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Abstract: Strip tearing during cold rolling process has always been considered 
among the main concerns for steel companies, while several works have been done 
so far regarding the examination of this issue. In this paper, experimental data from 
cold rolling tandem mill is used for detecting strip tearing. Sensors are placed 
across the cold rolling tandem mill, to collect information on parameters (such as 
angular velocity of the rolls, voltage and the electrical current of electrical motors 
driving rolls, roll gap, and strip tension force between rolls) directly from the cold 
rolling tandem mill. The information includes two modes: perfect rolling and 
ruptured rolling. A neural network is designed by means of MATLAB software and, 
then, trained using the information from the related data files. Finally, the neural 
network is examined by new data. It is concluded that the neural network has good 
accuracy in distinguishing between perfect and defected rolling.  
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1 INTRODUCTION 

The cold rolling process is among the major processes 

of metal forming with a relatively long history. Figure 

1 illustrates an example of a five stand cold rolling 

tandem mill. As seen in this figure, a continuous cold 

rolling tandem mill is composed of five main parts: 

coils opening part, welding machine which welds the 

end of the opened coil to the new coil to make the cold 

rolling line continuous, loop car which stores strip in 

rolling line like a condenser in electrical circuits, stands 

of cold rolling which reduce strip thickness, and strip 

cutting machine and coil collector which collects the 

rolled strips. Since coils open in a rate faster than strip 

rolling speed, extra strip is stored by loop car in line till 

the beginning of the new coil is welded to the end of 

the opened coil. At this moment, the rate of coil 

opening reaches zero. The strip required for rolling line 

is provided by loop car. 

 

 

 
Fig. 1   An example of a five stand cold rolling tandem mill 

[1] 
 

Making the cold rolling process continuous also 

accompanies strip tearing, where this brings about 

damages for steel strip manufacturers. Many attempts 

have been directed toward the neural network in the 

rolling process; a number of studies are implied below. 

Bagheripoor et al., applied neural network in the hot 

rolling process [2]. Numerical results that obtained 

from FEM, were used for training the neural network. 

They optimized rolling force and torque which are 

function of various parameters like rolling speed, 

thickness reduction percentage, friction coefficient, and 

temperature. Ghaisari et al., designed a neural network 

that using this network, they were able to optimize the 

mechanical properties of cold rolling line products [3]. 

They intended to prevent costly experiments regarding 

the enhancement of the products quality.  

The input parameters to neural network are rolling mill 

parameters and the outputs are yield strength, ultimate 

tensile strength and elongation. The results 

demonstrated that the reduction in skin pass, thickness 

after tandem and the ratio of Nitrogen to Aluminium 

are effective parameters on the mechanical properties 

of rolling productions.  

Chen et al,. examined the deformation and closure of 

void in flat sheet during cold rolling process [4]. Then, 

they compared simulation results with laboratory 

results, where the outcome was very satisfactory. In the 

end, they designed and trained a back propagation 

neural network for different parameters gained from 

simulation including the principal stress distribution 

and plastic strain around the void. Finally, it was 

concluded that the network predicts void behaviour 

during cold rolling process with acceptable accuracy. 

Rath et al., designed a feed-forward artificial neural 

network for prediction of the roll force [5]. The 

network was trained with the data obtained from hot 

rolling mill including the roll gap, rolling temperature, 

rolling speed, and plate width.  

A Backpropagation algorithm with variable learning 

rate was used in the network training. Comparing the 

results obtained from the network and rolling mill data, 

demonstrated a high accuracy of the network in 

prediction of the hot rolling force. Mohanty et al., used 

an artificial neural network to express the mechanical 

properties of cold-rolled sheets as a function of 

chemical composition of steel, rolling and batch 

annealing parameters [6]. The designed network has the 

capability to establish an acceptable relationship 

between the variable of the problem.  

