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Schrodinger equation with a power law nonlinearity
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Abstract

In this paper, the homotopy analysis method (HAM) is considered to obtain the solution of the
Schrodinger equation with a power law nonlinearity. For this purpose, a theorem is proved to show
the convergence of the series solution obtained from the proposed method. Also, an example is solved
to illustrate the efficiency of the mentioned algorithm and the h-curve is plotted to determine the
region of convergence.
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1 Introduction

T
he Schrodinger equation is one of the im-
portant partial differential equations with

many applications in physics and chemistry. In
recent years, some methods were introduced in
order to find the explicit or approximate solu-
tion of this equation in linear or nonlinear case
such as finite difference method [16], variational
iteration method [17], Adomian decomposition
method [5, 12], homotopy perturbation method
[5, 6, 8, 12], differential transform method [11]
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and homotopy analysis method [4, 7]. One of the
considerable cases of the nonlinear Schrodinger
equations is power law nonlinearity which was
studied by Wazwaz in [18] by using the tanh-
coth method and was solved by variational iter-
ation method in [17]. In this work, we consider
Schrodinger equation with a power law nonlinear-
ity of the form

i
∂w

∂t
+ a

∂2w

∂x2
+ b

∂4w

∂x4
+ c|w|2nw = 0, n ≥ 2,

w(x, 0) = f(x), i2 = −1, (1.1)

where a, b, c are real constants and w = w(x, t) is
a complex unknown function [18].

The homotopy analysis method (HAM) which
was introduced by Liao [9, 10] is an effective and
powerful method to find the analytical or approx-
imate solution of nonlinear problems with compli-
cated nonlinearity [1, 2, 3, 13, 14, 15].
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In the present paper, we propose the conver-
gence of HAM in order to obtain the explicit so-
lution of Eq. 1.1. In this case, a theorem is proved
which illustrates the convergence of the method.
In Section 2, some preliminaries are given. In
Section 3, the HAM is introduced to solve Eq.
1.1 and in Section 4, the convergence theorem is
proved. Finally in Section 5, an example is solved
to illustrate the importance of the method.

2 Preliminaries

We consider the following differential equation:

N [w(x, t)] = 0,

where N is a nonlinear operator, x and t denote
the independent variables and w is an unknown
function. In the HAM, the zeroth-order deforma-
tion equationis is constructed as:

(1− q)L[Φ(x, t, q)− w0(x, t)] =

qhH(x, t)N [Φ(x, t, q)], (2.2)

where q ∈ [0, 1] is the embedding parameter, h ̸=
0 is an auxiliary parameter, L is an auxliary lin-
ear oprator and H(x, t) is an auxiliary function.
Φ(x, t, q) is an unknown function and w0(x, t) is
an initial guess of w(x, t). It is clear, if q = 0 and
q = 1 then:

Φ(x, t, 0) = w0(x, t), Φ(x, t, 1) = w(x, t),

respectively. Therefore, when q increases from 0
to 1, the solution Φ(x, t, q) varies from w0(x, t) to
the exact solution w(x, t). By Taylor’s theorem,
it can be expanded Φ(x, t, q) in a power series of
the embedding parameter q as:

Φ(x, t, q) = w0(x, t) +

∞∑
m=1

wm(x, t)qm, (2.3)

where

wm(x, t) =
1

m!

∂mΦ(x, t, q)

∂qm
|q=0. (2.4)

Let the initial guess w0(x, t), the auxiliaray linear
operator L, the nonzero auxiliaray parameter h

and the auxiliaray function H(x, t) be properly
chosen such that the power series 2.3 converges
at q = 1, then,

w(x, t) = w0(x, t) +

∞∑
m=1

wm(x, t), (2.5)

which must be the solution of the original nonlin-
ear equation. Now, we define the following set of
vectors:

w⃗n = {w0(x, t), w1(x, t), . . . , wn(x, t)}. (2.6)

By differentiating the zeroth order deformation
Eq. 2.2 m times with respect to the embedding
parameter q and then setting q = 0 and finally
dividing by m!, we will have the following mth
order deformation equation:

L[wm(x, t)− χmwm−1(x, t)] =

hH(x, t)Rm(w⃗m−1), (2.7)

where

Rm(w⃗m−1) =
1

(m− 1)!

