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Abstract: Surface quality along with the low production cost, play significant role in today’s 

manufacturing market. Quality of a product can be described by various parameters. One of the most 

important parameters affecting the product quality is surface roughness of the machined parts. Good 

surface finish not only assures quality, but also reduces the product cost. Before starting any 

machining process, surface finish is predictable using cutting parameters and estimation methods. 

Establishing a surface prediction system on a machine tool, avoids the need for secondary operation 

and leads to overall cost reduction. On the other hand, creating a surface estimation system in a 

machining plant, plays an important role in computer integrated manufacturing systems (CIMS). In 

this study, the effect of cutting parameters, cutting tool vibration, tool wear and cutting forces on 

surface roughness are analyzed by conducting experiments using different machining parameters, 

vibration and dynamometers sensors to register the amount of tool vibration amplitude and cutting 

force during the machining process. For this, a number of 63 tests are conducted using of different 

cutting parameters. To predict the surface quality for different parameters and sensor variables, an 

ANN model is designed and verified using the test results. The results confirm the model accuracy 

in which the R2 value of the tests was obtained as 0.99 comparing with each other. 
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1 INTRODUCTION 

Machining operations usually face challenges to achieve 

high quality in terms of parts dimensional accuracy, high 

surface quality, economy of machining in terms of cost 

saving. Among these challenges, surface roughness has 

a great influence on product quality, and the part 

functional properties such as lubricant retentively, void 

volume, load bearing area, and frictional properties. On 

the other hand, a high-quality machined surface 

significantly improves fatigue strength, corrosion 

resistance, and creep life [1].  

Surface roughness is a commonly encountered problem 

in machined parts. It is defined as the small irregularities 

of surface texture, which results from the operations of 

the machining process. Surface roughness is consisting 

of a multitude of apparently random peaks and valleys 

[2]. Surface roughness in contacting surfaces, influences 

the frictional properties of those surfaces during the 

forming processes [3]. Based on the results of studies 

over the years, it is well known that the final state of 

surface roughness is influenced by machining 

parameters and variables such as spindle speed, feed, 

and depth of cut, tool flank wear, and vibration level [4, 

5]. 

The relative motion between the cutting tool and work 

piece will affect the quality of the machining and the 

surface finish. In turning, the presence of tool vibration 

is a major factor which leads to poor surface finish [6], 

[7]. Some researchers have indicated that the vibration 

amplitude during a machining process causes a worse 

surface quality in machine parts [8]  

Also, the surfaces produced on the workpiece are greatly 

influenced by the cutting parameters and the cutting 

force [9, 10]. Researchers in their study have indicated 

that there are a relationship between the machining 

parameters such as cutting speed, feed rate and depth of 

cut and the surface roughness of the machined part [11], 

[12].  

Therefore, the models of surface roughness proposed in 

previous studies have been made by setting different 

values of the cutting parameters to show a strong 

relationship dependency between the independent inputs 

and the desired output (surface roughness) [5]. 

Nowadays, researchers are trying to develop a robust 

and accurate model, which can describe correlations 

between the cutting parameters and the surface 

roughness of the machined products. Tool wear is 

another factor that surface quality is directly influenced 

by this incident. Tool wear causes a poor surface on the 

machined parts which in turn increases the production 

cost. Previous researches have indicated the influence of 

the tool wear on the surface roughness [13], [14].  

Prediction of the surface roughness by using the 

influencing parameters and variables have been studied 

by several researchers to enhance the quality of the parts 

in an affordable manner. There are many prediction tools 

to achieve accurate results such as artificial neural 

network, analytical models (ANN), fuzzy logic and etc. 

[15], [16].  

Rahman et al [17], developed a neural-network-based 

method for on-line fault diagnosis which monitors the 

level of chatter vibration in a turning operation. The 

experimental results demonstrated that the model has a 

high prediction success rate. Lin et al.[18], used a 

network to create a prediction model for surface 

roughness and cutting force and claimed that this 

approach is more reliable than that by regression 

analysis. Surjya K. Pal et al [19], have applied the back 

propagation neural network approach to estimate the 

surface roughness in turning with a HSS tool and 

compared the predicted and the measured values.  