Shahani et al., presented a FE model of hot rolling 

process for AA5083 Aluminium alloy [7]. During the 

process, temperature distribution, stress, strain and 

strain rate fields were extracted. For the convergence of 

results the experimental and theoretical data were used. 

Since the FE simulation of rolling process is time-

consuming, a BP neural network was used, where the 

outputs of the FE simulation were applied for training 

of the neural network. Then the network was used for 

prediction of slab behaviour during the rolling process. 

Peng et al., extracted a new method for controlling the 

shape of the strip [8]. This method is composed of two 

parts: the first recognizes various patterns of sheet 

geometry, and the second uses one or a combination of 

several controls on sheet geometry to optimize it.  

This new method was validated on an 800 KN HC mill. 

The results demonstrated that the new method reduces 

the strip shape error. Gudur et al., presented a rigid-

plastic FE code for cold rolling process and then used 

the output results for the training of a neural network 

[9]. Then, they applied it to predict velocity field and 

location of neutral point. In order predict the tensile 

strength of hot-rolled alloy strip, Kim et al., designed a 

neural network [10]. The data for tensile strength of 

alloy are obtained from a POSCO hot strip mill. This 

network had a high predictive accuracy and 

computation power. Since the rolling force has a non-

linear nature, the conventional methods with simple 
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mathematical models are not proper prediction of 

rolling force. Thus Xie et al., introduced a combination 

of mathematical model of rolling force and the adaptive 

neural network, where there was a good agreement 

between the calculated results and the measured values 

[11].  

Liang et al., designed a progressive neural network to 

predict the rolling force in the cold rolling process [12]. 

Bayesian method was used for training the network and 

the numerical method of Gauss - Newton was used for 

solving the Hessian matrix. The designed neural 

network was more accurate and had a faster 

convergence rate compared with the prediction model 

based on Backpropagation neural network. Zhang et al., 

designed an innovations feedback neural network 

(IFNN) based on the idea of Kalman prediction and 

used for prediction of roll force in hot strip mill [13]. 

The theoretical results and the offline simulation 

demonstrated that the IFNN prediction of roll force 

compared with normal BP network was more accurate. 

Yang et al., presented two optimization schedules [14]. 

Schedule1 was energy-saving performance and 

schedule2 was making power distribution balanced as 

well as good flatness. These two schedules were used 

in a BP neural network to predict the rolling force. 

These two schedules had a suitable effect on rolling 

force and strip shape.  

Hence, the designed neural network is more promising 

than the traditional BP neural network. Surface 

inspection is of great importance to improve quality of 

steel strip. Kang and Liu studied the local defects of 

steel strips in the rolling process [15]. They designed a 

feed-forward neural network that inspects the surface 

of steel strips and recognizes the local defects. The 

experiments demonstrated that this network is 

effective. Son et al., developed an online learning 

neural network to predict the rolling force in hot rolling 

mill [16]. The predicted rolling force by this network 

compared with the conventional mathematical method 

and the neural network with offline learning method, 

was more accurate.  

In order to increase the accuracy of rolling force in hot 

rolling mill, Lee et al., designed and trained a 

corrective neural network with long term learning 

method [17]. The long-term learning method, one of 

the neural network learning method, compared with the 

short-term learning method, further reduces the 

thickness error.  

Frayman et al., designed a direct model-reference 

adaptive control scheme with a cascade-correlation 

neural network (CCNN) to control the thickness [18]. 

The results demonstrated that this model improves the 

precision of thickness compared with the PID control 

system. Lin simulated the three-dimensional rolling 

process using the finite element method and neural 

network; subsequently he predicted the rolling force 

[19]. The results of rolling force and surface 

deformation obtained from FE simulation, were given 

to the neural network to obtain a model for the rolling 

process variables. Comparing with experimental data, 

this network gave acceptable results.  

