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Abstract: Dielectric elastomer actuators are capable of creating multi degrees of 
freedom in a single joint. In this paper, a double-cone dielectric elastomer actuator is 
assumed as a planar joint with two degrees of freedom. Because of theoretical 
complexities, mathematical formulation of dynamic equations is too complicated. To 
obtain the dynamic equations of motion, at first, experimental charts are used. At this 
stage forms of relations between displacements, voltages, forces and moments are 
proposed, and coefficients are optimized to keep the difference between experimental 
and estimated charts in minimum. Then dynamic equations of motion are derived 
based on Newton-Euler method, and state-space form of equations of the joint are 
obtained. As a second objective, joint stabilization around working point is 
considered. To stabilize the joint against external loads, or initial dislocations, a 
regulator controller is designed. The joint is over actuated. So using constraint 
equations, control rule is extracted and simulated. Simulations show successful 
performance around the working point. 
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1 INTRODUCTION 

In traditional robotics, each joint has one degree of 

freedom (DOF) but the dielectric elastomer actuators 

(DEA) can create multiple degrees of freedom (Multi-

DOF) in a single joint. This is advantageous because 

mechanisms can be made in more compact form. Based 

on the application of dielectric elastomer (DE) in sensor 

design, a new self-sensing method without using any 

additional sensing device is introduced by Jung et. al. 

[1].  
A 3-DOF DEA is also designed by Koo et. al. [2] with a 

rod in the middle. He et. al. discussed the problem of 

instability in DE and created an optimum 

electromechanical transducer mechanism [3]. He et. al. 

also studied the static behavior of DE membrane, using 

large deformations field theory [4]. Cone DEA 

mechanism is first introduced by Luan et. al. [5]. They 

studied electric field, thickness, and stress to find out the 

best pretension in membrane. Conn and Rossiter 

proposed a double cone DEA with 5-DOF, fabricated 

from VHB 4910 acrylic elastomer [6]. Performance of 

the true electric field DEAs with Numerical method has 

been addressed by He et. al. [7]. They determined the 

effect of pre stretch on actuator displacement. Conn et. 

al. experimentally obtained the relations between 

voltage, displacement and rotation of the double cone 

DEA [8].  

Branz et. al. used the finite element method to estimate 

the maximum torque of the actuator in low frequency 

excitation [9]. They also studied the kinematics and 

control of a double joint four degree of freedom robotic 

arm [10]. Branz and Francesconi dynamically modelled 

and controlled a double cone DEA and checked the 

performance on a FEM model [11]. Wang et. al. 

introduced a cubic six degree of freedom DEA for 

stabilizing camera and similar apparatus [12]. Every 

membrane in this mechanism is capable of exciting two 

degrees of freedom. Nguyen et. al. fabricated a six 

legged robot using DEAs which was capable of moving 

with the velocity of 3cm/s [13].    

DEAs can be easily fabricated as circular membranes, 

but in order to determine the force-displacement 

relations, experimental data is necessary, because 

analytical study in this field usually leads to very 

complicated problems [14]. In this paper we use 

experimental data as well. The data is used to propose 

and optimize force-displacement-voltage relations. As 

an innovation, based on these relations, dynamic 

governing equations of the double cone DEA are 

derived. Finally, in order to stabilize the actuator around 

the working point, a Lyapunov controller is designed. 

Simulations of the performance of closed loop system 

are added at the end of the paper. 

2 MATERIAL AND METHOD 

The joint has a double-conical membrane actuator. The 

geometric characteristics of the actuator related to the 

dimensions is expressed in “Table 1ˮ as shown in “Fig. 

1ˮ. The rigid components used in the actuator comprise 

three members, two rings, central rod and an elastomer 

membrane. The ring is fabricated from acrylic and 

formed with laser cut. The rod is made of 6.6 nylon with 

rounded ends used to minimize stress at the elastomer 

interface.  

Fig. 1 Schematic diagrams of cone membrane actuator.  

