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Abstract: In present research, nonlinear vibration of functionally graded nano-
beams subjected to uniform temperature rise and resting on nonlinear foundation is 
comprehensively studied. The elastic center can be defined to remove stretching and 
bending couplings caused by the FG material variation. The small-size effect, 
playing essential role in the dynamical behavior of nano-beams, is considered here 
applying strain-inertia gradient and non-local elasticity theory. The governing partial 
differential equations have been derived based on the Euler-Bernoulli beam theory 
utilizing the von Karman strain-displacement relations. Subsequently, using the 
Galerkin method, the governing equations is reduced to a nonlinear ordinary 
differential equation. The closed form analytical solution of the nonlinear natural 
frequency is then established using the homotopy analysis method. Finally, the 
effects of different parameters such as length, nonlinear elastic foundation 
parameter, thermal loading, non-local parameter and gradient parameters are 
comprehensively investigated on the FG nano-beams vibration using the homotopy 
analysis method. As the main results, it is observed that by increasing the non-local 
parameter, the frequency ratio for strain-inertia gradient theory has an increasing 
trend while it has decreasing trend for non-local elasticity theory. Also, the nonlinear 
natural frequencies obtained using strain-inertia gradient theory are greater than the 
results of non-local elasticity and classical theory. 
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1 INTRODUCTION 

Advances made in industry, have led engineers to 

exploit materials with better properties. Functionally 

graded (FG) materials are composite materials with 

heterogeneous fine structures. The mechanical 

properties of FG materials continuously change from 

one level to the other. This can be achieved by gradual 

change of volume fraction as a function of position along 

the thickness of the ingredients. In most cases, the FG 

materials are made of combination of metal and ceramic 

to have metal strength as well as resistance to high 

temperature of environment and yet, to eliminate the 

share surface problems [1-3].  

While nano-beams have been extensively used in many 

applications of nano-sized devices and systems, the 

studies of nano-structures using the non-local elasticity 

theory have been an extensive section of research in 

recent years [4-8]. The equations of motion of non-local 

nonlinear free vibration of functionally graded nano-

beams with simply supported and simple-clamped 

boundary conditions are solved using multiple scale 

method [9]. An exact solution for the nonlinear forced 

vibration analysis of nano-beams made of FG materials 

subjected to the thermal environment including the 

effect of surface stress employed the classical beam 

theory is furthermore presented [10]. Transient analysis 

of a three-layer microbeam subjected to electric 

potential [11], Also, vibration and bending analyses of 

the piezomagnetic three-layer nano-beams based on 

sinusoidal shear deformation theory are investigated 

[12-14].  

Size-dependent electro-elastic analysis of a sandwich 

microbeam based on higher-order sinusoidal shear 

deformation theory [15] and vibration bending analysis 

of a sandwich microbeam with two integrated piezo-

magnetic face-sheets are investigated [16]. Wave 

propagation analysis of a functionally graded magneto-

electro-elastic nano-beam rest on Visco-Pasternak 

foundation [17] and nonlinear vibration analysis of 

sandwich nano-beam with FG-CNTRCs face-sheets in 

electro-thermal environment are investigated [18]. The 

Homotopy Analysis Method is widely used to 

investigate the nonlinear vibration behavior of beams 

and it is shown that Homotopy Analysis Method is a 

very strong semi-analytical method for vibration 

analysis of structures [19-21]. Gradient elasticity 

theories provide extensions of the classical equations of 

elasticity with additional higher-order spatial derivatives 

of strains, stresses and/or accelerations.  

Askes and Aifantis [22] discussed various formats of 

gradient elasticity and their performance in static and 

dynamic applications. New numerical results showed 

the removal of singularities in statics and dynamics, as 

well as the size-dependent mechanical response 

predicted by gradient elasticity. The carbon nano-tubes 

are also widely studied in the literature using the stress 

gradient and strain-inertia gradient elasticity theories 

[23] and stress, strain and combined strain-inertia 

gradient elasticity theories [24].  

In the present research, the nonlinear vibration of a FG 

nano-beam resting on nonlinear elastic foundation 

subjected to thermal load is investigated based on the 

strain-inertia gradient elasticity and also non-local 

elasticity theory. The different behaviors of the two 

theories would be comprehensively examined. The 

Homotopy Analysis Method is also utilized to solve the 

governing equations of FG nano-beams. Finally, the 

parametric study on nano-beam lengths, linear and 

nonlinear foundation stiffness, temperature rise and 

gradient index would be presented considering the small 

scale effects on the frequency ratios of FG nano-beams. 

2 GOVERNING EQUATION 

2.1. Stress Gradient (Non-local) Elasticity Theory 

In the non-local (𝑛𝑙) theory of elasticity, the points 

undergo translational motion as in the classical case, but 

the stress at a point depends on the strain in a region near 

that point [25]. The non-local constitutive behavior of 

Hookean solids can be represented by the following 

differential constitutive relation [26-27]: 

 

(1 − 𝜇2∇2)𝜎𝑛𝑙 = 𝜎𝑙                                                    (1) 

 

Where 𝜇 is the non-local parameter, 𝜎𝑙 is the 

macroscopic or local stress tensor at a point and 𝜎𝑛𝑙 is 

the non-local stress tensor. 

An FG nano-beam with length L, thickness h and width 

b rests on nonlinear Winkler-Pasternak foundation is 

shown in “Fig. 1ˮ.  

 

 

Fig. 1 Geometry of a FG nano-beam. 

 

Since the FG nano-beam is generally composed of two 

different materials at the top and the bottom surfaces, the 

power law distribution for the effective material 
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properties dictates the material variation profile through 

the thickness of the small-scale FG beam, as follow [17]: 

 

Ƥ(𝑧𝑚) = (Ƥ𝑈 − Ƥ𝐿) (
𝑧𝑚

ℎ
+

1

2
)

𝑃

+ Ƥ𝐿                         (2) 

 

Where Ƥ𝑈 and Ƥ𝐿 are the material properties at the upper 

and lower surface of the FG nano-beam, respectively. 

And a gradient index 𝑃 determines the variation profile 

of material properties across the FG nano-beam 

thickness.  