Dimla [17], studied the application of perceptron type of 

neural networks to tool state classification during 

turning process. Salgado et al[20], used least-squares 

support vector machine to predict the surface roughness 

values given the cutting conditions and the features 

extracted from the vibration amplitude signals. Daniel 

Kirby et al [1], used the mean of the vibration signals in 

the prediction of surface roughness in turning process. 

Zhang and Chen [21], developed a process surface 

roughness adaptive control system in machining of 

AA6061 alloy. They conducted experiments in all 

parameters of spindle speed, feed rate and depth of cut 

factor levels by the use of full factorial experimental 

design method. The surface roughness was estimated 

with 91.5% accuracy with the system that can recognize 

cutting force signals collected during machining and the 

feed rate was modified in terms of desired surface 

roughness. Surface roughness estimation modal was 

presented based on response surface method to 

investigate the machining parameters such as feed rate, 

tool geometry and machining time, affecting the 

roughness of surface produced in dry turning operation 

[22]. 

In this study, the effect of cutting parameters, tool 

vibration amplitude, tool wear and cutting force 

variation on surface roughness of machined parts is 

investigated during a turning process. By conducting the 

experiments using of cutting parameters combinations, 

cutting force values, vibration amplitudes and tool wear 

rates were measured and analyzed based on a Taghuchi 

method.  

Artificial neural network (ANN) method was then 

applied for constructing the estimation model of surface 

roughness using cutting parameters and measured 

variables.  The obtained results from the ANN method 

are compared with the measured values of surface 

roughness to find the reliability and accuracy of the 

developed method.  
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2 EXPERIMENTS 

In this paper, the effects of cutting parameters and some 

measured variables on the surface roughness are 

investigated using some designed experiment. Johnford 

TC-35 CNC machine tool was used to perform the 

experiments. A Sandvik- Coromant insert (TNMG 

1604-QM H13) was selected as the cutting tool and a 

TIZIT Simple (CTANR 2525M16) marked tool was 

considered as tool holder. The material used for 

machining was SAE 1050 with ∅100 × 1000 mm of 

dimension. Chemical Properties of the workpiece are 

given in Table 1. The cutting parameters used for 

machining operation were given in Table. 2.  

A Dino Capture microscope was used to measure the 

flank wear. Cutting forces were measured using a Kistler 

9272 4-component dynamometer. A TV300 type 

vibration sensor was used for measuring the vibration 

signal amplitudes. To evaluate the vibration conditions, 

the displacement, acceleration and velocity variables can 

be measured by the sensor. The sensor measures the root 

mean square (RMS) of the variables. Average surface 

roughness (Ra) was measured using “Mahr-Perthometer 

M1”, a surface roughness measuring machine (Fig. 1). 

 

 

Fig. 1 Mahr-Perthometer M1 surface roughness tester 
 

Table 1 The chemical properties of the workpiece 

workpiece SAE1050 (AISI 1050) 
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Table 2 The cutting parameters 

Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

Cutting 

depth (mm) 

Tool flank 

wear intervals 

(mm) 

115 0.2 0.7 Initial (0), 

0.05, 0.1, 0.15, 

0.2, 0.25, 0.3 
140 0.25 1.2 

165 0.3 1.7 

The measurements were repeated three times in 10 mm 

sample length. The range for tool wear was selected 

between 0-0.3 for a new and worn tool respectively 

based on ISO3685 standard. For conducting the 

experiments for investigation of the surface roughness, 

a total of 63 experiments were designed using Taghuchi 

L9 array and by taking in to account the wear ranges as: 

0, 0.05 0.1, 0.15, 0.2, 0.25, 0.3 mm. Using cutting 

parameters and Taghuchi method, the researchers 

created an experimental array for conducting the tests. 