Quanfeng et al., used the Levenberg-Marquardt 

optimized in the improved backpropagation network to 

predict the rolling force in five-stand cold rolling mill 

[20]. Compared with the normal neural network, the 

rate of convergence and the accuracy of this network 

were higher. Gunasekera et al., presented a BP neural 

network for rolling process [21]. In order to guide and 

supervise the learning procedures, a nonlinear 

mathematical model based on the slab method was 

used. Using this model, the learning errors, prediction 

errors and training times were improved.  

Larkiola et al., developed a neural network and used it 

to predict the mechanical properties of steel strips and 

rolling force [22]. The results of this network were used 

for adjusting the control parameters of rolling process, 

where 1.8% improvement in efficiency was obtained. 

Korczak et al., developed a neural network to predict 

the mechanical properties of hot rolled plates [23]. 

They gained good results regarding the prediction of 

nonlinear relationship between the chemical 

composition of steel, cooling rate, and final mechanical 

properties of the hot rolling product by means of this 

neural network.  

Cho et al., presented a suboptimal mathematical model 

in order to model the rolling process [24]. They trained 

two multi-layer perceptron neural networks for this 

purpose. One of them directly predicts the rolling force 

and the other one calculates a correction factor which 

should be multiplied to the prediction made by a 

mathematical model. Both of neural networks 

improved the accuracy by 30-50%. Aistletner et al., 

designed a neural network to predict the eccentricity in 

the rolling process [25].  

The results of this neural network compared with other 

method for calculating the roll eccentricity 

demonstrated a better accuracy. 

According to the mentioned studies, it is found that 

these studies are about using neural network for 

optimization of control parameters such as rolling 

force. In previous research, prediction of strip tearing in 

cold rolling process using neural network has not been 

investigated, where in this research it will be examined. 

In this paper, first, the experimental parameters of the 

cold rolling tandem mill are examined.  

Then, effective parameters on the strip tearing will be 

extracted. A neural network is taught using 

experimental data from cold rolling tandem mill 

regarding both perfect and defected rolling modes of 

strip. In the end, the neural network is applied to 

predict perfect rolling or defected rolling in the cold 

rolling tandem mill. 
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2 BASIC PARAMETERS IN COLD ROLLING 

PROCESS 

The cold rolling process is a complex process whose 

analysis and control require examination, adjustment, 

as well as controlling many parameters. Parameters that 

play a central role in regulating and controlling the 

rolling line are described in the following [26]. 

1. Gap between the rolls: it is the space between 

two working rolls in the rolling process. During 

the rolling process, this gap changes in short 

courses with rolling control systems. Regardless 

of the negligible elastic return of the sheet, 

thickness of the sheet leaving each stand is equal 

to the value which is considered for the gap 

between the rolls. 

2. Rolling force: it is the radial force applied to the 

rolls. It should be noticed that the bending value 

of rolls which is done by hydraulic jacks also 

affects this force. During the rolling process, this 

force may change a lot which is due to exercising 

the command of control equipment and fixing the 

thickness of the sheet leaving each stand. As the 

temperature increases, the deformation resistance 

of material decreases. Therefore, work hardening 

of hot rolling is greater than that of cold rolling. 

This is why the rolling force of cold rolling is 

greater than the hot rolling. 

3. Tension force between rolls: It is exerted on the 

stretching sheet to reduce the rolling force in cold 

rolling process. The tension force created before 

each roll is called back tension force and the 

tension force created after each roll is called front 

tension force. 

4. Rolling torque: It is the torque exerted by the 

drives on the working rolls for performing the 

rolling process. This is one of the most important 

rolling parameters which is taken into 

consideration in the analytic relations and the 

practical issues. Due to the changes in engine 

speed and friction coefficients, the rolling torque 

varies over time practically.  