It is worth noting that the geometric center (𝑧𝑚) is taken 

as references for the previous effective material 

properties. The elastic center can be defined to remove 

stretching and bending couplings caused by the FG 

material variation. For a FG nano-beam, the neutral axis 

passes through the elastic center of the Young elastic 

moduli field of longitudinal fibers. The relation between 

the elastic and geometric center is determined as [28]: 
 

𝑧 = 𝑧𝑚 + 𝑐𝑒 , 𝑐𝑒 =
∫ 𝑧𝑚𝐸(𝑧𝑚)𝑑𝑧𝑚

ℎ
2

−ℎ
2

∫ 𝐸(𝑧𝑚)𝑑𝑧𝑚

ℎ
2

−ℎ
2

=

ℎ(𝐸𝑈−𝐸𝐿)𝑃

2(2+𝑃)(𝐸𝑈+𝑃𝐸𝐿)
                                                     (3) 

 
Where 𝑐𝑒 is the position of elastic center. If the elastic 

center is taken as a reference, the Poisson’s ratio 𝜈(𝑧), 

elastic modulus 𝐸(𝑧), mass density 𝜌(𝑧) and thermal, 

expansion coefficients 𝛼(𝑧) are assumed to vary 

continuously along the z direction and can be expressed 

as: 

 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)(
𝑧

ℎ
+

1

2
)𝑃 + 𝐸𝑚 (4) 

  

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+

1

2
)

𝑃

+ 𝜌𝑚 (5) 

  

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) (
𝑧

ℎ
+

1

2
)

𝑃

+ 𝛼𝑚 (6) 

  

𝜈(𝑧) = (𝜈𝑐 − 𝜈𝑚) (
𝑧

ℎ
+

1

2
)

𝑃

+ 𝜈𝑚 (7) 

 

Where the subscripts c and m refer to the ceramic and 

metal phases, respectively. Using the classic Euler-

Bernoulli beam theory, the displacement field at any 

point of the nano-beam can be written as: 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
 (8) 

  

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0 (9) 

  

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) (10) 

 

Where 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) are the displacement 

components of the mid-plane at time t. In accordance, 

the von Karman type nonlinear strain-displacement 

relation may be shown to be [29]: 

   

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
+

1

2
(

𝜕𝑢𝑧

𝜕𝑥
)2 =

𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2 +
1

2
(

𝜕𝑤

𝜕𝑥
)

2
  (11) 

 

So for the beam in thermal environment the non-zero 

component of the stress tensor can be obtained as [30]: 

 

𝜎𝑥𝑥 =
𝐸(𝑧)

1 − 𝜈(𝑧)2
(

𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)

−
𝐸(𝑧)𝛼(𝑧)

1 − 𝜈(𝑧)
∆𝑇 

(12) 

 

Where 𝐸(𝑧) is the Young modulus and 𝜈(𝑧) is Poisson’s 

ratio and 𝛼(𝑧) is thermal expansion coefficient and 

∆𝑇 = 𝑇 − 𝑇° where T is the temperature distributed 

through the FG nano-beam and 𝑇° is the reference 

temperature. Using Hamilton’s principle and 

minimizing strain energy and kinetic energy [31], the 

nonlinear equations of motion of the nano-beam can be 

derived as: 

 

𝜕𝑁𝑥𝑥

𝜕𝑥
= 𝐼1

𝜕2𝑢

𝜕𝑡2
 (13) 

  

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤

𝜕𝑥
) + 𝑓 = 𝐼1

𝜕2𝑤

𝜕𝑡2
 (14) 

 

Where 𝑁𝑥𝑥 and 𝑀𝑥𝑥 are the local force and bending 

moment resultants, respectively, given by: 

 

𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑑𝐴 = 𝑏𝐴1 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

 )
 

𝐴

− 𝑁𝑡ℎ 

(15) 

  

𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴 = −𝑏𝐶1 (
𝜕2𝑤

𝜕𝑥2
) − 𝑀𝑡ℎ

 

𝐴

 (16) 

 

Moreover, the resultant thermal force and moment can 

be described as [32]: 

𝑁𝑡ℎ = 𝑏 ∫
𝐸(𝑧). 𝛼(𝑧)

1 − 𝜈
∆𝑇𝑑𝑧    ,

ℎ
2

−
ℎ
2

𝑀𝑡ℎ

= 𝑏 ∫
𝐸(𝑧). 𝛼(𝑧)

1 − 𝜈
∆𝑇𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 

(17) 

 

In the present study, ∆𝑇 is constant along the beam 

thickness and the initial uniform temperature (T0 =
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27℃) is considered a stress free state. It is noteworthy 

that the resultant thermal force and moment 𝑁𝑡ℎ and 𝑀𝑡ℎ 

are constant. Also the cross section parameters 
{𝐴1, 𝐶1}and𝐼1 introduced in preceding “Eqs. (13-16)” are 

defined as: 

{𝐴1, 𝐶1} = 𝑏 ∫ 𝐸(𝑧){1, 𝑧, 𝑧2}

ℎ
2

−𝑐𝑒

−
ℎ
2

−𝑐𝑒

𝑑𝑧    ,    𝐼1

= 𝑏 ∫ 𝜌(𝑧)

ℎ
2

−𝑐𝑒

−
ℎ
2

−𝑐𝑒

𝑑𝑧 

 

 (18) 

 

Moreover, the driving force f in “Eq. (14)ˮ could be 

shown to be: 

  

𝑓 = 𝐹(𝑥, 𝑡) − 𝑘𝐿𝑤 + 𝑘𝑆∇2𝑤 − 𝑘𝑁𝐿𝑤3 (19) 

 

Where 𝐹(𝑥, 𝑡) is lateral distributed loading and 𝑘𝐿 , 𝑘𝑆 

are Winkler and Pasternak elastic foundation 

coefficients, respectively and 𝑘𝑁𝐿 is the nonlinear elastic 

foundation coefficient [33]. The non-local form of the 

equations of motions, “Eqs. (13) and (14)ˮ, can be 

shown to be as follows [9]: 

  

𝜕𝑁𝑥𝑥
𝑛𝑙

𝜕𝑥
= 𝐼1

𝜕2𝑢

𝜕𝑡2
 (20) 

  

𝜕2𝑀𝑥𝑥
𝑛𝑙

𝜕𝑥2
+

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝑛𝑙
𝜕𝑤

𝜕𝑥
) + 𝑓 = 𝐼1

𝜕2𝑤

𝜕𝑡2
 (21) 

 

Where the superscript 𝑛𝑙 denote the non-local elasticity 

theory. It is also noteworthy that the effect of 

longitudinal or inplane deformation and inertia on the 

large amplitude flexural vibrations of slender beams and 

thin plates is negligible [34]. If the axial inertia is 

neglected, “Eq. (20)ˮ results in: 

 

𝑁𝑥𝑥
𝑛𝑙 = 𝑁𝑁𝐿 − 𝑁𝑡ℎ

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
(22) 

 

Where 𝑁𝑁𝐿 is the nonlinear in-plane  force that is caused 

by stretching and bending of the neutral axis. Then the 

non-local force and bending moment resultants can be 

obtained by imposing the operator of (1 − μ2∇2) on the 

left-hand side of “Eqs. (15) and (17)ˮ [25], using Eqs. 