The cutting force (Fc) and average vibration amplitudes 

were measured for any of the tests using the sensors. 

3 ARTIFICIAL NEURAL NETWORK 

Artificial Neural network or parallel distributed 

processing is an alternative to sequential processing of 

knowledge as known from symbolic programming [23]. 

In analogy to the human brain, artificial neural networks 

consist of single units (neurons) that are interconnected 

by the so-called synapses. The typical network has 1 

input layer, 1 or more hidden layers, and 1 output layer. 

Each layer has some units corresponding to neurons. The 

units in neighboring layers are fully interconnected with 

links corresponding to synapses. The number of hidden 

layers or number of neurons in hidden layers is defined 

based on the experience of the model designer which in 

turn depends on the data set, accuracy of the model and 

etc.   

A small number of hidden layers should be used when 

the training sample size is moderate or the number of 

input and output neurons is small. In general, small 

number of hidden layers and neurons cause inaccurate 

results where as large number of hidden layers and 

neurons results in over fitting. Although, there are some 

methods for determining the number of layers and 

neurons, they are not useful in many cases [24]. The 

strengths of the connections between 2 units are called 

“weights”. In each hidden layer and output layer, the 

processing unit sums its input from the previous layer 

and then applies the activation function to compute its 

output to the next layer according to the following 

equations [25].   

v = ∑ wijxi or    v = ∑ wijxi + b     ,   n
i=0

n
i=0                 (1) 

where wij is the weight from node i in the input layer to 

node j in the hidden layer,  xi is the ith input element; 

and n is the number of nodes in the input layer. After 

obtaining the results, a nonlinear activation function is 

used to regulate the output of a node, shown as follows:  

y = F(v)                                                                      (2) 

where F(v) is the output of the jth node in the hidden 

layer. Subsequently, output from the hidden layer is used 

as input to the output node. Finally, the overall response 
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from the network is obtained via the output node in the 

output layer [26]. Sum of squared errors for the nth 

iteration is defined as:  
 

∑ Ei
k
i=1 =

1

2
∑ (hi − yi)

2k
i=1                                           (3) 

 

Where (hi − yi)
2 represents the squared of error values 

at the output neuron and shows the difference between 

desired response (h) and computed response (y). The 

weights are updated based on the errors in such a way 

that the error signal is minimized to the required 

threshold. There are some algorithms for updating the 

weights. In this study the back propagation method has 

been used to change the weights during the training. This 

method starts renewing the weights from outputs to 

inputs. These weights are updated automatically based 

on the algorithm. 

4 SURFACE ROUGHNESS MODELING 

After designing and conducting the experiments, the 

cutting parameters, vibration amplitude, cutting forces 

and tool flank wear were used as input and the surface 

roughness as output to train the ANN model. Pythia 

program was used to train the model. Various number of 

neurons and layers were tried in this paper to avoid the 

over fitting problem and the best ANN structure was 

selected as the surface roughness predictive model. The 

developed ANN model was designed in three layers and 

ten neurons. Fig. 2 shows the general structure of the 

ANN model. As it is seen in Fig. 2, there are six inputs 

and one output, six neurons in first layer, three neurons 

in second layer and one neuron in third layer of the 

model. “logistic” function was used as activation 

function for estimating the values of any neurons. The 

function is defined as: 

𝐹(𝑥) =
1

(1 + 𝑒−𝑘(𝑥−𝑥0))
                                                (4) 

In which, k is the steepness of the curve, e is the natural 

logarithm, 𝑥0 is the x-value of Sigmund’s midpoint. A 

diagram of logistic function for special conditions of the 

parameters is given in Fig. 3. Since the results of the used 

logistic activation function is limited between -1 and +1, 

all of the data are normalized between -1 and +1. 

Normalization Formula can be written as: 

 

�́� =
𝑥−𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑥𝑚𝑎𝑥−𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒
                                                  (5) 

 

Where, 𝑥 is the value of data, 𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒  is the data 

average, 𝑥𝑚𝑎𝑥  is the maximum value and �́� is the 

normalized value of the data. Table. 3, shows the data 

and their normalized values. After training process, the 

estimated values must be denormalized to reach the real 

values. 

