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Abstract: In this paper an efficient dual time implicit approach is used to solve 
viscous laminar flow around a couple of bodies with general motion. The grid 
includes a background grid and two sets of grids around the moving bodies. 
Rotational and translational motions of the two bodies are managed separately in 
this grid arrangement. In this work the overset concept for hybrid grid is used and 
flow variables are interpolated implementing a simple method. The unsteady two 
dimensional Navier-Stokes equations are discretized using an implicit dual time 
stepping method. To accelerate convergence, the local pseudo-time stepping and 
implicit residual averaging are applied. To evaluate the present method, moving 
cases including rotational and translational motions are solved and the results are 
compared with experimental and numerical data. 

Keywords: Compressible Flow, Laminar Flow, Moving Grid, Relative Motion  

Reference: Noori, S., Mahdavi, F. and Karimian, S. M. H., ‘Investigation of 
Oxygen Enriched Air Intake on Diesel Engine Exhaust Emissions’, Int J of 
Advanced Design and Manufacturing Technology, Vol. 5/No. 3, 2012, pp. 29-37. 

Biographical notes: Noori, S., received her PhD in Aerospace Engineering from 
Amirkabir University of Technology 2006. She is currently Assistant Professor at 
the Aerospace Research Institute, Tehran, Iran. Her current research interest 
includes fluid mechanics and aerodynamic heating. F. Mahdavi was a student of 
aerospace engineering at the Amir kabir University of Technology. S. M. H. 
Karimian is Professor of Aerospace engineering at the Amirkabir University of 
Technology, Iran. He received his PhD in Mechanical engineering from Waterloo 
University of Canada. His current research focuses on fluid mechanics, 
thermodynamics and heat transfer. 



30  Int  J   Advanced Design and Manufacturing Technology, Vol. 5/ No. 3/ June – 2012 
 

© 2012 IAU, Majlesi Branch 
 

1 INTRODUCTION 

Simulations of unsteady compressible flows around 
moving bodies are extensively reported in aerospace 
literature. Analysis of oscillating airfoils, store 
separation, helicopter blades and other problems such 
as aeroelastic cases are some examples of moving body 
problems. Since the solution domain changes 
continuously in moving body problems, special care 
should be paid to retain the quality of grid. The 
simplest method for a moving boundary problem is to 
regenerate grid around the body after each step of its 
motion. Although this approach is desirable for 
structured grids [1], still it is a time consuming process. 
The other method is to restructure grids in regions close 
to the moving boundaries.  

In this case, the moving boundary displacement at each 
time step must be less than the size of the smallest 
element in the region [2], [3]. The other method is 
based on the concept of dynamic mesh [4-6]. In this 
approach the computational grid deforms locally using 
a spring-analogy type algorithm. However, since this 
algorithm is iterative in nature with a high number of 
iterations, this approach is time consuming. For large 
motions overset grid can be used [7-9]. In this method 
each body has its own grid. On each grid, Chimera 
holes are defined in regions where the grid overlaps 
solid bodies belonging to the other grids.  

Advantage of Chimera grid is its capability to simulate 
filed flow including several moving bodies around 
which high quality grids are generated. Disadvantage of 
this method, is that it requires a large number of 
interpolations. There are other methods which use 
hybrid grids in moving grid problems [10-13]. In this 
approach, the solution domain is divided into three 
zones to facilitate simulation of general body motion. 
The advantage of this method is that it is almost 
needless of node deletion/insertion process. Even in 
large translational displacements only a few elements 
are merged with each other. 