(20-22) it may be shown that: 

𝑁𝑥𝑥
𝑛𝑙 = 𝑏𝐴1 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

 ) − 𝑁𝑡ℎ (23) 

  

𝑀𝑥𝑥
𝑛𝑙 = 𝜇2 (−𝑁𝑥𝑥

𝑛𝑙
𝜕2𝑤

𝜕𝑥2
− 𝑓 + 𝐼1

𝜕2𝑤

𝜕𝑡2
  )

− 𝑏𝐶1 (
𝜕2𝑤

𝜕𝑥2
) − 𝑀𝑡ℎ 

(24) 

For nano-beams with immovable ends (i.e. u=0 and w= 

0, at x = 0 and L), integrating “Eq. (23)ˮ with respect to 

x while using “Eq. (22)ˮ leads to: 

 

𝑁𝑁𝐿 =
𝑏𝐴1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥 (25) 

 

Finally, substitution of “Eqs. (23) and (24)ˮ into “Eq. 

(21)ˮ would result in the governing equation of the non-

local elastic nonlinear forced vibration for the Euler–

Bernoulli functionally graded nano-beam resting on 

nonlinear foundation in thermal environment as: 

 

𝐷∗∗
𝜕4𝑤

𝜕𝑥4
+ (𝑁𝑡ℎ − 𝑁𝑁𝐿)

𝜕2𝑤

𝜕𝑥2
+ 𝐼1

𝜕2𝑤

𝜕𝑡2

− 𝜇2𝐼1

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕2𝑀𝑡ℎ

𝜕𝑥2

= 𝑓 − 𝜇2
𝜕2𝑓

𝜕𝑥2
 

(26) 

 

Where: 

 

𝐷∗∗ = 𝑏𝐶1 + 𝜇2 [
𝑏𝐴1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0
𝑑𝑥 −

𝑏 ∫
𝐸(𝑧).𝛼(𝑧)

1−𝜈
∆𝑇𝑑𝑧  

ℎ
2

−ℎ
2

]  

 

2.2. Strain-inertia Gradient Theory 

In another famous theory developed by Mindlin [35], the 

strain energy is considered as a function of the first and 

second-order gradient of strain tensor. This theory was 

then reformulated and renamed strain gradient theory by 

Fleck and Hutchinson [36]. The strain gradient theory 

has been successfully applied to analyze static and 

dynamic mechanical behavior of micro and nano-

structures [17]. Also the strain gradient formula 

combined with inertia gradient was introduced by Askes 

and Aifantis [17] and is described as: 

 

𝜎 = 𝐸(1 + 𝑙𝑠
2∇2)𝜀 + 𝜌𝑙𝑑

2𝜀̈                             (27) 

 

Where 𝑙𝑠 and 𝑙𝑑 are the length scale parameters related 

to strain gradients and inertia gradients, respectively. 

It is also worth noting that the nonlinear equation of 

motions, “Eqs. (13) and (14)ˮ, can be used in strain-

inertia gradient (SIG) form as [37]: 

 

𝜕𝑁𝑥𝑥
𝑠𝑖𝑔

𝜕𝑥
= 𝐼1

𝜕2𝑢

𝜕𝑡2
 (28) 

  

𝜕2𝑀𝑥𝑥
𝑠𝑖𝑔

𝜕𝑥2
+

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝑠𝑖𝑔 𝜕𝑤

𝜕𝑥
) + 𝑓 = 𝐼1

𝜕2𝑤

𝜕𝑡2
 (29) 
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Where the superscript sig denotes the strain-inertia 

gradient theory. The axial stress at a generic point of a 

nano-beam based on the strain-inertia gradient theory 

can be formulated as: 

 

𝜎𝑥𝑥 = 𝐸(1 + 𝑙𝑠
2∇2)𝜀𝑥𝑥 + 𝜌𝑙𝑑

2𝜀�̈�𝑥

−
𝐸(𝑧)𝛼(𝑧)

1 − 𝜈(𝑧)
∆𝑇 

(30) 

 

For nano-beam with immovable ends the axial strain can 

be determined by the von Karman strain as: 

𝜀𝑥𝑥 =
1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑧
𝜕2𝑤

𝜕𝑥2
 (31) 

 

Similar to the procedure of determining the force and 

moment resultants in non-local elasticity theory, the 

force and moment resultants could be obtained 

considering gradient parameters as: 

 

𝑁𝑥𝑥
𝑠𝑖𝑔

= ∫ 𝜎𝑥𝑥𝑑𝐴 = 𝑏𝐴1 [
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+ 𝑙𝑠
2 [(

𝜕2𝑤

𝜕𝑥2
)

2

+
𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
]] +

 

𝐴

 

𝑏𝐷1𝑙𝑑
2 [(

𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

+
𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥𝜕𝑡2
] − 𝑏𝐸1𝑙𝑑

2
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
− 𝑁𝑡ℎ 

(32) 

  

    𝑀𝑥𝑥
𝑠𝑖𝑔

= ∫ 𝑧𝜎𝑥𝑥𝑑𝐴 = −𝑏𝐶1 [
𝜕2𝑤

𝜕𝑥2
+ 𝑙𝑠

2
𝜕4𝑤

𝜕𝑥4
] − 𝑏𝐹1𝑙𝑑

2
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
− 𝑀𝑡ℎ

 

𝐴

 (33) 

 

Where the parameters {𝐷1, 𝐸1, 𝐹1} introduced in “Eqs. 

(32) and (33)ˮ are the generalized mass moment of 

inertia and defined as: 

 

{𝐷1, 𝐸1, 𝐹1}

= ∫ 𝜌(𝑧){1, 𝑧, 𝑧2}

ℎ
2

−𝑐𝑒

−
ℎ
2

−𝑐𝑒

𝑑𝑧    

 

 (34) 

Finally, by substituting “Eqs. (32) and (33)ˮ into “Eq. 

(29)ˮ, the governing equation of motion for forced 

nonlinear vibration of FG nano-beams resting on 

nonlinear elastic foundation and subjected to thermal 

load using strain-inertia gradient theory can be written 

as:  

 

𝑏𝐶1 [
𝜕4𝑤

𝜕𝑥4
+ 𝑙𝑠

2
𝜕6𝑤

𝜕𝑥6
] −  𝑏𝐴1 [

3

2

𝜕2𝑤

𝜕𝑥2
(

𝜕𝑤

𝜕𝑥
)

2

+ 𝑙𝑠
2 [(

𝜕2𝑤

𝜕𝑥2
)

3

+ 4
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2

𝜕3𝑤

𝜕𝑥3
+

𝜕4𝑤

𝜕𝑥4
(

𝜕𝑤

𝜕𝑥
)

2

]]        −  𝑏𝐷1𝑙𝑑
2

× [
𝜕2𝑤

𝜕𝑥2
(

𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

+ 2
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2

𝜕3𝑤

𝜕𝑥𝜕𝑡2
+ 2

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑡

𝜕3𝑤

𝜕𝑥2𝜕𝑡
+

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
(

𝜕𝑤

𝜕𝑥
)

2

]

