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Abstract: The effect of boundary conditions on the solution of the inverse problem 
of identifying the geometry and location of a cavity inside an elastic solid body 
using displacement measurements obtained from a tension test is investigated. The 
boundary elements method (BEM) coupled with the genetic algorithm (GA) and 
the conjugate gradient method (CGM) are implemented in this identification 
problem. A fitness function which is defined as the squared differences 
between the computed and measured displacements is minimized. The best initial 
guess of the unknown shape and location of the cavity is found by the GA, then 
this initial guess is used by the CGM to achieve convergence. The imposed 
boundary conditions, i.e. geometrical constrain and specified tractions are kept 
constant during all iterations. Certainly changes in the boundary conditions can be 
effective in the correct identification of the shape and location of the cavity. In this 
study the effect of different boundary conditions on the convergence is 
investigated and the best and the most suitable boundary conditions which results 
in the faster and more accurate convergence are found.  
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1 INTRODUCTION 

Identification of the shape and location of inclusions, 
cavities and cracks inside solid bodies are among the 
most interesting problems in the field of engineering 
analysis. 

Over the years different methods of identifying the 
internal structure of solid bodies mostly based on 
numerical techniques and experimental measurements 
has been proposed. Since iterative numerical techniques 
must be employed in these non-linear identification 
problems, to avoid remeshing of the whole domain after 
each iteration, the BEM which only needs boundary 
discretization is most suitable. It also allows us to use 
surface measurements which are important in the field 
of nondestructive evaluation [1]. 

The inverse elasticity problem coupled with the BEM 
has been used to detect defects in plane stressed body 
[2], nondestructive identification of cavities [3], the 
identification of geometric shape of inclusions inside 
infinite bodies [4], estimation of physical properties and 
size of a circular inclusion [5] and the physical 
properties and geometric shape of an inclusion using the 
GA and CGM coupled with the BEM [6]. 

 Different local optimization algorithms are 
implemented in the inverse elasticity problem and the 
advantages and disadvantages of each algorithm has 
been addressed in [7]. 

The identification of the location, shape and elastic 
properties of an inclusion using boundary displacements 
measured from a tension test is investigated in [8]. The 
GA is used to find the best estimated initial guess of 
unknown parameters, and then the CGM is implemented 
to achieve fast and accurate convergence. 

In all the investigations mentioned, the main purpose 
has been to introduce the inverse problem and estimate 
some unknown parameters related to the geometry or 
physical properties of inclusions, but none has 
investigated the effectiveness of different boundary 
conditions i.e. the geometric constraints and loading 
conditions employed in an experimental procedure and 
obtain surface displacement measurements.  

In this study we will investigate many different 
geometric constraints, loading conditions and 
combination of these involved to find the optimum 
boundary conditions. The inverse elasticity similar to [8] 
is formulated. Four different geometric constraints 
combined with three different loading conditions to 
identify an elliptic shape cavity located at three different 
locations inside a solid body is investigated.  

2 FORWARD PROBLEM STATEMENT 

The solution of the forward elastostatics problem 
provides the displacement field given the governing 
equation, the boundary conditions, and the domain 
geometry. The displacement field for an isotropic, 
homogeneous, and linearly elastic body with neglected 
body force is governed by the Navier equation: 
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where 
iu  is the component of the displacement in the 

thi  coordinate direction, ν  is Poisson’s ratio. In a 
forward problem, the solution of this equation is 
typically sought subject to two possible boundary 
conditions: 

Displacement conditions: 

uii onuu Γ=  (2) 

Traction conditions: 

tijiji ontnt Γ==σ  (3) 

where the overbar denotes a specified quantity, 
it  is the 

component of the traction in the thi  coordinate 
direction, and n̂  is the outward drawn normal. The 
BEM solution of Eq. (1) subject to Eqs. (2) and (3) leads 
to the following boundary integral equation [9]: 

∫∫ ΓΓ
Γ=Γ+ dtudutuc kjkkjk

i
k

i
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**  (4) 

where the superscript i  is used to denote the boundary 
point i , *

jku  and *
jkt  are the fundamental displacement 

and tractions (Kelvin’s solution), and the matrix i
jkc  is 

discussed and given in [9]. The domain is denoted by Ω  
and its boundary by Γ . Introducing boundary elements, 
Eq. (4) is discretized in the standard BEM form where 
the body forces are neglected as: 