 

 

Fig. 2 The designed ANN model 

 

 

Fig. 3 Logistic activation function diagram for k=0.5 and 

𝑥0 = 0 

5 RESULT AND DISCUSSION 

As was mentioned earlier, a multilayer feed-forward 

back-propagation network was used to design the ANN 

estimation model of surface roughness. In ANN model, 

the cutting parameters, Vibration amplitude, cutting 

force and tool flank wear, were considered as inputs and 

the measured surface roughness values as target data. 

Three layers and 10 neurons were selected for designing 

the model. The network architecture consisted of 6 

inputs including: cutting speed (v), cutting depth (d), 

feed rate (f), cutting force (𝐹𝑐), vibration amplitude (a), 

tool wear (𝑉𝑏 ). In the experiments, based on Taghuchi 

design, 63 experiments were prepared in three levels of 

any cutting parameters and seven levels of tool flank 

wear including; initial (0), 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

mm for training the network.  
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The model was trained using Pythia software and the 

weights were created for the reproduction phase. The 

weights are given in Table.5 with 𝑤𝑛𝑖  in which, n is the 

number of the neurons and i is the number of the 

weights. Therefore, there are 36 weights in first layer, 18 

weights in second layer and three weights in third layer. 

After creating the weights, they were used to estimate 

the values of surface roughness for all inputs. By 

comparing the measured and estimated results, the error 

was obtained which shows that the model demonstrates 

an acceptable accuracy. The error and squared error 

distribution for all of the experiments are given in         

Fig. 4. As is seen in the figure, maximum error of the 

prediction model is about 1.05 mm and %95 of 

prediction errors is less than 0.4 mm. 
 

 

 