∂m−1N [Φ(x, t, q)]

∂qm−1
|q=0, (2.8)

and

χm =

{
0 m ≤ 1
1 m > 1.

(2.9)

It shoud be mentioned that wm(x, t) for m ≥ 1
is goverend by the linear Eq. 2.7 with boundary
conditions that come from the original problem.
For more details about HAM, we refer the reader
to [9,10].

3 Main Idea

In this Section, we consider Eq. 1.1, as follows:

i
∂w

∂t
+ a

∂2w

∂x2
+ b

∂4w

∂x4
+ cw2n+1w̄2n = 0, (3.10)

w(x, 0) = f(x), i2 = −1.

We consider:

L[Φ(x, t, q)] = i
∂Φ(x, t, q)

∂t
, L(c) = 0, (3.11)
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where c is a real constant and

N [Φ(x, t, q)] = i
∂Φ(x, t, q)

∂t
+ a

∂2Φ(x, t, q)

∂x2

+ b
∂4Φ(x, t, q)

∂x4
+ cΦ2n+1(x, t, q)Φ̄2n(x, t, q).

(3.12)

Therefore,

Rm(wm−1) =

i
∂wm−1

∂t
+ a

∂2wm−1

∂x2
+ b

∂4wm−1

∂x4
+

c

m−1∑
k1=0

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

m−1−k1∑
α1=0

m−1−k1−α1∑
α2=0

. . .

m−1−k1−α1−...−α2n−2∑
α2n−1=0

wk2wk3 . . .

wk2n+1w(k1−k2−...−k2n+1)

w̄α1w̄α2 . . . w̄α2n−1w̄(m−1−k1−α1−...−α2n−1).
(3.13)

The number of summations in 3.13 will be 4n.
If H(x, t) = 1 then the m-th order deformation
equation 2.7 is:

wm = χmwm−1 +
h

i

∫ t

0
Rm(wm−1)dt+ c,

m ≥ 1, (3.14)

with w0(x, t) = f(x),

R1(w0) = c | f(x) |8 f(x)+

af (2)(x) + bf (4)(x),

and

w1(x, t) = −hi(c | f(x) |8 f(x)+

af (2)(x) + bf (4)(x))t.

4 Convergence of the HAM

In this Section, we prove the convergence of the
series solution obtained from the HAM to the ex-
act solution of the Eq. 3.10.

Theorem 4.1 If the series solution
w0(x, t) + w1(x, t) + w2(x, t) + . . . obtained
from the HAM is convergent, and also the series∑∞

m=0
∂wm
∂t ,

∑∞
m=0

∂2wm
∂x2 ,

∑∞
m=0

∂4wm
∂x4 , are con-

vergent then the series
∑∞

m=0wm(x, t) converges
to the exact solution of Eq. 3.10.

Proof. Let

w(x, t) =
∞∑

m=0

wm(x, t).

In this case,

lim
m→∞

wm(x, t) = 0. (4.15)

So

n∑
m=1

[wm(x, t)−χmwm−1(x, t)] = wn(x, t) (4.16)

By using Eq. 4.16,

∞∑
m=1

[wm(x, t)− χmwm−1(x, t)] =

lim
n→∞

wn(x, t) = 0, (4.17)

and since the operator L is linear, from 4.17 we
have:

∞∑
m=1

L[wm(x, t)− χmwm−1(x, t)] =

L(

∞∑
m=1

(wm(x, t)− χmwm−1(x, t)) = 0. (4.18)

By applying

L[wm(x, t)− χmwm−1] = hH(x, t)Rm(wm−1),
(4.19)

from 4.18 we get:
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∞∑
m=1

L[wm(x, t)− χmwm−1] =

hH(x, t)
∞∑

m=1

Rm(wm−1). (4.20)