[ ]{ } [ ]{ }TGUH =  (5) 

If there is a cavity in the domain Ω , tractions free 
condition is specified on its boundary. Introducing the 
boundary conditions into the nodal displacement and 
traction vectors { }U  and { }T  and rearranging by taking 
known quantities to the right hand side and unknowns to 
the left, leads to a set of simultaneous linear equations 
of the form [ ]{ } { }BXA = . These equations are solved by 
standard methods. 
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3 INVERSE PROBLEM STATEMENT 

In the inverse problem the geometry and location of the 
cavity are unknown, but some of the unknown boundary 
data like displacements and/or tractions can be 
measured and employed as additional information 
necessary to estimate the unknown input parameters. A 
body that is known to contain a cavity with unknown 
location and shape is considered. Parameters which 
identify the location and the shape of the cavity are 
determined using the measurement of displacements on 
the portion of the boundary where tractions are 
prescribed. The following column matrices are 
introduced: 

[ ]eu : A column vector containing M measured boundary 
displacements. 

[ ]cu : A column vector containing the same M boundary 
displacements, computed using the BEM. 

[ ]x : A column vector containing N unknown parameters 
which it is defined as: 

[ ] [ ]Tncc rryxx ,...,,, 1=  (6) 

cx  and 
cy  are the x-y coordinates of the center of the 

cavity and the 
ir  are the radial distance of n  nodal 

locations on the cavity’s boundary to center of cavity as 
shown in Fig. 1. The fitness function which is the 
squared differences between measured and computed 
displacements is: 
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where «∧ » denotes the estimated values of the 
unknown parameters. 

In order to minimize the fitness function, the 
identification procedure is conducted in two stages. In 
the first stage the GA is employed to estimate the best 
initial guess of the unknown parameters, and then this 
initial guess is used in the second stage by the CGM to 
achieve fast and accurate convergence. 

4 GENETIC ALGORITHM (GA) 

The estimated initial guess of the shape of the cavity is 
assumed to be a circular, since it is the simplest shape 
with smooth boundary. Three parameters, i.e. x-y 
coordinates of the center of the circle and its radius is 
only needed to estimate the shape of the cavity. 

Therefore, unknown parameters which are estimated 
using GA are defined as: 

[ ] [ ]TgcgcgG ryxx ,,=  (8) 

In this investigation, the appropriate operators and the 
values of the GA parameters are obtained by examining 
different choices of operators and parameters and many 
trial and error runs.   

 

Fig. 1 Geometric parameters and problem modeling 

So the Roulette Wheel is chosen as the selection 
operator. The Rank is chosen as the fitness scaling 
operator and also one Elite Count is used [10]. But since 
the geometric parameters must be within a specified 
range, the reproduction operators must be simulated 
specifically in order to get a correct solution to this 
problem as follows:  

Initial Population: The initial population should be 
chosen such that all the unknown parameters 
represented by Eq. (8) are represented. The first two 
genes do not have any limit in their values. But the 
radius should be such that the boundary of the cavity 
remains within the domain of the problem. Therefore if 
the cavity is assumed to be inside a rectangular domain 
with dimensions of a  and b  as shown in Fig.1, then the 
radius should be bounded as: 
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If the radius is within the above limits, it will be chosen 
as the candidate answer; otherwise another random 
value for radius will be tested. The function Fr takes the 
x-y coordinates of the center point and gives the proper 
radius, as follows: 
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The function IP for any x-y values inside the rectangular 
domain, gives proper initial population as follows: 
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Crossover Operation: The crossover operator is chosen 
according to the following criteria: 

 

[ ] [ ]( )
[ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ]( )
[ ]( )( )

[ ]( )
}

;
Pr

;
{

,,

,,
,

xx

xx

GGGxx

gcgcgG

gcgcgG
GG

Childreturn
Childnotwhile

xxRxChild

ryxx

ryxx
xxCrossover

′

′

′ −′×+=

′′′=′

=
′

 
(12) 

where R is a random vector with dimension equal to the 
number of parameters or genes. It does not have any 
limit for the first two genes, but after the second gene, 
i.e. the radius of the circle, this random number must 
satisfy the geometric limitations. 