Table 3 Normalized values of the data 

N V f d 𝑽𝒃 𝑭𝒄 a 𝑹𝒂 N V f d 𝑽𝒃 𝑭𝒄 a 𝑹𝒂 
1 -1 -1 -1 -1 -0.54 -0.68 -0.266 33 0 -1 0 0.33 -0.16 -0.03 -0.232 
2 -1 -1 -1 -0.6 -0.522 -0.450 -0.255 34 0 -1 0 0.66 -0.14 0.16 0.035 
3 -1 -1 -1 -0.3 -0.496 -0.221 -0.224 35 0 -1 0 1 -0.11 0.35 0.223 
4 -1 -1 -1 0 -0.466 -0.05 -0.222 36 1 1 0 -1 -0.07 -0.50 0.206 
5 -1 -1 -1 0.33 -0.436 0.121 -0.229 37 1 1 0 -0.6 -0.02 -0.30 0.211 
6 -1 -1 -1 0.66 -0.420 0.226 -0.211 38 1 1 0 -0.3 0.015 -0.10 0.223 
7 -1 -1 -1 1 -0.404 0.331 -0.182 39 1 1 0 0 0.04 0.07 0.355 
8 0 1 -1 -1 -0.399 -0.603 -0.260 40 1 1 0 0.33 0.08 0.25 0.735 
9 0 1 -1 -0.6 -0.375 -0.431 -0.092 41 1 1 0 0.66 0.10 0.45 0.826 
10 0 1 -1 -0.3 -0.350 -0.26 0.171 42 1 1 0 1 0.12 0.65 1.000 
11 0 1 -1 0 -0.335 -0.078 0.183 43 -1 1 1 -1 0.68 -0.48 0.184 
12 0 1 -1 0.33 -0.320 0.102 0.188 44 -1 1 1 -0.6 0.72 -0.34 0.197 
13 0 1 -1 0.66 -0.308 0.293 0.201 45 -1 1 1 -0.3 0.77 -0.20 0.201 
14 0 1 -1 1 -0.296 0.484 0.243 46 -1 1 1 0 0.82 0.16 0.206 
15 1 0 -1 -1 -0.621 -0.584 -0.066 47 -1 1 1 0.33 0.87 0.54 0.217 
16 1 0 -1 -0.6 -0.599 -0.412 -0.083 48 -1 1 1 0.66 0.93 0.77 0.244 
17 1 0 -1 -0.3 -0.578 -0.240 -0.084 49 -1 1 1 1 0.99 1 0.411 
18 1 0 -1 0 -0.558 -0.040 -0.069 50 0 0 1 -1 0.37 -0.45 -0.122 
19 1 0 -1 0.33 -0.538 0.16 -0.058 51 0 0 1 -0.6 0.41 -0.33 -0.108 
20 1 0 -1 0.66 -0.496 0.33 -0.062 52 0 0 1 -0.3 0.46 -0.22 -0.10 
21 1 0 -1 1 -0.455 0.50 0.024 53 0 0 1 0 0.48 -0.05 -0.100 
22 -1 0 0 -1 -0.012 -0.60 -0.308 54 0 0 1 0.33 0.50 0.10 -0.077 
23 -1 0 0 -0.6 0.017 -0.46 -0.250 55 0 0 1 0.66 0.51 0.36 -0.035 
24 -1 0 0 -0.3 0.047 -0.31 -0.210 56 0 0 1 1 0.53 0.61 -0.031 
25 -1 0 0 0 0.100 -0.01 -0.158 57 1 -1 1 -1 0.00 -0.54 -0.269 
26 -1 0 0 0.33 0.153 0.29 -0.127 58 1 -1 1 -0.6 0.05 -0.33 -0.249 
27 -1 0 0 0.66 0.154 0.49 -0.116 59 1 -1 1 -0.3 0.10 -0.12 -0.223 
28 -1 0 0 1 0.156 0.69 0.035 60 1 -1 1 0 0.16 0.09 -0.192 
29 0 -1 0 -1 -0.337 -0.60 -0.285 61 1 -1 1 0.33 0.21 0.31 -0.096 
30 0 -1 0 -0.6 -0.301 -0.48 -0.282 62 1 -1 1 0.66 0.24 0.51 -0.080 
31 0 -1 0 -0.3 -0.2 -0.37 -0.265 63 1 -1 1 1 0.26 0.71 0.016 
32 0 -1 0 0 -0.2 -0.20 -0.250         
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5 RESULT AND DISCUSSION 

As was mentioned earlier, a multilayer feed-forward 

back-propagation network was used to design the ANN 

estimation model of surface roughness. In ANN model, 

the cutting parameters, Vibration amplitude, cutting 

force and tool flank wear, were considered as inputs and 

the measured surface roughness values as target data. 

Three layers and 10 neurons were selected for designing 

the model. The network architecture consisted of 6 

inputs including: cutting speed (v), cutting depth (d), 

feed rate (f), cutting force (𝐹𝑐), vibration amplitude (a), 

tool wear (𝑉𝑏 ). In the experiments, based on Taghuchi 

design, 63 experiments were prepared in three levels of 

any cutting parameters and seven levels of tool flank 

wear including; initial (0), 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

mm for training the network. The model was trained 

using Pythia software and the weights were created for 

the reproduction phase. The weights are given in      

Table. 5 with 𝑤𝑛𝑖  in which, n is the number of the 

neurons and i is the number of the weights. Therefore, 

there are 36 weights in first layer, 18 weights in second 

layer and three weights in third layer. 

After creating the weights, they were used to estimate 

the values of surface roughness for all inputs. By 

comparing the measured and estimated results, the error 

was obtained which shows that the model demonstrates 

an acceptable accuracy. The error and squared error 

distribution for all of the experiments are given in        

Fig. 4. As is seen in the figure, maximum error of the 

prediction model is about 1.05 mm and %95 of 

prediction errors is less than 0.4 mm. 