Since h,H(x, t) ̸= 0 then

∞∑
m=1

[Rm(wm−1)] = 0. (4.21)

According to Eq. 3.13,

∞∑
m=1

[Rm(wm−1)] =

i

∞∑
m=1

∂wm−1

∂t
+ a

∞∑
m=1

∂2wm−1

∂x2
+

b

∞∑
m=1

∂4wm−1

∂x4
+ c

∞∑
m=1

m−1∑
k1=0

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

m−1−k1∑
α1=0

m−1−k1−α1∑
α2=0

. . .

m−1−k1−α1−...−α2n−2∑
α2n−1=0

wk2wk3 . . .

wk2n+1w(k1−k2−...−k2n+1)

w̄α1w̄α2 . . . w̄α2n−1w̄(m−1−k1−α1−...−α2n−1).

So, we have

∞∑
m=1

[Rm(wm−1)] =

i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c
∞∑

k1=0

∞∑
m=k1+1

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

m−1−k1∑
α1=0

m−1−k1−α1∑
α2=0

. . .

m−1−k1−α1−...−α2n−2∑
α2n−1=0

wk2wk3 . . . wk2n+1

w(k1−k2−...−k2n+1)

w̄α1w̄α2 . . . w̄α2n−1w̄(m−1−k1−α1−...−α2n−1)

= i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c

∞∑
k1=0

∞∑
m=1

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

m−1∑
α1=0

m−1−α1∑
α2=0

. . .

m−1−α1−...−α2n−2∑
α2n−1=0

wk2

wk3 . . . wk2n+1w(k1−k2−...−k2n+1)

w̄α1w̄α2 . . . w̄α2n−1w̄(m−1−α1−...−α2n−1)

= i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c

∞∑
k1=0

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

∞∑
α1=0

∞∑
m=α1+1

m−1−α1∑
α2=0

. . .

m−1−α1−...−α2n−2∑
α2n−1=0

wk2wk3 . . . wk2n+1

w(k1−k2−...−k2n+1)w̄α1

w̄α2 . . . w̄α2n−1w̄(m−1−α1−...−α2n−1)

= i

∞∑
m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c
∞∑

k1=0

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

∞∑
α1=0

∞∑
α2=0

. . .
∞∑

α2n−1=0

∞∑
m=1+α1+α2+...+α2n−1
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wk2wk3 . . . wk2n+1

w(k1−k2−...−k2n+1)w̄α1w̄α2 . . .

w̄α2n−1w̄(m−1−α1−...−α2n−1).

= i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c

∞∑
k1=0

k1∑
k2=0

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

∞∑
α1=0

∞∑
α2=0

. . .

∞∑
α2n−1=0

∞∑
m=0

wk2wk3 . . . wk2n+1w(k1−k2−...−k2n+1)

w̄α1w̄α2 . . . w̄2n−1w̄m

= i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c

∞∑
k2=0

∞∑
k1=k2

k1−k2∑
k3=0

. . .

k1−k2−...−k2n∑
k2n+1=0

wk2 . . .

wk2n+1w(k1−k2−...−k2n+1)

∞∑
α1=0

w̄α1

∞∑
α2=0

w̄α2 . . .
∞∑

α2n−1=0

w̄α2n−1

∞∑
m=0

w̄m

= i
∞∑

m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c
∞∑

k2=0

∞∑
k1=0

k1∑
k3=0

. . .

k1−k3...−k2n∑
k2n+1=0

wk2 . . . wk2n+1w(k1−k3...−k2n+1)

∞∑
α1=0

w̄α1

∞∑
α2=0

w̄α2 . . .

∞∑
α2n−1=0

w̄α2n−1

∞∑
m=0

w̄m

= i

∞∑
m=0

∂wm

∂t
+ a

∞∑
m=0

∂2wm

∂x2
+ b

∞∑
m=0

∂4wm

∂x4
+

c

∞∑
k2=0

∞∑
k3=0

. . .

∞∑
k2n+1=0

∞∑
k1=0

wk2wk3 . . . w2n+1wk1 .

