

 

 
Fig. 3 Linear position of cart. 

 

Figures 3 and 4 show the linear position and velocity of 

cart for both optimal and inversion-based swing ups, 

respectively. As shown in “Fig. 3ˮ, the cart 

displacement obtained from the inversion method is 

0.688 m, while the corresponding value to optimal 

swing up is 0.545 m, indicating a reduction of about 

20% in the cart displacement for optimal swing up, as 

compared to the inversion-based method. 

 

 
Fig. 4 Linear velocity of cart. 

 

 
Fig. 5 Angular position of the first link. 

 
Angular position and velocity of the first and second 

links are shown in “Figs. 5 to 8ˮ. As it can be seen 

from “Figs. 5 and 7ˮ, angular positions of the links 

reached from zero to   within 2.2 s. Figure 9 shows 

the applied force to the cart. As it can be seen, 

maximum torque for the inversion-based method 

reported in [1] is 50 N.m and the corresponding value 

to the optimal method is 30 N.m. Performance indices 

are also calculated as follows: 
 

2.2
2

0

2.2
2

0

0.5 188.54,

0.5 70.15.

inversion

optimal

J u dt

J u dt

 

 




 (28) 
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Fig. 6 Angular velocity of the first link. 

 

 
Fig. 7 Angular position of the second link. 

 

 
Fig. 8 Angular velocity of the second link. 

 
Fig. 9 Applied force to the cart. 

 

So, the performance index for optimal swing up was 

found to decrease by approximately 60% in comparison 

with the inversion-based method. 

5 CONCLUSION 

In this paper, swing up of DIP with minimum effort 

was considered. To this end, optimal swing up was 

formulated in the form of an optimal control problem 

and then solved using a PMP-based indirect approach 

leading to a two-point boundary value problem 

(TPBVP). The TPBVP was then numerically solved 

using the bvp4c function in MATLAB. In order to 

achieve a faster convergence rate, the inversion-based 

method was also used to obtain the initial guess 

required for solving the TPBVP. The obtained results 

were compared with those of the inversion-based 

method. From the simulation results for DIP, it was 

seen that, the performance index for the proposed 

optimal swing up was approximately 60% lower than 

that of the inversion-based method reported by 

Graichen [1]. 
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