+  𝑏𝐹1𝑙𝑑
2

𝜕6𝑤

𝜕𝑥4𝜕𝑡2
+  𝑏𝐸1𝑙𝑑

2 [2 (
𝜕3𝑤

𝜕𝑥2𝜕𝑡
)

2

+
𝜕2𝑤

𝜕𝑥2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕3𝑤

𝜕𝑥𝜕𝑡2

𝜕3𝑤

𝜕𝑥3
+ 2

𝜕2𝑤

𝜕𝑥𝜕𝑡

𝜕4𝑤

𝜕𝑥3𝜕𝑡
]

+ 𝑁𝑡ℎ

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑀𝑡ℎ

𝜕𝑥2
+ 𝐼1

𝜕2𝑤

𝜕𝑡2
= 𝑓 

(35) 

 

3 NONLINEAR FREE VIBRATION 

In general, 𝑀𝑡ℎ is a function of 𝑥 𝑎𝑛𝑑 𝑧 coordinate and 

time 𝑡. If it is assumed that the temperature only varies 

in the thickness direction, then 𝜕2𝑀𝑡ℎ 𝜕𝑥2⁄ = 0 [30]. 

The governing equations for nonlinear free vibration 

analysis can be obtained by setting (𝑥, 𝑡) = 0. 

Furthermore, to reduce the nonlinear equation of free 

vibration of FG nano-beam based on non-local elasticity 

“Eq. (26)ˮ, strain-inertia gradient theory “Eq. (35)ˮ into 

a time-varying set of ordinary differential equations, the 

Galerkin method would be employed here. To this end, 

the displacement function is supposed to have the 

separable form of: 
  

𝑤(𝑥, 𝑡) = 𝜙(𝑥)𝑞(𝑡) (36) 

Where q(t) is a time base function to be determined later 

and 𝜙(𝑥) is the linear spatial mode shape. Considering 

the simply supported boundary conditions, an 

appropriate approximation for spatial base function 

𝜙(𝑥) can be expressed as [38]: 
 

𝜙𝑛(𝑥) = 𝑆𝑖𝑛(𝛼𝑥) (37) 
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Where   α = π l⁄  .The governing equation of the time 

base function in free vibration of FG nano-beam based 

on non-local elasticity could be determined by 

substituting “Eq.(36) into Eq.(26)ˮ subsequently 

multiplying by the linear spatial mode shape and 

integrating along the FG nano-beam length as [39]: 

 

�̈� + 𝛾1𝑞 + 𝛾3𝑞3 = 0 (38) 

 

Where to summarize the mathematical formulation, the 

coefficients 𝛾1, 𝛾2𝑎𝑛𝑑 𝛾3 are introduced as: 

 

𝛾1 = (𝐷∗𝑎3 + 𝑁𝑡ℎ𝑎2 + 𝐾𝐿(𝑎1 − 𝜇2𝑎2))𝑎∗

− 𝐾𝑆(𝑎2 − 𝜇2𝑎3)𝑎∗ 

(39) 

𝛾3

= −
𝑏𝐴1𝑎5(𝑎2 − 𝜇2𝑎3)

2𝑙𝑎∗

+
𝐾𝑁𝐿𝑙(𝑎6 − 3𝜇2(2𝑎7 + 𝑎8))

𝑙𝑎∗
 

{𝑎1, 𝑎2, 𝑎3, 𝑎5, 𝑎6, 𝑎7, 𝑎8}

= ∫ {𝜙2, 𝜙
𝑑2𝜙

𝑑𝑥2 , 𝜙
𝑑4𝜙

𝑑𝑥4 , (
𝑑𝜙

𝑑𝑥
)2, 𝜙4, 𝜙2(

𝑑𝜙

𝑑𝑥
)2, 𝜙3𝑑2𝜙

𝑑𝑥2} 𝑑𝑥
𝑙

0

 

 

𝑎∗ = 𝐼1(𝑎1 − 𝜇2𝑎2) 

 

It is also worth noting that ignoring the effect of elastic 

foundation and thermal loading in “Eq. (38) and (39)ˮ 

would result in the same governing equation for non-

local nonlinear free vibration of FG nano-beams as 

determined by Nazemnezhad et al. [9]. The initial 

conditions for “Eq. (38)ˮ would be assumed to be: 

 

{
𝑞(0) = 𝑎0                                                                    

�̇�(0) = 0                                                                      
 (40) 

 

Where 𝑎0 is maximum amplitude corresponding to the 

time base function q(t). By using Galerkin method and 

substituting “Eq. (36)ˮ into “Eq. (35)ˮ, the governing 

equation of the time base function in free vibration of FG 

nano-beam based on strain-inertia gradient elasticity 

could be determined as: 
 

�̈� + 𝛽1𝑞 + 𝛽2𝑞�̇�2 + 𝛽3𝑞2�̈� + 𝛽4𝑞�̈� + 𝛽5�̇�2

+ 𝛽6𝑞3 = 0 
(41) 

 

Where again to summarize the mathematical 

formulation, the coefficients β1, β2, … , β6 are introduced 

as: 

𝛽1 = (𝑏𝐶1(𝑎3 + 𝑙𝑠
2𝑎12) + 𝑁𝑡ℎ𝑎2 + 𝐾𝐿𝑎1

− 𝐾𝑆𝑎2)/𝑎∗∗ 

𝛽2 = −3𝑏𝐷1𝑙𝑑
2𝑎9/𝑎∗∗ 

𝛽3 = −3𝑏𝐷1𝑙𝑑
2𝑎9/𝑎∗∗ 

𝛽4 = −𝑏𝐸1𝑙𝑑
2(𝑎16 + 𝑎17)/𝑎∗∗ 

𝛽5 = −2𝑏𝐸1𝑙𝑑
2(𝑎16 + 𝑎17)/𝑎∗∗ 

𝛽6 = (𝑏𝐴1[−1.5𝑎9 − 𝑙𝑠
2(𝑎10 + 4𝑎11 + 𝑎13)]

+ 𝐾𝑁𝐿𝑎6)/𝑎∗∗ 

𝑎∗∗ = 𝐼1𝑎1 + 𝑏𝐹1𝑙𝑑
2𝑎3 

{𝑎9, 𝑎10, 𝑎11, 𝑎12}

= ∫ {𝜙
𝑑2𝜙

𝑑𝑥2 (
𝑑𝜙

𝑑𝑥
)

2

, 𝜙 (
𝑑2𝜙

𝑑𝑥2)
3

, 𝜙
𝑑𝜙

𝑑𝑥
.

𝑑2𝜙

𝑑𝑥2 .
𝑑3𝜙

𝑑𝑥3 , 𝜙
𝑑6𝜙

𝑑𝑥6} 𝑑𝑥
𝑙

0

   

{𝑎13, 𝑎16, 𝑎17}

= ∫ {𝜙
𝑑4𝜙

𝑑𝑥4 (
𝑑𝜙

𝑑𝑥
)

2

, 𝜙 (
𝑑2𝜙

𝑑𝑥2)
2

, 𝜙
𝑑𝜙

𝑑𝑥
.