5. The speed of strip: The speed of strip when 

entering or leaving the stands, which is due to the 

rotation of the rolls, is one of the basic parameters 

both in practice and in theoretical relations. Due 

to the rolling process, the speed when entering the 

stands is always less than the speed when leaving 

the stands. In practice, it is tried to keep the speed 

constant over time. However, in practical terms, it 

is necessary in some cases that the speeds of five 

stands simultaneously decrease or increase at the 

same rate. To increase the production speed, it is 

always tried to carry out the rolling process with 

maximum speed as much as possible. It should be 

noticed that strip speed and linear speed of the 

rolls are not equal in practice and they have 

negligible differences which is due to slip.  

6. Friction coefficient: Friction coefficient in cold 

rolling process is less than its value in hot rolling. 

This value changes depending on the type of 

emulsion used between the roll and the strip, the 

angular speed of the roll, and the speed of the 

strip. The exact calculation of friction coefficient 

is not possible due to the inability of direct 

measurement. Therefore, the estimated values are 

used in simulation and analytical calculations. The 

friction in cold rolling process is different from 

the friction in hot rolling process, because the first 

one is considered as sliding friction and the 

second one is considered as adhesive friction. 

3 INTRODUCTION TO DAS (DATA ACQUISITION 

SYSTEM) SOFTWARE 

DAS is the most comprehensive system of data storage 

and data display for continuous cold rolling line. This 

software, which is produced by Italian AISIRobicon 

Company, has a system of graphical representation of 

information. Using this system, users can view the 

history of a number of their desired signals at the same 

time. 

Data related to continuous cold rolling line is stored in 

DAS at 50 ms intervals. Due to the high volume, the 

data is stored online in DAS-specific files by date, 

hour, and second. Therefore, they can be operated or 

interpreted offline if needed. Currently more than 200 

signals on rolling lines are stored online in DAS. Of 

course new signals can be added to the software 

according to user’s requirements.  

4 IDENTIFICATION OF DATA SIGNAL IN DAS 

SOFTWARE 

The information contained in DAS includes data on key 

parameters of the cold rolling process. Before referring 

to the details of this information, it is necessary to 

introduce some of the terminologies [26]. 

1. Reference signal: In control systems (whose 

signals are available in many rolling lines), the 

optimum value of a quantity (such as the optimum 

value of force or tension) is called reference 

value. These signals are usually named with Ref 

suffix. The reference value of a signal may change 

over time, due to circumstances. 

2. Feedback signal: The aim of a closed circuit 

monitoring system is to deliver the real value of a 

quantity to its optimal value. For example, the 

purpose of inter- shelf tension control system is to 
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deliver the actual amount of inter- shelf tension to 

the determined optimum tension and to save it. 

The actual values of quantities are the signals 

which are measured by the sensors that are called 

feedback signals. These signals are usually named 

with Fbk suffix in DAS.  

3. Deviation signal: In some quantities, such as 

thickness of sheet entering the shelves, 

fluctuations of a quantity is of particular 

importance. In this case, an independent signal, 

named deviation signal, has been created in DAS 

to evaluate this quantity. In fact, this signal is the 

derived values of the original signal over time. 

4. Difference signal: Since the rolls in gap 

adjustment systems uses separate operators in 

their two ends, the signals corresponding to each 

operator must be examined separately. On the 

other hand, signals corresponding to the two ends 

of the rolls must be adjusted in order that they 

don’t have much difference. Big difference 

between the two signals will be followed by 

asymmetry of the exerted force and consequently 

the system will be locked and the sheets will tear. 

According to this, signals with the suffix of Diff 

are created in DAS. These signals show the 

difference between the signals of operator side 

and the signals of drive side.  

5. Set signal: in some cases, it is necessary to show 

the maximum possible value of a signal. Signals 

with the suffix of set are used in these quantities. 

The maximum value of a signal is calculated 

according to the limitations in the performance of 

mechanical and control equipment in the 

production program. There is a large difference 

between the feedback of a signal and the set 

value. 