 

Table 1 Geometric parameters of membrane actuator 

Parameters Values                   Unit 
m=mass  6.3 × 10−3               kg 

I=polar moment of inertia  
36.6 ×
10−3                kg mm2⁄   

radius centraa= l rod  4.5                            mm  

l=half central rod length   24.75                       mm 

c=thick ring  4                             mm 

b=inner radius ring  30                           mm 

outer radiusring  65                           mm 

 

 
                    (a)                      (b)                       (c)               

Fig. 2    Schematic of the elastomer cone membrane 

actuator:( a): actuator is in equilibrium, (b): z-axis transition 

and (c): rotation about x, y-axes. 

 

The film used in the elastomer membrane is made of DE 

with 3MVBH4905/4910 characteristic. There are four 

elastomer membrane in the joint mechanism, two are 

placed in the top and the other two are placed 

underneath, symmetrically.  
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Copper electrode elements by coated carbon grease are 

used to actuate elastomers [8].The actuation algorithms 

are shown in “Fig. 2ˮ. By proper actuation, axial and 

rotational motions of the joint can be obtained. 

3 MODELLING OF CONE MEMBRANE 

ACTUATOR 

The dynamical equations of elastomeric actuators with 

simpler geometries have already been extracted, but in 

the case of cone membrane actuator presented in this 

paper, due to the excessive complicacy in theoretical 

analysis, experimental diagrams need to be used. Based 

on the plotted results in “Fig. 3, Fig. 4 and Fig. 5ˮ, the 

relationships between force-voltage-displacement, as 

well as the moment-voltage-rotation, are extracted. “Fig. 

3aˮ shows the relation between voltage and moment and 

“Fig. 3bˮ indicates relation between voltage and force, 

where zero rotation and displacement are assumed. [8]  

 
(a) 

 
(b) 

Fig. 3 Experimental and estimated diagrams: (a): Moment 

–Voltage and (b): Force-Voltage. 

Analogously “Fig. 4aˮ describes the relation between 

voltage and rotation and “Fig. 4bˮ indicates the relation 

between voltage and displacement in z-axis, where 

moment and force are assumed zero [8]. The behavior of 

the experimental data can be assumed exponential. 
 

 
(a) 

 

 
 (b) 

 

Fig. 4 Experimental and estimated diagrams:                 

(a): Rotational Displacement-Voltage and (b): Linear 

Displacement-Voltage. 

 

“Fig. 5aˮ describes the relation between voltage and 

rotation and “Fig. 4bˮ indicates the relation between 

voltage and displacement in z-axis, where moment and 

force are assumed zero [8]. Linear behavior in both 

diagrams are clearly observable. Note that “Fig. 3, Fig. 

4 and Fig. 5ˮ, express the static behavior of the actuator 

[8]. For dynamical modeling, Newton-Euler rules can be 

used.  
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(a) 

 
(b) 

Fig. 5 Experimental and estimated diagrams: (a): 

Moment-Rotational Displacement and (b): Force-Linear 

Displacement. 

4 DYNAMIC EQUATION  

There are four pieces of elastomer actuators that are 

symmetrically installed in the joint. It can be assumed 

that the elastomer materials used in the actuator are 

uniform. So, the joint has the ability to move along the 

linear z-axis and rotate about x, y axes. Based on the 

actuator free body diagram as shown in “Fig. 6ˮ, and by 

applying the forces F₁, F₂, F₃, F₄ and moments M₁, M₂, 
M₃ and M₄, respectively for displacement and rotation, 

Newton Euler method is used. The actuator consists of 

four elements and every force and moment is related to 

one of the elastomer elements. For example, if the joint 

must move linearly then forces F₁ and F₂ need to be equal 

and forces F₃ and F₄ can be zero. The same approach can 

also be used on the rotation. For positive rotation without 

displacement, M₁ and M₄ must be equal and M₂ and M₃ 
might have zero value. 

 

 

 

 

 

 

 

≡ 

 

 

 

 

 

Fig. 6 Free body diagram of the joint with two degrees of 

freedom. 