𝑑3𝜙

𝑑𝑥3} 𝑑𝑥
𝑙

0

 

 

With the same initial conditions according to “Eq. (40)ˮ. 

4 SOLUTION METHOD 

4.1. Homotopic Analysis Method 

Homotopic Analysis Method (HAM) is a general 

analytic method for solving the non-linear differential 

equations that successfully results in convergent series 

solutions of strongly nonlinear problems [40]. The HAM 

transforms a non-linear differential equation into an 

infinite number of linear differential equations with 

embedding an auxiliary parameter p that typically ranges 

from zero to one. As p increases from 0 to 1, the solution 

varies from the initial guess to the exact solution [40]. 

To illustrate the basic ideas of the HAM, consider the 

following non-linear differential equation: 

 

𝑁[𝑞(𝑡)] = 0 (42) 

 

Where 𝑁 is a nonlinear operator and t denotes time as 

the independent variable and q (t) is an unknown 

variable. The homotopy function is constructed as 

follows [40]: 

 

𝐻(𝜑; 𝑝, ћ, 𝐻(𝑡)) = (1 − 𝑝)𝐿[𝜑(𝑡; 𝑝)
− 𝑞0(𝑡)]
− 𝑝ћ𝐻(𝑡)𝑁[𝜑(𝑡; 𝑝)] 

(43) 

 

Where 𝜑 is a function of t and p and also ћ and H(t) are 

non-zero auxiliary parameter and non-zero auxiliary 

function, respectively. The parameter L denotes an 

auxiliary linear operator. As p increases from 0 to 1, the 

𝜑(𝑡; 𝑝) varies from the initial approximation to the exact 

solution. So the zero-order deformation is constructed as 

[40]: 

 

(1 − 𝑝)𝐿[𝜑(𝑡; 𝑝) − 𝑞0(𝑡)]
= 𝑝ћ𝐻(𝑡)𝑁[𝜑(𝑡; 𝑝)] 

(44) 

 

 

With the following initial conditions corresponding to 

initial conditions of “Eq. (42)ˮ: 
 

𝜑(0; 𝑝) = 𝑎0    ,    
𝑑𝜑(0; 𝑝)

𝑑𝑡
= 0 

(45) 
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The higher order approximations of the solution can be 

obtained by calculating the m-order (m>1) deformation 

equation as [40]: 
 

𝐿[𝑞𝑚 − 𝜒𝑞𝑚−1] = ћ𝐻(𝑡)𝑅𝑚(𝑞𝑚−1, 𝜔𝑚−1) (46) 
 

Where the 𝜒 and 𝑅𝑚(𝑞𝑚−1, 𝜔𝑚−1) are defined as 

follows [40]: 
 

𝑅𝑚(𝑞𝑚−1, 𝜔𝑚−1)

=
1

(𝑚 − 1)!

𝜕𝑚−1𝑁[𝜑(𝑡; 𝑝), 𝜔(𝑝)]

𝜕𝑝𝑚−1
|𝑝 = 0 

(47) 

  

𝜒 = {
0            𝑚 ≤ 1
1             𝑚 ≥ 2

 (48) 

 

Subjected to the following homogeneous initial 

conditions: 
 

𝑞𝑚(0) = 𝑞�̇�(0) = 0 (49) 
 

Since the initial conditions of “Eq. (45)ˮ are already 

imposed to the zero-order deformation. 

4.2. Application of the HAM 

The governing equation for non-local nonlinear free 

vibration of FG nano-beam resting on elastic nonlinear 

foundation may be transformed to the following 

equation using the change of variable 𝜏 = 𝜔𝑡: 

 

𝜔2�̈� + 𝛾1𝑞 + 𝛾3𝑞3 = 0 (50) 

 

Where the dot denotes the 𝑑/𝑑𝜏. In order to solve the 

“Eq. (50)ˮ through HAM, the first conjecture of the 

problem solution, which satisfies initial conditions “Eq. 

(49)ˮ, can be stated as follow: 

 

𝑞0(𝜏) = 𝑎0 cos(𝜏)   ,   𝑞0(0) = 𝑎0 , �̇�0(0)
= 0 

(51) 

Where 𝑎0 = 𝑤𝑚𝑎𝑥/𝑟 is the maximum dimensionless 

amplitude or amplitude ratio. Linear and nonlinear 

operator can also be expressed as follow: 
 

𝐿[𝑞(𝜏, 𝑝)] = 𝜔0
2 [

𝜕2𝑞(𝜏, 𝑝)

𝜕𝜏2
+ 𝑞(𝜏, 𝑝)] (52) 

  

𝑁[𝑞(𝜏, 𝑝)] = 𝜔2
𝜕2𝑞(𝜏, 𝑝)

𝜕𝜏2
+ 𝛾1𝑞 + 𝛾3𝑞3 (53) 

 

The first-order deformation equation which gives the 

first-order approximation of the 𝑞(𝜏) can be written as: 
 

𝐿[𝑞1(𝜏)]
= ћ𝐻(𝑡)𝑁[𝑞(𝜏, 𝑝), 𝜔]𝑞=0 

(54) 

  

𝑞1(0) = 0 ,   
𝜕𝑞1(0)

𝜕𝜏
= 0 (55) 

 

The auxiliary function 𝐻(𝜏) and the auxiliary parameter 

ћ which adjust convergence region and rate of 

approximate solution must be chosen in such a way that 

the solution of “Eq. (54)ˮ could be expressed by a set of 

base functions [40]. While assuming ћ = -1 and 𝐻(𝜏) =
1 can satisfy this constraint [16], as a result the Eq. (54) 

utilizing the 𝑞0(𝜏)as “Eq. (51)ˮ, The time response of 

the first-order transformation equation and the 

equivalent terms for nonlinear natural frequencies would 

be determined as follows: 
 

𝑞(𝜏) ≈ 𝑎0 cos(𝜏) −
𝛾3𝑎0

3

32𝜔0
2[cos(𝜏)−cos(3𝜏)] (56) 

  

𝜔𝑛 ≈ 𝜔0 +
𝛾3𝑎0

2

128𝜔0
3

[2(𝜔0
2 − 𝛾1) − 3𝛾3𝑎0

2] (57) 

 

Where 𝜔0 = (𝛾1 + 3

4
𝛾3𝑎0

2)0.5. It is worth noting that √𝛾1 

is the linear natural frequency, therefore according to 𝜔0 

the nonlinear frequencies are greater than linear 

frequencies. Finally, according to HAM, first-order 

approximation of natural frequencies and time response 

for nonlinear vibration of FG nano-beam based on 

strain-inertia gradient theory utilizing “Eq. (41) and Eq. 