This method was used by [12] to simulate the 
rotational/oscillational motion of a two-dimensional 
body. For the solution of unsteady Navier-Stokes 
equations they used upstream splitting method of 
AUSM [14]. Later Ali Sadeghi et al modified the 
method of [12] to provide a smoother grid movement in 
the solution domain. They solved unsteady viscous 
flow around a single body in motion. Extension of the 
work of [13] to inviscid flow simulation of two bodies 
in motion with respect to each other was carried out by 
Salehi et al [15]. In the present work, the method of 
[15] is generalized for the solution of viscous flow 

around two bodies in relative motion with respect to 
each other. For this purpose boundary conditions of 
[13], [15] are modified as well. 
Governing equation of viscous laminar flow is solved 
using implicit dual time stepping scheme of [6], [16]. 
An explicit Runge-Kutta multistage scheme is applied 
for iterating the solution in pseudo time in each time 
step. Convergence acceleration is increased with local 
pseudo-time stepping and implicit residual averaging 
[17]. Finally computational results are compared with 
experimental data. Also to demonstrate correct 
performance of the present method different benchmark 
problems, defined in this paper, are solved. 

2 GRID GENERATION APPROACH  

In the present study the grid generation method of Ref. 
15 is used for the solution of Navier-Stokes equations 
around couple of bodies moving with respect to each 
other. As shown in Fig. 1a, cartesian grid is generated 
as the background grid in solution domain. In addition 
to the background grid, two other zones of grids are 
generated around body A. First zone contains a grid 
surrounding body A within a circular boundary. This 
grid is fixed to the body and moves with it. The second 
zone has a squared boundary and contains the grid 
surrounding the first zone. In translational motion of 
body A first and second zones will translate with the 
body but in rotational motion, it is only the first zone 
which will rotate with body A. In the rest of paper, the 
background grid and the aforementioned two 
surrounding grids are called grid A. Grid A provides 
general motion of body A. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1   Grid configuration surrounding bodies A and B 
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Body B will have rotational motion only. Therefore, 
any type of grid (structured, unstructured or hybrid 
grid) can be generated around it. As shown in Fig.1a, in 
this study a triangular unstructured gird with a circular 
boundary is generated around body B; this grid is 
called grid B. Grid B is overset on the background grid. 
The solution strategy in the present study is to solve the 
whole flow field on two sets of grids A and B, 
separately. When the flow field is solved on grid A, the 
region within the intergrid boundary of grid A is 
excluded from the solution domain. Variables on the 
intergrid boundary of grid A are interpolated from the 
previous solution available on grid B. On the other 
hand, when the flow field is solved on grid B, the 
region within the intergrid boundary of grid B is 
excluded from the solution domain. Variables on the 
intergrid boundary of grid B are interpolated from the 
previous solution available on grid A. For more details 
about grid generation approach, refer to [15]. 

3 GOVERNING EQUATION 

The two dimensional unsteady compressible viscous 
flow equations in the cartesian coordinate system can 
be written as 

∫ Ω∂ =−−−+∫∫Ω
∂

∂
0))()(( dxvGiGdyvFiFdydxw

t
 (1) 

 
where ),,,( Evuw ρρρ=  is the vector of conserved 
quantities, iF  and iG  represent the convective fluxes, 
and vF  and vG describe the diffusion fluxes as given 
below 
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Variables rr vuvuP ,,,,,ρ  and E  denote density, 
pressure, velocity components, relative velocities 
components and total energy, respectively. The relative 
velocities are defined as  

mrmr vvvuuu −=−= ,                                         (3) 

where mu  and mv  are the cartesian velocity components 
of control-volume boundary. Components of stress 
tensor are xxτ , xyτ  and , and xq , yq are components of 
heat flux vector. The viscosity coefficient μ , is 
calculated according to Sutherland’s law. Equation (1) 
is augmented by the equation of state, which for a 
perfect gas is given by, 
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Having discretized the solution domain to a number of 
control volumes with area of iA , equation (1) then is 
written as  

0)()()( =−+ wDwRAw
dt
d

iiii  (5) 

where )(wRi  is the sum of the convective and 
dissipative fluxes in x  and y  directions, and )(wDi  is 
the numerical dissipative term [18] which is added to 
Eq. (1). This )(wDi  is a combination of fourth and 
second order differences with coefficients that depend 
on the local pressure gradient. More details about this 
term can be found in [18]. 