 

 

 
Fig. 4 Distribution of the errors and squared errors for ANN online prediction model 
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Table 5 The extracted weights during the turning process 

𝑤𝑛𝑖 
i  

1 2 3 4 5 6 

 

n 

1 -1.7019 2.2509 -0.9022 0.0331 -0.4703 -1.8402 

2 -0.1812 1.2487 -4.2766 -1.0991 1.2560 1.6495 

3 -1.2157 -0.2710 1.5596 0.0851 -2.3222 0.2645 

4 1.5781 -0.6841 -4.5908 2.5701 -1.5665 1.4549 

5 1.0482 0.2834 -2.5396 -0.3683 2.9914 0.4775 

6 3.0859 1.1881 -3.0642 -2.2793 -0.4294 -0.2724 

7 0.3238 -1.2591 -5.3529 0.9693 0.5697 -0.2473 

8 -0.5058 -2.9374 1.0225 3.4570 -4.4526 3.6076 

9 0.0451 2.0405 4.6332 -1.4547 -2.2689 0.2035 

10 1.4271 -0.7333 -3.4743 - - - 

 

 

 
Fig. 5 Comparison of estimated and measured results 

 

 

The real values of the conducted experiments and the 

predicted values of the surface roughness are then given 

in Table 6. In this table, the measured values of surface 

roughness is shown with 𝑅𝑎 and the estimated values of 

the 𝑅𝑎 using of the model is given with 𝑅𝑎(𝑚). Also N 

shows the number of experiments. Fitting graphic of the 

model for all of the used experiments in training is seen 

in Fig.5. Based on the ANN simulation model, the 

predicted and measured results are accurately following 

each other. The R2 value is 0.99 which confirms the 

model reliability. 

6 CONCLUSION 

In this research, an ANN model was designed for 

prediction of surface roughness based on the cutting 

parameters and other effective variables. As it is 

illustrated in Fig. 5, the prediction errors are remained 

under 0.007 µm which is an acceptable error for surface 

roughness estimations. The comparison of obtained 

results by ANN model for training data and the measured 

values show a R2 value of 0.99. This means that the 

measured and estimated values confirm each other with a 

high estimation accuracy. The results revealed that ANN 

is a strong and reliable method for predicting the surface 

roughness in machined parts. Moreover, it was found that 

for designing a reliable model for predicting the surface 

roughness, other variables such as cutting tool vibration, 

tool wear and cutting force must be considered except for 

the cutting parameters. In other words, although there are 

many researches on surface roughness estimation based 

on cutting parameters, to reach to an accurate result, 

considering some other variables such as tool vibration is 

inevitable. Because the level of vibration and cutting tool 

wear are directly affecting the surface quality of any 

machined part. By applying this model before any 

machining process, it is possible to predict the surface 

roughness and to select the required cutting parameters 

which in turn causes avoiding any scraped part. Also, 

another application of the designed ANN model can be 

considered in creating an adaptive control system to keep 

the surface roughness in a constant value.  
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Table 6 The predicted values of surface roughness for all of the conducted experiments. 

N V f d 𝑽𝒃 𝑭𝒄 a 𝑹𝒂 𝑹𝒂(𝒎) N V f d 𝑽𝒃 𝑭𝒄 a 𝑹𝒂 𝑹𝒂(𝒎) 