(51)ˮ and preventing so-called secular term in time 

response, the coefficients of the term cos (𝜏) are set to 

zero, are expressed as:  

 

𝜔0 = √
4𝛽1 + 3𝛽7𝑎0

2

4 + (3𝛽3 − 𝛽2)𝑎0
2 (58) 

  

𝑞(𝜏) ≈ 𝑞0(𝜏) + 𝑞1(𝜏)

= 𝑎0 cos(𝜏)+
𝑎0

2

96𝜔0
2[−48𝜔0

2(𝛽5 − 𝛽4) + [32(𝜔0
2(2𝛽5 − 𝛽4)) + 3𝜔0

2(𝛽3 + 𝛽2) − 3𝛽6] cos(𝜏)

− 16𝜔0
2(𝛽5 + 𝛽4) )cos(2𝜏) + 3𝑎0[𝛽6 − 𝜔0

2(𝛽3 + 𝛽2)] cos(3𝜏)] 

(59) 

 

 

 

The exact solution for “Eq. (38)ˮ so-called duffing 

equation, can be expressed as [43]: 

 

𝜔𝑛 =
𝜋√𝛼1 + 𝛼3𝑎0

2

2𝐾
 

(60) 
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Where K is defined by using complete elliptic integral 

of the first kind as [44]: 

 

𝐾 = ∫ 1

√1+𝑚×𝑠𝑖𝑛2(𝑥)

𝑑𝑥

𝜋
2

0

 (61) 

 

Where 𝑚 = 𝛼3𝑎0
2 (2(𝛼1 + 𝛼3𝑎0

2))⁄ .  

5 RESULT AND DISCUSSION 

5.1 Comparison Study 

A comparative study for evaluation of classical 

nonlinear frequency to classical linear frequency ratios 

(𝜔𝑁𝐿 𝜔𝐿⁄ ) between the present second-order homotopy 

analysis solution, the exact solution, the multiple scale 

method[9] and  the Ritz–Galerkin method [45] is carried 

out in “Table 1ˮ for simply supported isotropic beams 

with 𝐿 = 2 𝑚 and ℎ = 0.1 𝑚. 

It is observed that the present results agree well with 

those given by using exact solution and Singh et al. [45] 

using Ritz–Galerkin method. It should be noted here that 

as the amplitude ratio increases, the difference between 

present solution and the multiple scale solutions used in 

Ref. [9] compare with exact solution becomes more. 

Therefore, the HAM has more accuracy than multiple 

scale method. It can be observed from Table 1 that the 

HA method has high accuracy and high adapted with 

exact solution. 

 
Table 1 Comparison of frequency ratio (𝜔𝑁𝐿 𝜔𝐿⁄ ) for a 

simply supported isotropic beam 

𝑎0

𝑟
 

Present  

R
ef

.[
9

]
 R

ef
.[

4
5

]
 

E
x

ac
t 

(E
q

.6
0

)
 

𝜔𝑁𝐿 𝜔𝐿 𝜔𝑁𝐿 𝜔𝐿⁄     

1 10.74

96 

9.869

6 

1.089

16 

1.0937 1.089

7 

1.08

916 

2 13.00

63 

9.869

6 

1.317

81 

1.3750 1.322

9 

1.31

778 

3 16.04

69 

9.869

6 

1.625

89 

1.8438 1.639

4 

1.62

568 

4 19.50

79 

9.869

6 

1.976

56 

- - 1.97

602 

 

It is noted that 𝑟 = √𝐼 𝐴⁄  is gyration radius. “Table 2ˮ 

shows a comparison between non-local linear and 

nonlinear frequency ratios of FG nano-beams for various 

amplitude ratios, gradient indices, non-local parameter 

values and nano-beam length. It can be seen that the 

results from the present study are comparable to the 

results of Nazemnezhad et al. [9]. 

 

Table 2 Comparison of linear and nonlinear frequency ratios 

for a simply supported FG nano-beam 

𝑎0

𝑟
 P L,nm 

Present 

𝜇2, 𝑛𝑚2 

Ref.[9] 

𝜇2, 𝑛𝑚2 

2 4 2 4 

0
 (

L
in

ea
r)

 

3 

10 0.91386 0.84673 0.9139 0.8467 

20 0.97620 0.95403 0.9762 0.9540 

30 0.98921 0.97876 0.9892 0.9788 

1
(N

o
n
li

n
ea

r)
 

1 

10 0.9282 0.8729 0.9247 0.8659 

20 0.9801 0.9615 0.9792 0.9599 

30 0.9909 0.9822 0.9906 0.9815 

2 

10 0.9267 0.8702 0.9221 0.8607 

20 0.9797 0.9608 0.9786 0.9585 

30 0.9908 0.9819 0.9903 0.9809 

 

5.2. Benchmark Results 

To demonstrate the small scale effects based on non-

local and SIG elasticity theory on the nonlinear free 

vibration of FG nano-beams, variations of the frequency 

ratios versus gradient index, amplitude ratio, length of 

the FG nano-beam, linear and nonlinear foundation 

stiffness and temperature rise are presented in this 

section. 

  
Frequency Ratio (NL/NL)

=
Nonlocal or SIG nonlinear natural frequency

classical nonlinear natural frequency
 

 

 

 
(62) Frequency Ratio (L/L)

=
Nonlocal or SIG linear natural frequency

classical linear natural frequency
 

Frequency Ratio (NL/L)

=
 SIG nonlinear natural frequency

 SIG linear natural frequency
 

A FG nano-beam with squared cross-section (𝑏 = ℎ =
0.05𝐿) is considered as a case study to illustrate general 

behavior of functionally graded nano-beams. The nano-

beams are assumed to be made of Si3N4-SUS304  whose 

material properties are listed in “Table 3ˮ.The half-wave 

number 𝑛 = 1 and the relation between static and 

dynamic length scale parameters for strain-inertia 

gradient theory is assumed to be 𝑙𝑑 = 3𝑙𝑠 [46].As 

mentioned earlier, in non-local elasticity theory the 

parameter μ (nm) is the small-scale parameter revealing 

the small-scale effect on the responses of nano-size 

structures. In the present study, a conservative estimate 

of the small-scale parameter (𝜇) is considered to be in 

the range of 0-2 𝑛𝑚 [6]. 
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Table 3 Material properties of FG nano-beam [47] 

Material 
Young 

modulus, 

Poisson’s 

ratio 

Mass 

density, 

thermal 

expansion 

coefficient, 

 GPa  𝑘𝑔 𝑚3⁄  10−6 𝐾°⁄  

SUS304 207.8 0.3178 8166 12.33 

𝑆𝑖3𝑁4 322.3 0.24 2370 5.87 

 

It is noted that, increasing in temperature reduces the 

linear and nonlinear natural frequencies. “Fig. 2ˮ shows 

that when temperature rises to ∆𝑇 > 186℃ for nonlocal 

and ∆𝑇 > 273℃ for SIG theory the buckling occurs. So, 

in all of analyzes the temperature increase is less than 

this suffering. 