An important factor in crossover operator is the method 
of defining crossover fraction ( cp ). It gets a value 
between 0 and 1. With regard to this problem and the 

nature of the unknown parameters, cp  is set equal to 
0.8. 

Mutation Operation: The mutation operator is very 
effective in finding the absolute optimum point without 
getting stock in local optima. The uniform mutation 
operator is considered for the first two genes, but for the 
third gene, it must satisfy as follows: 
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mp  is called the mutation rate and is set equal to 0.01. 

5 CONJUGATE GRADIENT METHOD (CGM) 

CGM is based on minimizing the fitness function i.e. 
Eq. (7). To minimize this function we need the direction 
of descent )(xp k  and the search step size kβ  in the 
following equation [11]: 
 

)ˆ(ˆˆ 1 xpxx kkkk β+=+  (14) 

where CGMiTerk ,...,1=  and CGMiTer  is the maximum 
number of iterations in the CGM. The direction of 
descent is given by: 
 

)ˆ()ˆ()ˆ( 1 xpxgxp kkkk −+−= γ  (15) 

where )ˆ(xg k  are gradient directions at iteration k . 
According to Polack-Ribiere [11] the conjugate 
coefficients kγ  are: 
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where 00 =γ . In cases where algorithm does not 
converge after n  step, γ  gets the value of zero. The 
gradient function )ˆ(xg k  is computed using the finite 
difference method as follows: 
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To compute the search step size kβ , using Eq. (7), the 
function )ˆ(xf  in step 1+k  could be written as: 
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using Taylor series, it is written in the form: 
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where )ˆ( km
c xu  is computed by solving the direct 

problem using BEM. The search step size kβ  is 
determined by minimizing the function given by Eq. 
(19) with respect to kβ . The following expression 
results: 
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where m
cuΔ  needed to compute kβ  is computed by 

solving direct problem with kk px =Δ ˆ . 

6 ANALYSIS MODEL 

A computer program is developed in order to simulate 
numerically the estimation of the shape and location of a 
cavity hidden inside a solid body, using measured 
boundary displacements. The effects of different choices 
of boundary conditions are investigated by first 
simulating measured displacements data. The direct 
problem with known location and shape of the cavity 
along with specified boundary conditions is solved for 
the unknown boundary displacements.  

A )11( 2m×  square shaped steel grid with GPaEs 210=  
and 3.0=ν  is used throughout the investigation. The 
cavity is assumed to have an elliptic shape. The outer 
boundary is divided into 16 linear elements and cavity’s 
boundary is divided into 12 elements as shown in Fig. 1. 

Stopping criteria for the GA is determined by 
generations that specify the maximum number of 
iterations in the GA. With population size equals 200, 

generation is considered 50. Stopping criteria for the 
CGM is determined after 100 iterations. The reason for 
selecting these stopping criteria is based on our 
knowledge of the characteristics of the real parameters 
and by playing with their values and by trial and error. 
These numbers are appropriate since they cause GA and 
CGM to converge and give accurate results with less 
computational time and are kept constant throughout the 
investigation. More details of implementing GA and 
CGM could be found in [12]. 

An error function is defined as: 
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where actx  and estx  are the actual and estimated values 
of the unknown parameters respectively and N  is the 
number of unknown parameters. The accuracy of the 
results is the average value obtained from 10 different 
runs. 

Geometric constraints (GC): Four different geometric 
constraints are considered: 

a. Fixed support at the bottom boundary as shown in 
Fig. 2(a). 

b. Rail support at the bottom boundary except at one 
point where pin support is specified as shown in 
Fig. 2(b). 

c. One pin support at the bottom and one rail support at 
the top as shown in Fig. 2(c). 

d. Four rail support at the four side of the body as shown 
in Fig. 2(d). 

Loading conditions (LC): Three different loading 
conditions are considered. It should be mentioned that 
all the traction vectors are applied normal to the 
corresponding boundaries as follows: 

a. Tractions are only applied at the top and bottom side, 
Fig. 3(a). 

b. Tractions are only applied at the left and right side, 
Fig. 3(b). 

c. Tractions are applied at all four sides, Fig. 3(c). 