 

From “Fig.5bˮ for V=0: 𝐹𝑍 = 0.555 − 0.126𝑍 which is 

also noted in [8]. From the free body diagram (FBD) in 

“Fig. 6ˮ by considering the geometric symmetry and 

employing the “Fig. 3b, Fig. 4b and Fig. 5bˮ, the general 

form of actuator force is guessed as: 

 

Fz = (αV1
n − βZ − c1Ż) + (αV2

n − βZ − c1Ż) +

(−αV3
n − βZ − c1Ż) + (−αV4

n − βZ −  c1Ż) + F      (1) 

 

FZ: Total force applied by elastomer in z direction (N) 

F:  External excitation force (N) 

𝑉𝑖: Applied voltage to each elastomeric parts (kV) (i = 1, 

2, 3, 4) 

α, β, c1, n:  Coefficients of the force equation units. 

Assuming that V₃=V₄=0 in “Eq. (1)ˮ, and from “Fig. 

5bˮ, the value of the coefficient β can be obtained as: 

4β=0.126.  

In “Fig. 4bˮ,  Fz, F and Ż are assumed equal to zero. The 

relation between voltage and displacement 

corresponding to “Fig. 4bˮ can be written as follows.  

 

   𝐹𝑧 = 0 

   �̇� = 0             0=2 Vⁿ‒ 4βZ          Z= ( /2β) Vⁿ 

   V₃=V₄=0     

   V₁=V₂=V                                                                                          (2) 

 

F2 
F1

  

F3 F4 

M1 

M4 M3 

M2 

𝐼�̈� 

𝑚�̈� 
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Using the same method, a similar equation can be 

obtained which corresponds to “Fig. 3bˮ. For Z=0, 

V₃=V₄=0 and Ż=0, we have: 

 

𝐹𝑧 = 2 Vⁿ                                                                                 (3) 

 

From “Fig. 5aˮ for V=0: M=9.313‒ 0.483θ. From the 

FBD in “Fig. 6ˮ by considering the geometric symmetry 

and employing the “Fig. 3a, Fig. 4a and Fig. 5aˮ, the 

general form of actuator moment is guessed as: 

 

M= (γV1
n − μθ − c2θ̇) + (γV4

n − μθ − c2θ̇) +

(−γV2
n − μθ − c2θ̇) + (−γV3

n − μθ −   c2θ̇) + Me  (4) 

 

Vi: Applied voltage (kV) (i = 1, 2, 3, 4) 

M: Moment applied by the joint (mNm) 

Me: External moment (mNm) 

c2, γ, n, μ= Are the coefficients related to the moment 

equation. 

According to the “Fig. 5aˮ, and by assuming V3=V4=0, 

we have 4μ=0.483. 

 

  M= 0 

  �̇� = 0 

  V₃=V₄= V                 0=2γVⁿ ‒4μθ           θ= (γ/2μ) Vⁿ 

  V₁=V₂=0                                                                              (5) 

 
Using the same method, a similar equation can be 

obtained which corresponds to “Fig. 3aˮ. For θ =0, 

V₃=V2=0 and θ̇=0, we have: 

 

M = 2γVn                                                                        (6) 

 

The proposed “Eq. (1) and Eq. (4)ˮ, seem to be capable 

of producing all experimental diagrams with approvable 

tolerance. To obtain the coefficients γ, n and   “Fig. 3a, 

Fig. 3b, Fig. 4a and Fig. 4bˮ are used along with least 

squares method and values are reported in “Table 2ˮ.  

  
Table 2 The extracted coefficients through the power method 

Method Power                            Unit 

𝛼 0.013785                     N/kV 

𝛽 0.0315                        N/mm 

𝛾 0.2275                   mNm/kV 

𝜇 0.12075                mNm/deg 

𝑛 2.721              dimensionless 

 

To graphically demonstrate the results, experimental 

diagrams in figures (3), (4) and (5) are regenerated by 

the data from “Eq. (1) and Eq. (4)ˮ. The error is always 

less than five percent and seems an acceptable 

estimation. 