 

 

Fig. 2 Variations of the nonlinear natural frequency versus 

temperature rise. Buckling of FG nano-beam calculated based 

on Non-local theory and SIG theory. 𝜇 = 2 × 10−9, 𝑃 =
2, 𝑎0 𝑟 = 1⁄ . 

 

Some selected numerical results are also presented in 

“Tables 4 to 5ˮ as benchmark in the future works. 

 

5.2.1. Influence of the FG nano-beam length on the 

frequency ratio 

Firstly, we turn our attention to the variations of the 

fundamental linear and nonlinear frequency ratios versus 

the length of FG nano-beam with elastic foundation and 

thermal loading based on non-local and SIG elasticity 

theory. The variations are plotted in “Fig. 3ˮ for various 

amplitude ratios (𝑎0 = 0,1,2) when the gradient index is 

set to be 𝑃 = 2.  

 

Table 4 Nonlinear frequencies and nonlinear frequency ratios 

of FG nano-beam upon non-local theory for various 

amplitude ratios, linear and nonlinear elastic foundation 

parameter and temperature rise 

𝑎0

𝑟
 𝐾𝐿 𝑇 

Nonlinear Frequencies 

𝐾𝑁𝐿 

50 0 

𝐾𝑆 𝐾𝑆 

25 0 25 0 

1 0 0 19.045

6 

10.77 18.292

3 

9.3738 

1 1 0 19.071

8 

10.816

3 

18.319

6 

9.427 

1 50 0 20.315

8 

12.883

8 

19.611

4 

11.741

7 

1 0 10

0 

17.766

8 

8.3018 16.956

9 

6.3871 

1 50 10

0 

19.122

2 

10.905 18.372

1 

9.5286 

2 0 0 22.387

5 

15.951

8 

19.715

5 

11.914

7 

2 50 0 23.477

6 

17.448

8 

20.945

1 

13.854

9 

2 0 10

0 

21.310

2 

14.400

9 

18.483

1 

9.7409 

2 50 10

0 

22.452

7 

16.043

2 

19.789

5 

12.036

8 

3 0 0 27.055

0 

22.028

1 

21.882

7 

15.235

2 

𝜇 = 2 𝑛𝑚  , 𝐿 = 10 𝑛𝑚, 𝑃 = 2  , 𝑙 ℎ⁄ = 20 

 
Table 5 Nonlinear frequencies and nonlinear frequency ratios 

of FG nano-beam upon SIG theory for various amplitude 

ratios, linear and nonlinear elastic foundation parameter and 

temperature rise 

𝑎0

𝑟
 𝐾𝐿 𝑇 

Nonlinear Frequencies 

𝐾𝑁𝐿 

50 0 

𝐾𝑆 𝐾𝑆 

25 0 25 0 

1 0 0 21.2159 14.3429 20.5489 13.3365 

1 1 0 21.2393 14.3774 20.5730 13.3736 

1 50 0 22.3526 15.9764 21.7206 15.0794 

1 0 100 19.6235 11.8611 18.9004 10.6221 

1 50 100 20.8472 13.7917 20.1680 12.7418 

2 0 0 25.5158 20.2147 23.2492 17.2657 

2 50 0 26.4609 21.3953 24.2827 18.6341 

2 0 100 24.2188 18.5506 21.8178 15.2838 

2 50 100 25.2126 19.8306 22.9160 16.8143 

3 0 0 31.2865 27.1963 27.0823 22.2317 

𝑙𝑠 = 2 𝑛𝑚 , 𝑙𝑑 = 6 𝑛𝑚 , 𝐿 = 10 𝑛𝑚, 𝑃 = 2 , 𝑙 ℎ⁄ = 20 

 

From “Fig. 3(a) and Fig. 3(b)ˮ, it is observed that by 

increasing the length of FG nano-beam, the linear and 

nonlinear frequency ratios obtained from SIG theory 

descending approaches the local limit while in the non-

local theory, the linear and nonlinear frequency ratios 

ascending approaches the local limit. 
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(a) 

 
(b) 

Fig. 3 Variations of the frequency ratios versus the FG 

nano-beam length for various amplitude ratios (𝑎0 𝑟⁄ = 0,1,2) 

and length scale parameters (𝜇 = 1,2 𝑛𝑚 𝑎𝑛𝑑 𝑙𝑑 =
3 & 6 𝑛𝑚): (a): Non-local theory and (b): SIG theory. 

(𝐾𝐿 = 10, 𝐾𝑁𝐿 = 10, 𝐾𝑆 = 5, ∆𝑇 = 100, 𝑃 = 2) 
 

5.2.2. Influence of elastic foundation parameters on 

the frequency ratio 

Next, we investigate the effects of elastic foundation 

parameters on the nonlinear free vibrations behavior of 

FG nano-beams based on non-local and strain-inertia 

gradient elasticity theory. “Fig. 4 and Fig. 5ˮ 

demonstrate the effects of the linear and nonlinear elastic 

foundation parameters on frequency ratios of simply 

supported FG nano-beam when the gradient index is set 

to be 𝑃 = 2 and static and dynamic length scale 

parameters are 𝑙𝑠 = 2 𝑛𝑚 , 𝑙𝑑 = 6 𝑛𝑚 and 𝐿 = 10 𝑛𝑚 ,
𝑙 ℎ⁄ = 20. The following dimensionless foundation 

parameters 𝑘𝐿𝐿4 (𝑏𝐷∗)⁄ , 𝑘𝑆𝐿2 (𝑏𝐷∗)⁄    and 

 𝑘𝑁𝐿𝑟2𝐿4 (𝑏𝐷∗)⁄  are used in the plot of “Fig. 4 and Fig. 

5ˮ. 

 

 
(a) 

 
(b) 

Fig. 4 Variations of the frequency ratios versus the 

amplitude ratio for various linear foundation parameter values 

for the FG nano-beam: (a): SIG theory and (b): comparison 

between non-local and SIG elasticity theory. 
(𝐾𝑁𝐿 = 10, 𝐾𝑆 = 5, ∆𝑇 = 100, 𝑃 = 2, 𝐿 = 10 𝑛𝑚 , 𝜇

= 2 𝑛𝑚) 
 

It can be seen from “Fig. 4(a)ˮ that increasing values of 

the linear elastic foundation parameter leads to 

decreasing the frequency ratios at a constant amplitude 

ratio. It should be noted that the linear elastic foundation 

parameter increases nano-beam stiffness and also, linear 

and nonlinear frequencies but the increase of linear 

frequencies is more than nonlinear frequencies. At “Fig. 

4(b)ˮ, the trend of non-local elasticity theory is 

compared with SIG theory. It can be observed from “Fig. 