5 THE EFFECTIVE PARAMETERS ON STRIP 

TEARING 

As mentioned earlier, the experimental data of five 

stand cold rolling tandem mill is related to the 

Mobarakeh Steel Company, Isfahan. Data is collected 

by sensors located across the rolling tandem mill and 

saved as files by DAS software. The data include both 

perfect and tearing modes. These files contain signals 

received from rolling tandem mill. Each signal is 

considered to be an experimental parameter. These 

signals are in the form of diagrams showing each 

parameter change based on time. For instance, Figure 2 

illustrates the angular velocity of first stand based on 

time. Figure 3 shows feedback signal diagram for the 

tension force between first and second stand based on 

time. Over 200 parameters were collected from cold 

rolling tandem mill. First, they were examined based on 

cold rolling tandem mill experts. And, then, the number 

was reduced to 122 regarding the way they affect strip 

tearing. Some of these parameters are: the location of 

roll, tension force between rolls, angular velocity of 

rolls, strip thickness change after each stand, strip 

linear velocity after each stand, and so on.  

 

 

 

Fig. 2   The angular velocity of first stand based on time 

 

 

Fig. 3   The tension force between first and second stand 

based on time 

Upon storing these 122 parameters by DAS software 

for both perfect and tearing modes and examining them 

again, it was perceived that merely mean parameter for 

five stands was needed for some of them. Hence, 

respective parameters were omitted. No significant 

difference was observed in the values of some other 

parameters for perfect and tearing modes. In addition, 

there was a significant difference between reference 

and feedback modes regarding some signals. These 

signals were again omitted from examinations. Finally, 

the number of parameters was reduced from 122 to 3.  
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These three parameters include [26]:  

1. Parameter 1: Mean error of location of rolls 

(micrometer) 

2. Parameter 2: Mean error of tension force 

between rolls (ton) 

3. Parameter 3: Mean error of  angular velocity of 

rolls (rpm) 

6 NEURAL NETWORK MODEL 

The neural network model used for predicting strip 

tearing in cold rolling tandem mill is perceptron neural 

network with three hidden layers, because this number 

of layers is the minimum number of layers that the 

neural network gives the correct answer. Properties of 

the network are listed in Table 1. 

 

Table 1   Properties of the neural network used in this study 

Input  

layer 

neurons 

(n0) 

First 

hidden 

layer 

neurons  

(n1) 

Second 

hidden 

layer 

neurons  

(n2) 

Third 

hidden 

layer 

neurons  

(n3) 

Output 

layer 

neurons 

(n4) 

3 10 20 20 1 

 

Perceptron neural network model is taken to be among 

the most widely used neural network models regarding 

the prediction and detection of patterns. Figure 4 shows 

a schematic view of the designed neural network, 

where the operator function for hidden layers and 

output layer is “tansig”. 

 

Fig. 4   Schematic view of perceptron neural network with 

three hidden layers [27] 

 

7 NEURAL NETWORK TRAINING 

To train neural network, generalized delta law was 

applied. Network training means the synoptic weight of 

different layers so that the mean square error of 

external layer neurons is the least. The error of J
th
 

neuron (ej) from an external layer means that the 

difference is between network output values and 

desirable values expected as network output. This error 

is presented based on Eq. (1). In this equation, dj stands 

for desirable output value and yj is the network output 

value [27]. 

 

(1) j j je d y 
 

 

The operator used for this network is a bipolar sigmoid 

function. Criterion function Ej which must be 

minimized by mean square error is presented based on 

Eq. (2) [27]. 
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Training is carried out in terms of pattern-by-pattern. 

Changes in synoptic weight wij are implemented based 

on Eq. (3) where η is a positive coefficient [27]. 
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If η is small enough, this algorithm can gain the general 

minimum of criterion function. Training multilayer 

perceptron neural networks begin from the last layer. 