4 IMPLICIT TIME INTEGRATION 

A fully implicit time discretization (in real time) of Eq. 
(5) can be written as: [19] 
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Using second order accurate Backward Difference 
Formula [20] to discretize the transient term of the 
above equation will result in  
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A Dual Time Stepping method is used to solve this 
coupled nonlinear equation [20]. This is carried out 
through solving the following equation in each time step. 

0)(* =+
∂
∂ nwRw
τ

 (8) 

where τ  is pseudo-time, and )(* nwR  is the unsteady 
residual defined as  
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Equation (8) defines a modified steady state problem in 
pseudo-time and is solved using explicit Runge-Kutta 
multistage method [20 ]. 

5 OVERSET IMPLEMENTATION  

As mentioned earlier, governing equations are solved 
on two sets of grids iteratively. At each time step, the 
system of equations are solved on grid A which has 
outer flow boundary and its own intergrid boundary, as 
shown in Fig.1. For this purpose boundary conditions 
on intergrid boundary A are interpolated from the most 
updated values flow variables on grid B. From these 
results on grid A, flow variables along the intergrid 
boundary B are interpolated to provide boundary 
conditions for the solution of flow field on grid B. 
After the solution of flow field on grid B, the same 
process can be repeated until the error between 
intergrid boundary values of two successive iterations 
for both grids A and B becomes less than a desired 
value. 

6 BOUNDARY CONDITIONS 

At the far field, non-reflecting boundary conditions are 
implemented based on the characteristic analysis. At 
the solid wall boundary, zero mass flux is employed, 
and fluid velocity is set equal to the speed of airfoil 
surface at that point. If the airfoil is stationary, the fluid 
velocity would be zero. 

 
7 SOME DETAILS ABOUT VISCOUS TERM 
CALCULATIONS 
For the calculation of viscous fluxes, first derivatives of 
velocity components should be evaluated on the control 
volume surfaces. The method of [13] is used for this 
purpose. As shown in Fig. 2a, using Green theorem 
first derivative of velocity component on edge AB is 
approximated by the line integral velocity component 
along the edges of AP-PB-BK-KA, divided by the area 
of APBK. On the inter-grid boundaries, shown in Fig. 
2b, the area on which integral is carried out would be 
APB. For instance 

x
u
∂

∂  on the AB edge of Fig. 2b will 

be calculated as follows, 
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Other derivatives of velocity components will be 
calculated in the similar manner.  

 

 

 

 

 

(a)                                  (b) 
Fig. 2  Area to be integrated for the calculation of velocity 
derivatives on AB edge a) Edge within the boundary, b) Edge 

along the intergrid boundaries 
 
 

                                     (a) 
 

 
                                     (b) 
 

Fig. 3 a) Clean grid close to body A, and b) Clean grid far 
from body A 

8 RESULTS AND DISCUSSION 

In this section the method is validated through the 
simulation of laminar flow over moving bodies. Results 
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are compared with the experimental data and other 
numerical results. 
In order to verify the solution algorithm on two sets of 
grids as described before, steady state flow of 
Mach=0.8 and Re=73 over a NACA0012 airfoil at 10 
degrees angle of attack is considered on two different 
grid configurations. The airfoil is set in grid A, and grid 
B is clean. Grid configurations shown in Fig. 3 are, a) 
clean grid close to body A, and b) clean grid far from 
body A. In Fig. 3a grid B is close to grid A, forming an 
overlapping region. In Fig. 3b, however grid B is far 
from grid A and no overlapping region is formed.  
 

 
 

Fig. 4 Comparison of surface pressure coefficient 
distributions: present results and experimental data; NACA 

0012 airfoil at M= 0.8, Re=73, α=10º 

 

 
Fig. 5 Comparison of surface force coefficient 

distribution: present results and experimental data; NACA 
0012 airfoil at M= 0.8, Re=73, α=10º 

 
Figs. 4 and 5 illustrate the comparison of pressure 
coefficient distribution and surface force coefficient 
distribution on the surface of airfoil with the 
experimental data [21]. Excellent agreement of results 
obtained on both grids with each other shows that the 
solution is independent of location of grids A and B. 