4(b)ˮ that increasing values of the linear elastic 

foundation parameter according to SIG theory leads to 

decreasing the nonlinear frequency ratios at a constant 

amplitude ratio but the non-local theory will cause 

increasing the frequency ratios. 
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(a) 

 
(b) 

Fig. 5 Variations of the frequency ratios versus the 

amplitude ratio for various nonlinear foundation parameter 

values for the FG nano-beam: (a): SIG theory and (b): 

comparison between non-local and SIG elasticity theory. 

 (𝐾𝐿 = 10, 𝐾𝑆 = 5, ∆𝑇 = 100, 𝑃 = 2, 𝐿 = 10 𝑛𝑚 , 𝜇 =
2 𝑛𝑚) 

 

An increase in the value of the nonlinear elastic 

foundation parameter leads to increasing at frequency 

ratios at a constant amplitude ratio. This interesting 

behavior is shown in “Fig. 5(a)ˮ. According to “Fig. 

5(b)ˮ, if in SIG theory(𝑘𝑁𝐿 < 10 ) then the nano-beam 

displays hardening type behavior and if (𝑘𝑁𝐿 > 10) then 

the nano-beam displays softening type behavior. But the 

non-local theory shows a constantly ascending behavior 

by extending amplitude ratio.  

5.2.3. Influence of temperature rise on the frequency 

ratio 

Then verification is carried out for the nonlinear 

vibration problem of a uniformly heated simply 

supported FG nano-beam based on non-local and SIG 

elasticity theory. The dependences of frequency ratios 

on the temperature rise under some specific values of 

static and dynamic length scale parameters (𝑙𝑠 =
2 𝑛𝑚 &𝑙𝑑 = 6 𝑛𝑚) and = 2 , 𝐿 = 10 𝑛𝑚 and 𝑙 ℎ⁄ = 20 

are plotted in “Fig. 6ˮ, in which,  ∆T = 0 implies an 

unheated FG nano-beam.  

 

 
(a) 

 
(b) 

Fig. 6 Variations of the frequency ratios versus the 

amplitude ratio for various temperature rise values for the FG 

nano-beam: (a): SIG theory and (b): comparison between 

non-local and SIG elasticity theory. 
(𝐾𝐿 = 10, 𝐾𝑁𝐿 = 10, 𝐾𝑆 = 5, 𝑃 = 2, 𝐿 = 10 𝑛𝑚 , 𝜇 = 2 𝑛𝑚) 
 

It is found from “Fig. 6(a)ˮ that the increment in 

temperature rise leads to an increment of the frequency 

ratio. It can be seen from “Fig.6 (b)ˮ that increase in 

temperature rise leads to increasing the nonlinear 

frequency ratios in non-local and SIG elasticity theory. 

In addition, upon SIG elasticity theory, the temperature 

rise effects are more obvious for lower amplitude ratios. 
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6.2.4. Influence of length scale parameters on the 

frequency ratio 

In order to investigate the effect of the length scale 

parameters on the natural frequency of FG nano-beam, a 

curve has been plotted as a function of the non-local 

parameter for three elasticity theories when (𝑙𝑠 =
𝜇 & 𝑙𝑑 = 3𝑙𝑠). 

 

 
Fig. 7 Variations of the frequency ratios versus the non-

local parameter for the FG nano-beam for comparison 

between SIG, Non-local and Classic elasticity theory. 
(𝑎0 𝑟⁄ = 1, 𝐾𝐿 = 10, 𝐾𝑁𝐿 = 10, 𝐾𝑆 = 5, ∆𝑇 = 100, 𝑃 =

2, 𝐿 = 10 𝑛𝑚 ) 

 

It is observed from “Fig. 7ˮ that by increasing the non-

local parameter, the nonlinear frequency ratio of SIG 

theory has an increasing trend while the nonlinear 

frequency ratio of non-local elasticity theory has a 

decreasing trend. This implies that the overall stiffness 

of FG nano-beam is significantly reduced due to the 

effects of the non-local parameter. The nonlinear 

frequency ratios that are obtained from SIG theory are 

greater than non-local and classical theory and smaller 

than strain gradient theory. 

5.2.5. Influence of the gradient index on the 

frequency ratio 

Finally, variations of the linear and nonlinear frequency 

ratios of simply supported FG non-beam with elastic 

foundation and thermal loading versus the gradient 

index based on non-local and SIG elasticity theory are 

presented in “Fig. 8ˮ for various amplitude ratios 

(𝑎0 𝑟⁄ = 0,1,2) and static and dynamic length scale 

parameters (𝑙𝑠 = 1,2 𝑛𝑚 &𝑙𝑑 = 3,6 𝑛𝑚) when the 

length of FG non-beam is L = 10 nm. It is clearly 

understood from “Fig. 8ˮ that by increasing gradient 

index, its effect on the variation of frequency ratios in 

both theories would be reduced. 

 

 

 
(a) 

 
(b) 

Fig. 8 Variations of the frequency ratios versus the 

gradient index for the FG nano-beam for various amplitude 

ratio and length scale parameters: (a): Non-local theory and 

(b): SIG theory. (𝐾𝐿 = 10, 𝐾𝑁𝐿 = 10, 𝐾𝑆 = 5, ∆𝑇 = 100, 𝐿 =
10 𝑛𝑚 ) 

5 CONCLUSION 

In this work, the nonlinear free vibration analysis of FG 

nano-beam in thermal environment and resting on 

nonlinear elastic foundation was investigated based 

upon non-local and SIG elasticity theories. The Euler–

Bernoulli beam theory including von Karman geometric 

nonlinearity is employed to model the FG nano-beam. 

Explicit formulas are proposed for Euler–Bernoulli 

model relevant to each type of gradient theory to 

evaluate the natural frequencies of FG nano-beam. The 

analytical solution for natural frequencies is established 

using homotopy analysis method.  
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From the numerical results, it can be concluded that the 

frequency ratios predicted by HA method and exact 

solution are in good agreement. It can be seen that by 

increasing the length of FG nano-beam, the linear and 

nonlinear frequency ratios obtained from SIG theory 

descending approaches the local limit but in the non-

local theory the linear and nonlinear frequency ratios 

ascending approaches the local limit. In non-local and 

SIG theory, the nonlinear frequency ratios increase as 

the linear and nonlinear elastic foundation parameter is 

decreased. The effects of temperature rise on the 

nonlinear frequency ratios in non-local and SIG theory 

are the same. It is founded that by increasing the length 

scale parameters, the nonlinear frequency ratio for SIG 

theory has an increasing trend and in non-local elasticity 

theory has a decreasing trend. The frequency ratios and 

linear and nonlinear natural frequencies that are obtained 

from strain-inertia gradient theory are greater than non-

local and classical theory and smaller than strain 

gradient theory. 
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