Data is back propagated toward earlier layers. The 

weight coefficients of external layer are corrected 

based on following equations. In these equations, xi is 

an input parameters vector, uj
[s]

 is the stimulating signal 

of j
th

 neuron of s
th

 layer, oj
[s]

 is the output signal of j
th

 

neuron of s
th

 layer, and ψj
[s]

 is the operator function of 

j
th

 neuron of s
th

 layer [27]. 
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(7) 
[4] [4] [4] [4] [3]
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The modification of coefficients in the hidden layers is 

also calculated based on following equations [27]. 
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(11) 
3

[2]

[2] [3] [3]
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Neural network is trained for 10 perfect rolling modes 

and 10 tearing rolling modes. Then, it is capable of 

distinguishing between the perfect and tearing rolling 

modes by the entrance of similar patterns. Tearing 

rolling modes are because of both control and physical 

defects and this neural network must consider both of 

them. Table 2 shows an example of values of 

parameters affecting strip tearing for both perfect 

rolling and tearing rolling modes. It is based on 

experimental data from the cold rolling tandem mill of 

Mobarakeh Steel Company, Isfahan [26]. 

 

Table 2 An example of values of parameters affecting strip 

tearing 

Rolling status 
Parameter  

1 

Parameter 

2 

Parameter 

3 

Tearing 

rolling mode  
165.93 27.49 202 

Perfect 

rolling mode 
27.152 2.299 136.8 

 

 

 

Fig. 5 Criterion function gradient based on the number of 

solution steps 

 

Since the operator functions of layers are bipolar 

sigmoid functions, then, network output interval is (-1, 

1). Further, as the output approaches 1, the more 

probable the perfect rolling mode will be. Reversely, as 

the output approaches -1, the more probable the tearing 

rolling mode will be. 

Figure 5 shows criterion function gradient based on the 

number of solution steps related to network training. As 

seen in the diagram, the gradient is descending. It 

reaches its minimum value (7.7110
-7

) in step 447. 

Figure 6 illustrates the criterion function mean square 

error based on the number of solution steps related to 

network training. As seen in the diagram, the mean 

square error is descending. It reaches its minimum 

value (0.462) in step 447.  

 

 

Fig. 6   Criterion function mean square error based on the 

number of solution steps 

 

8 EXAMINING NEURAL NETWORK BY NEW 

PATTERNS 

Neural network was examined for 8 perfect rolling 

mode patterns and 8 tearing rolling mode patterns. 

Results are listed in Table 3. 

 
Table 3 Results of neural network examination for new input 

patterns 

Rolling 

status 

Tearing  

(-1) 

Perfect 

(1) 

Accuracy 

percentage 

8 Tearing 

rolling mode 
7 1 87.5 

8 Perfect 

rolling mode 0 8 100 

Final 

accuracy 

percentage 
  93.75 
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As seen from the table 3, the designed neural network 

has good accuracy in detecting rolling status (perfect or 

tearing). 

9 CONCLUSION 

A perceptron neural network with three hidden layers 

are designed after the examination of signals collected 

from cold rolling tandem mill of Mobarakeh Steel 

Company and the extraction of parameters affecting 

strip tearing. Then, it is trained for both perfect and 

tearing rolling modes by experimental data regarding 

parameters affecting strip tearing. Finally, the network 

is tested using new data.  

In network training, the criterion function gradient 

reaches its minimum value (7.7110
-7

) in a descending 

trend (in step 447). The mean square error of criterion 

function has a descending trend, where it reaches its 

minimum value (0.462) in step 447. In examining 

network by new data, it is seen that the designed neural 

network has good accuracy in distinguishing rolling 

status (perfect or tearing).  

Since the experimental values of parameters affecting 

strip tearing are registered every moment, the designed 

neural network can be mounted on cold rolling tandem 

mill and predict strip tearing before it happens. This is 

crucial because it prevents sheet rupture and cold 

rolling tandem mill stoppage in long term, and as a 

result, it reduces damages. 
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