1 115 0.2 0.7 0 399 1.87 1.68 1.41 33 140 0.2 1.2 0.2 638 2.21 2.00 2.15 
2 115 0.2 0.7 0.05 415 1.99 1.79 1.86 34 140 0.2 1.2 0.25 655 2.31 4.56 4.56 
3 115 0.2 0.7 0.1 432 2.11 2.08 1.79 35 140 0.2 1.2 0.3 671 2.41 6.34 6.36 
4 115 0.2 0.7 0.15 450 2.2 2.10 2.01 36 165 0.3 1.2 0 697 1.96 6.18 6.21 
5 115 0.2 0.7 0.2 469 2.29 2.03 2.13 37 165 0.3 1.2 0.05 725 2.06 6.23 6.22 
6 115 0.2 0.7 0.25 479 2.34 2.21 2.30 38 165 0.3 1.2 0.1 753 2.17 6.34 6.35 
7 115 0.2 0.7 0.3 489 2.4 2.48 2.46 39 165 0.3 1.2 0.15 774 2.26 7.60 7.49 
8 140 0.3 0.7 0 492 1.91 1.74 1.76 40 165 0.3 1.2 0.2 794 2.36 11.2 11.7 
9 140 0.3 0.7 0.05 508 2 3.34 3.16 41 165 0.3 1.2 0.25 808 2.46 12.0 12.8 
10 140 0.3 0.7 0.1 523 2.09 5.85 5.51 42 165 0.3 1.2 0.3 822 2.57 13.7 13.3 
11 140 0.3 0.7 0.15 533 2.18 5.96 5.92 43 115 0.3 1.7 0 1171 1.97 5.98 5.68 
12 140 0.3 0.7 0.2 542 2.28 6.02 5.62 44 115 0.3 1.7 0.05 1201 2.04 6.10 5.96 
13 140 0.3 0.7 0.25 550 2.38 6.13 5.79 45 115 0.3 1.7 0.1 1231 2.12 6.14 6.06 
14 140 0.3 0.7 0.3 557 2.48 6.54 6.42 46 115 0.3 1.7 0.15 1261 2.31 6.18 5.92 
15 165 0.25 0.7 0 353 1.92 3.59 3.39 47 115 0.3 1.7 0.2 1291 2.51 6.29 6.56 
16 165 0.25 0.7 0.05 367 2.01 3.43 3.59 48 115 0.3 1.7 0.25 1331 2.63 6.55 7.60 
17 165 0.25 0.7 0.1 380 2.1 3.41 3.64 49 115 0.3 1.7 0.3 1371 2.75 8.13 8.54 
18 165 0.25 0.7 0.15 393 2.20 3.56 3.43 50 140 0.25 1.7 0 979 1.99 3.05 2.71 
19 165 0.25 0.7 0.2 405 2.31 3.66 3.31 51 140 0.25 1.7 0.05 1006 2.05 3.19 3.02 
20 165 0.25 0.7 0.25 431 2.4 3.63 3.48 52 140 0.25 1.7 0.1 1033 2.11 3.23 3.35 
21 165 0.25 0.7 0.3 457 2.49 4.45 4.74 53 140 0.25 1.7 0.15 1045 2.19 3.26 3.44 
22 115 0.25 1.2 0 735 1.91 1.28 1.81 54 140 0.25 1.7 0.2 1057 2.28 3.48 3.54 
23 115 0.25 1.2 0.05 754 1.98 1.83 1.92 55 140 0.25 1.7 0.25 1070 2.41 3.88 3.77 
24 115 0.25 1.2 0.1 773 2.06 2.21 2.06 56 140 0.25 1.7 0.3 1082 2.55 3.92 4.00 
25 115 0.25 1.2 0.15 806 2.22 2.71 2.64 57 165 0.2 1.7 0 747 1.94 1.65 1.62 
26 115 0.25 1.2 0.2 839 2.38 3.00 3.27 58 165 0.2 1.7 0.05 779 2.05 1.84 1.91 
27 115 0.25 1.2 0.25 840 2.48 3.11 3.29 59 165 0.2 1.7 0.1 811 2.16 2.1 2.19 
28 115 0.25 1.2 0.3 841 2.59 4.56 4.82 60 165 0.2 1.7 0.15 846 2.27 2.39 2.62 
29 140 0.2 1.2 0 531 1.91 1.50 1.38 61 165 0.2 1.7 0.2 881 2.39 3.30 3.18 
30 140 0.2 1.2 0.05 554 1.97 1.53 1.49 62 165 0.2 1.7 0.25 896 2.49 3.45 3.45 
31 140 0.2 1.2 0.1 577 2.03 1.69 1.61 63 165 0.2 1.7 0.3 911 2.6 4.37 4.37 
32 140 0.2 1.2 0.15 608 2.12 1.84 2.03          
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