It should be noted that at a node, traction vectors are 
applied in the direction in which there is no geometric 
constraint in that direction. 
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Fig. 2 Geometric constraints 

 

 
Fig. 3 Loading conditions 

 

Cavity location: Along with different combination of 
the geometric constrains and loading conditions, three 
different locations of the elliptic shape cavity 
represented by equation 1369 22 =+ yx  is considered as: 

1- The cavity is located at the center of the body at point 
(0.5,0.5) i.e. such as horizontal ellipse represented by H. 

2- The cavity is located at the bottom right corner of the 
body at point (0.8,0.3) whose semi-axes are rotated with 
respect to horizontal axis by 90° i.e. such as vertical 
ellipse represented by V. 

3- The cavity is located at the top left corner of the body 
at point (0.3,0.7) whose semi-axes are rotated with 
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respect to horizontal axis by -45° i.e. such as an oblique 
ellipse represented by O. 

7 RESULTS 

According to the four geometric constraints (GC) and 
three different loading conditions (LC) and three 
different locations of the cavity, 36 different 

combinations of these cases are defined and 
investigated. The percent cases which have resulted in 
complete convergence along with %err defined by Eq. 
(20) is presented in Table 1. 

Figure 4 through Fig. 7 are sample figures based on the 
results represented in Table 1 with asterisk marked. 

 

 
 
Table 1 Percent error obtained from the 36 different combinations of geometric constrains, loading conditions and cavity location 

cases 

LC Type ► (a) (b) (c) 

GC Type 

▼ H V O H V O H V O 

(a) 
9.1316 

1*   
8.8010 7.5980 1.4397 11.1933 

2*  
5.0804 

3*  
16.5739 7.5341 3.6923 

(b) 
4*  

8.8138 5.5905 7.4437 2.2226 

5*  
10.3680 7.4901 1.8723 11.2195 

6*  
5.0879 

(c) 
5.2590 4.2677 

7*  
9.1730 

8*  
2.2353 6.2689 6.5697 6.1830 

9*  
3.0706 6.8379 

(d) 
6.7863 

10*  
4.4263 8.7523 1.9327 6.2417 

11*  
7.6063 

12*  
0.8822 3.4654 2.2492 

 

 

 
Fig. 4 Samples of converged results obtained from different combinations of geometric condition (a) and loading conditions 

(a,b,c) represented in *1,*2,*3 
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Fig .5 Samples of converged results obtained from different combinations of geometric condition (b) and loading conditions 

(a,b,c) represented in *4,*5,*6 

 

 
Fig. 6 Samples of converged results obtained from different combinations of geometric condition (c) and loading conditions 

(a,b,c) represented in *7,*8,*9 

 

 
Fig. 7 Samples of converged results obtained from different combinations of geometric condition (d) and loading conditions 

(a,b,c) represented in *10,*11,*12
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8 CONCLUSIONS 

Changing the boundary conditions and selection of the 
optimum geometric constraint and loading conditions 
to identifying the shape and location of a cavity 
located inside a solid body prove to be very effective 
in convergence to the correct results. The following 
observations and conclusions are also drawn form this 
investigation: 

• By changing the boundary conditions, the best 
initial guess of the unknown parameters obtained 
from the GA would be different which leads to 
different convergence in the solution of the inverse 
problem. 

• Displacements boundary conditions in comparison 
with traction boundary conditions, leads to less 
percent cases of convergence. The first geometric 
constraint shown by Fig. 2(a) leads to the worst 
convergence whereas for the boundary conditions 
shown by Fig. 2(b), (c), (d) results in better 
convergence. 

• The position of the cavity has strong effect on the 
convergence. As the location of the cavity is at the 
center of the body, better convergence is obtained 
in comparison to the cases in which the cavity is 
located near the boundary. 

• Among the four kinds of geometric constraints 
used in this investigation i.e. Fig. 2, the constraints 
shown in Fig. 2(d) leads to the best converged 
results, since all four sides of the body constrained 
statically. Also, it is preferable to apply load on all 
sides. 
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