They are also in excellent agreement with the 
experimental data except at the leading edge where a 
little difference is seen.  
Again to demonstrate the independence of solution 
strategy from the grid arrangement and also the 
accuracy of interpolation stencil used in the 
overlapping layer, flow field of the 1st test case is 
solved on two different grids shown in Fig.6. These 
include, a) body is set in grid A and grid B is clean, and 
b) body is set in grid B and grid A is clean. 
 

 
(a) 

(b) 
Fig. 6  a) Body A and clean grid B, and b) Body B and 

clean grid A.  

 

 
Fig. 7    Comparison of surface pressure coefficient 

distribution; present results and experimental data; airfoil 
NACA 0012 at M= 0.8, Re=73, α=10º 
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Fig. 8   Comparison of surface force coefficient 
distribution; present results and experimental data; airfoil 

NACA 0012 at M= 0.8, Re=73, α=10º. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 9   stream lines in flow separation zone for grid 
configurations of Fig. 5. NACA 0012 airfoil at M= 0.8, 

Re=500, α=10º, a) Body A and clean grid B, and b) Body B 
and clean grid A 

Fig. 7 depicts comparison of surface pressure 
coefficient distributed over two grids and also 
compared with experimental data [21]. Same 
comparison is made for surface force coefficient 
distribution in Fig. 8. Again results obtained on two 
grids are in excellent agreement with each other. In the 
third case, steady state flow at Mach 0.8, Re=500 and 
α=10º are solved on the grids of Fig. 6. This flow 
includes a separation zone. This separation has been 
captured by the present solution, as shown in Fig. 9.  

 
 

 
 

Fig. 10   Comparison of surface pressure coefficient 
distribution; present results and experimental data; airfoil 

NACA 0012 at M= 0.8, Re=500, α=10º 
 

 
 

Fig. 11   Comparison of surface force coefficient 
distribution; present results and experimental data; airfoil 

NACA 0012 at M= 0.8, Re=500, α=10º 
 

As seen, results are exactly similar to each other 
revealing grid configuration independency of the 
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algorithm. Comparison of pressure coefficient 
distribution obtained over these two grids and also 
compared with experimental data [21] is shown in Fig. 
10. Same comparison is shown for surface force 
coefficient distribution in Fig. 11.  
 

 
 

Fig. 12 Comparison of normal-force coefficient loop; 
present results and experimental data, AGARD CT1 test case; 

airfoil NACA 0012 
 

 
 

Fig. 13 Comparison of normal-force coefficient loop; 
present results and experimental data, AGARD CT1 test 

case; airfoil NACA 0012 

 

Results of the present study agree very well with each 
other and also with experimental data. A supersonic 
case of Mach=2 and Re=1000 over a NACA 0012 
airfoil at α=10º was also solved on grids of Fig. 6. 
Results are not reported here. Again, they were in 
excellent agreement with each other. All of the steady 

state solutions are obtained after 5000 local time steps 
in real time.  
As the forth test case, we would like to solve the 
unsteady flow over the oscillatory pitching airfoil of 
NACA 0012, defined in AGARD CT1 test case [22]. 
This test case has been widely studied in the literature. 
Grids of Fig 2 are used for the simulation of CT1 
unsteady flow. Consider the harmonic pitching motion 
of airfoil about the quarter chord of it with the 
following time dependent varying angle of attack, 

tm ωααα sin0+=  
where αm is the mean angle of attack, α0 is the 
amplitude of its oscillation, and ω is the angular 
frequency of the motion, related to reduced frequency, 
k, by 

∞

=
U

ck
2
ω

 
 