Therefore, from the relations w =
∑∞

m=0wm

and
∑∞

m=0 w̄m =
∑∞

m=0wm we obtain:

∞∑
m=1

[Rm(wm−1)] =

i
∂

∂t

∞∑
m=0

wm + a
∂2

∂t2

∞∑
m=0

wm+

b
∂4

∂t4

∞∑
m=0

wm + c
∞∑

k2=0

wk2

∞∑
k3=0

wk3

∞∑
k4=0

wk4 . . .

∞∑
k2n+1=0

wk2n+1

∞∑
k1=0

wk1

∞∑
α1=0

w̄α1

∞∑
α2=0

w̄α2 . . .
∞∑

α2n−1=0

w̄α2n−1

∞∑
m=0

w̄m

= i
∂

∂t

∞∑
m=0

wm + a
∂2

∂t2

∞∑
m=0

wm+

b
∂4

∂t4

∞∑
m=0

wm + cw2n+1w2n. (4.22)

Hence, From Eqs. 4.21 and 4.22 we conclude that
w(x, t) =

∑∞
m=0wm(x, t) is the exact solution of

Eq. 3.10 and the proof is completed.

5 A sample example

In this Section, we solve a Schrodinger equation
with power law nonlinearity via HAM by apply-
ing Eq. 3.13 and repersent the numerical results.
Also, we plot the h-curve to show the regoin of
convergence. The results have been provided by
Mathematica.

Example 5.1 Consider the following
Schrodinger equation:

i
∂w

∂t
+

∂2w

∂x2
− ∂4w

∂x4
+ w5w̄4 = 0,

w(x, 0) = 1, i2 = −1.
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Table 1: The results of the example with the errors at the point (2,1).

n wn(x, t) |wn(x, t)− w(x, t)|

2 0.500000000+1.000000000i 0.163571772
4 0.541666667+0.833333333i 0.008251233
5 0.541666667+0.841666667i 0.001378322
6 0.540277778+0.841666667i 0.000197213
7 0.540277778+0.841468254i 0.000024680
8 0.540302579+0.841468254i 2.74450100E-6
9 0.540302579+0.841471010i 2.74627387E-7
10 0.540302304+0.841471010i 2.49787194E-8

Then from 3.14, w0(x, t) = 1, R1(w0) = 1 and

w1(x, t) =
h

i

∫ t

0
dt = −hit,

w2(x, t) = w1(x, t)− hi

∫ t

0
(h− hit)dt =

−hit− h2it− h2
t2

2
,

w3(x, t) = w2(x, t)− hi∫ t

0
(−hit− h2it− h2

t2

2
)dt =

1/6ht(−6i(1 + h)2 − 6h(1 + h)t+ ih2t2).

If h = −1 then

w0(x, t) = 1,

w1(x, t) = it,

w2(x, t) =
(it)2

2!
,

w3(x, t) =
(it)3

3!
, ...

So, w(x, t) = w0(x, t) + w1(x, t) + w2(x, t) +

w3(x, t) + . . . = 1 + it + (it)2

2! + (it)3

3! + . . . = eit

which is the exact solution. Table 1 shows the
errors of the method at the given point (2, 1) and
for different values of n.

We observe that the HAM is convergent when
n increases. Figure 1, illustrates the h-curve of
w(x, t) at (2,1) with n = 11. In this case, the
convergence of the method is guranteed when
−1.5 ≲ h ≲ −0.5.

Figure 1: The h-curve of 11-approximation of the
example when x=2 and t=1, for real and imaginary
parts.

6 Conclusion

In this paper, the homotopy analysis method
(HAM) was applied to solve the Schrodinger
equation with a power law nonlinearity and the
theorem of convergence of HAM was proved.
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Also, an example was solved to determine the ef-
ficiency and convergence of the proposed method.
Therefore, HAM can be a reliable and powerful
method to obtain the analytical or approximate
solution of a nonlinear partial differential equa-
tion with complicated nonlinearity.
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