By assuming a linear dynamic system around the 

equilibrium point z=0, and knowing that linear inertia of 

the joint equals 3.6g, and by using 𝐹𝑧 = 0.555 −
0.126z , the natural frequency of the system ωₙ=5.916 

(Rad sec⁄ ) is calculated. In other words, from Newton’s 

second law, we have: 

 

∑ Fz = mZ̈                                                                  (7) 

 

mZ̈ + 4c1Ż + 4βZ = α(V1
n + V2

n − V3
n − V4

n)+F          (8) 

 

By substituting values as 𝛼(𝑉1
𝑛 + 𝑉2

𝑛) = 0.555, 

V₃=V₄=0 and F=0 we have: 

 

(3.6 × 10−3)�̈� + 4𝑐1�̇� + 0.126𝑍 = 0.555                     (9) 

 

Referring to conn et al, the amount of damping force is 

4c₁=0.640 [8].  

By the same method and from the “Eq. (4) and Fig. 6ˮ, 

the joint rotational dynamic can be obtained as follows: 

 

∑ M = Iθ̈                                                                   (10) 

 

Iθ̈ + 4c2θ̇ + 4μθ = γ(V1
n + V4

n − V2
n − V3

n) + Me  (11) 

 

By substituting values as 𝛾(𝑉1
𝑛 + 𝑉4

𝑛) = 9.313,  𝑉2
𝑛 =

𝑉3
𝑛 = 0 and Me=0 we have:  

 

(36.6×10−3)θ̈ + 4c2θ̇ + 0.483θ = 9.313               (12) 

 

Referring to the Branz [11], the amount of damping 

moment equation in the range of 0.1 to 10 hertz is 

calculated as 4c₂=6.49.  

In the space state form, dynamic equations of motion can 

be expressed as follows. Note that the state variables are 

defined as: 

  

𝑧 = 𝑥1                                                                              (13) 

ż = ẋ1 = x2 

θ = x3 

θ̇ = x3̇ = x4 

x1̇ = x2 

x2̇ = 𝛼 𝑚⁄ (V1
n + V2

n − V3
n − V4

n) − ((4 × β) 𝑚⁄ )(x1)
+ F 𝑚⁄
− ((4 × c1) 𝑚⁄ )(x2)                               

x3̇ = x4     
 x4̇ = γ I⁄ (V1

n + V2
n − V3

n − V4
n) −

                                     ((4 × μ) I⁄ )(x3) + Me I⁄ −
                                     ((4 × c2) I⁄ )(x4)                     

5 REGULATOR DESIGN 

In order to stabilize the system against minor external 

incitements about the equilibrium point, a regulator 
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controller must be designed. For V=0, actuators produce 

no displacement. The equilibrium point must be located 

in the middle of actuator course. To do so, a bias voltage 

of V = 2.35 (kV) must be applied and control output 

must be added to this value. 

Lyapunov approach is used here and the Lyapunov 

candidate function and its derivative are chosen 

according to “Eq. (14) and Eq. (15)ˮ: 

 

𝑆 = 1 2⁄ (𝑥1+
2 𝑥2

2 + 𝑥3+
2 𝑥4

2)                                        (14) 

 

Ṡ = (x1𝑥1̇ + 𝑥2𝑥2̇ + x3𝑥3̇ + 𝑥4𝑥4̇ ) = −η1𝑥2
2 −

η2x4                                                 
2                                                    (15) 

 

𝑆 is a scalar positive definite function and �̇� is negative 

semi definite. Note that according to the definition, �̇� <
0 can only happen near the system equilibrium point in 

the origin, which means local asymptotic stability of the 

origin in the work space. Assuming 𝑢𝑖 = 𝑣𝑖
𝑛  and by 

employing the “Eq. (13) and Eq. (15)ˮ we have: 

 

 (16) 

Ṡ = x1x2 + x2((α m⁄ )(u1 + u2 − u3 − u4))
− ((4 × β) m)⁄ x1 + F m⁄
− ((4 × c1) m)⁄ x2) + x3x4

+ x4(γ I⁄ (u1 + u4 − u2 − u3)
− ((4 × μ) I)⁄ x3 + Me I⁄
− ((4 × c2) I)⁄ x4) 

 

(17) 

x2 (
α m⁄ (u1 + u2 − u3 − u4) − ((4 × c1) m)⁄ x2

+x1(1 − (4 × β) m⁄ ) + F m⁄
) 

+x4 (
γ I⁄ (u1 − u2 − u3 + u4)