In this relation, ∞U  is the free stream velocity and c  is 
the chord length of the airfoil. Flow conditions are 

6
0 108.4Re,0808.0,41.2,89.2,6.0 ×=====∞ kM m αα  

Unsteady solution is obtained using local pseudo time 
steps, and real time step of 5.2E-3 s. The above 
problem is solved on two different grids shown in 
Fig.3. As shown in Fig. 3a, the oscillating airfoil would 
be within grid A.  Grid B is close to grid A, forming an 
overlapping region. In Fig. 3b, however the oscillating 
airfoil is set within grid A. Grid B is far from grid A 
and no overlapping region exists. Numerical 
calculation of unsteady flow starts from the steady state 
solution of Mach 0.6 with Re=4,800,000 over NACA 
0012 airfoil at 2.41 degrees angle of attack. The 
variations of normal force coefficient obtained from the 
present method on both grids are compared with 
experimental data in Fig. 12. 
Results obtained on both grids are in excellent 
agreement with each other. Moreover, results of the 
present study agree very well with the results of the 
experiment [22]. The difference between numerical 
results and experimental data observed here has been 
reported by other researchers in the literature, as well 
[11], [23]. This difference can be eliminated if αm is 
changed slightly. 
Once again to demonstrate grid configuration 
independency of the algorithm in a moving body 
problem, the CT1 test case is solved on grids of Fig. 6. 
The variations of normal force coefficient obtained 
from the present method on both grids are compared 
with the experimental data in Fig. 13. Results obtained 
on both grids are in excellent agreement with each 
other, and with the experimental data. For translational-
rotational motion, the fifth test case is defined. Two 
cases with the same physics of flow field are 
considered, in Fig. 14. Two NACA0012 airfoils are 
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Stationary airfoil Moving airfoil 
Oscillation+ translation 

 
 
 
 

140 C 

Stationary flow (M=0) 

V=0.5 speed of sound 

V=0.5 speed of sound 

Moving airfoil 
(Oscillation) 

Moving 
airfoil

140 
C

Test 2 

Test 1 

 

140 C 
Moving airfoil 
(Translation) 

located at a distance equal to 140 chords from each 
other. In the first case, the left airfoil is stationary and 
the oscillating airfoil at the right moves toward the left 
with Mach 0.5 in a stationary air.  
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14   Illustration of test definition for rotational-

translational motion of two bodies with respect to each other 
 
 

 
Fig. 15 Lift coefficient history of NACA0012 airfoil for 

rotational-translational motion, tests 1 and 2 of 7th case 

 

 
 

Fig. 16 Drag coefficient history of NACA0012 airfoil for 
rotational-translational motion, tests 1 and 2 of 7th case. 

9 CONCLUSION 

In the second case, the airfoil at the left and the air 
move together with Mach 0.5 and Re=10,000 toward 
the stationary oscillating airfoil at the right. Parameters 
governing the oscillating airfoil are 

0814.0,51.2,0 0 === km αα . Unsteady solution is 
obtained using local pseudo time steps and real time 
step of 2.55E-2 s. Lift and drag coefficient histories of 
the right airfoil in both cases are compared with each 
other in Figs. 15 and 16. The excellent agreement 
shows the accuracy of the algorithm for simulation of 
unsteady problems. The little difference between the 
two results is due to the differences between the grids 
generated around the right airfoil in two cases. 

The moving mesh algorithm of [15] is extended to 
solve two-dimensional compressible laminar flow 
around two bodies in relative motion with respect to 
each other. Definition of two grid zones has provided 
the capability of simulating translational and rotational 
motion of bodies easily. This algorithm is validated on 
different grid configurations to prove accuracy of 
interpolation stencil used in this study. The correct 
performance of algorithm strategy on two sets of grids 
A and B sequentially has been demonstrated on various 
grid configurations. Compressible flow is solved on 
two moving body benchmark problems, and defined in 
this study, to show capability of the present algorithm 
in capturing accurate results. 
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