−((4 × c2) I⁄ )x4 + x3(1 − (4 × μ) I⁄ ) + Me I⁄
)  

=  −η1x2
2 − η2x4

2 

 

The above relation can be rewritten as: 

(18) 

x2 (
−η1x2 − ((4 × c1) m)⁄ x2 +

x1(1 − (4 × β) m⁄ ) + F m⁄ + α m⁄ (u1 + u2 − u3 − u4)
) 

+x4 (
−η2x4 − ((4 × c2) I⁄ )x4 +

x3(1 − (4 × μ) I⁄ ) + Me I⁄ + γ I⁄ (u1 − u2 − u3 + u4)
)

= 0        
As a solution, it can be assumed that both parentheses 

are zero so that: 
 

u1 + u2 − u3 − u4 = A                                            (19) 

u1 + u4 − u2 − u3 = B 
 
 

Where:  

(20) 

A = ((−η1 + (4 × c1) m⁄ )x2 − x1(1 − (4 × β) m⁄ )
− F m⁄ ) m α⁄            

B = ((−η2 + (4 × c2) I⁄ )x4 − x3(1 − (4 × μ) I⁄ )
− Me I⁄ ) I γ⁄           

Solving algebraic system as: 

 

  u1 = −u3 = 1 4⁄ (A + B)                                      (21) 

   u2 = −u4 = 1 4⁄ (A − B) 

 

Assuming that 𝑢1 = −𝑢3 and 𝑢2 = −𝑢4, the control 

rules for each of four pieces of elastomer around the 

midpoint of the actuator length is obtained as follows: 

 

(22) 

u1 = −u3 = 1 4⁄ (A + B)
= 1 4⁄ ((−η1 + (4 × c1) m⁄ )x2 (m α)⁄ + (−η2

+ (4 × c2) I⁄ )x4 (I γ) − (x1(1 − (4 × β) m)(m α⁄  ))⁄⁄
− ( x3(1 − (4 × μ) I⁄ ) (I γ)) − F α⁄ − Me γ⁄⁄ ) 

u2 = −u4 = 1 4⁄ (A − B) =   1 4⁄ ((−η1 +
(4 × c1) m⁄ )x2 (m α)⁄ − (−η2 +
(4 × c2) I⁄ )x4 (I γ) − (x1(1 − (4 × β) m)(m α⁄  ))⁄⁄ +
( x3(1 − (4 × μ) I⁄ ) (I γ)) − F α⁄ + Me γ⁄⁄ ) 

 

By this control law, the origin is the only stable point in 

the workspace, and convergence to the origin is 

guaranteed. The speed of convergence is controllable by 

adjusting the coefficients  𝜂1 and  𝜂2. 

6 SIMULATION 

System performance against external excitation is 

evaluated by simulation. External excitations are in the 

form of force and torque. At first, the system is 

introduced to a 10 N force and an external moment with 

value of 1 mNm. “Fig. 7 and Fig. 8ˮ show the reactions 

of the system. S in “Fig. 7ˮ is always decreasing as we 

expected from the definition of the Lyapunov function. 

In “Fig. 8ˮ by increasing the amount of controller 

coefficient, the system returns to equilibrium faster and 

shows less oscillations which is a consequence of 

increasing closed loop damping. 

 

 
Fig. 7 Changes of Lyapunov candidate function versus 

time. 
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Fig. 8 Response of the closed circuit system against 

external force and moment. 

 

Fig. 9 The response of the closed circuit system against 

the initial non-zero displacement by applying different 

control coefficients. 

7 CONCLUSION 

Estimation of static responses from experimental data 

was the first objective in this research. This is important 

because theoretical analysis is too complicated in the 

case of the mechanism discussed in this paper. Since the 

estimating formulations have generated accurate, they 

are being used in dynamic modeling of the joint. As the 

second objective of the paper, stabilization of the joint 

against external motivations and initial dislocations are 

discussed. A regulator controller based on Lyapunov 

method is designed and applied to the joint, and 

simulations show approvable performance.  

As future plan, authors intend to add stiffness control to 

the control algorithm of the joint. 
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