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Abstract

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat
equation in non-classical case. For this problem, we can not use the classical methods such as Fourier,
Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral prob-
lems are not strictly and they are repeated or we have no eigenvalue. The presentation of the solution
and also satisfying the solution in the given P.D.E and satisfing the given initial and boundary con-
ditions are established by complex analysis theory and Countour integral method.
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1 Introduction

T
here are several methods to solve the spec-
tral problems which resulted from initial-

boundary value problems. As we know from text
books, if the operator of spectral problem is self
adjoint, then the eigenvalues are real and distinct.
Also, the related eigenfunctions are ortogonal and
form a complete system of basis. In this case
we can apply Fourier method (seperation of vari-
ables) [1]-[5]. If the related operator is not self
adjoint, L ̸= L⋆, consequently the eigenvalues
are repeated (not simple), then we can not apply
Fourier method. In this case, the eigenfunctions
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can not form a complete basis system and we
should use Fourier-Birkhoff method which pro-
posed to use the eigenfunctions of related adjoint
operater L⋆. Because the eigenfunctions of L and
the eigenfunctions of L⋆ are biortogonal [6, 7]. In
this paper, we will consider some initial-boundary
value problems which their related spectral prob-
lems are not self adjoint and their eigenvalues are
repeated. Other non-classical case for heat equa-
tion ut = uxx, when the related spectral problem
has no eigenvalue, and consequently we do not
have any eigenfunction. For this, consider the
following boundary conditions:

u(0, t)− 2u(1, t) = 0
, t ≥ 0

ux(x, t)|x=0+2ux(x, t)|x=1= 0
(1.1)

and with initial condition u(x, 0) = φ(x).
Then the related spectral problem is:

y′′ − λ2y = 0,
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y(0)− 2y(1) = 0,

y′(0) + 2y′(1) = 0

For this problem we have no eigenvalue. There-
fore for any λ ∈ C the solution is only trivial
solution y(x) ≡ 0, hence we can not stablish the
series solution.
Other non-classical case is when the eigenvalues
of spectral problem fill the complex plane. In
other word, any points of complex plane C is an
eigenvalue. See the following conditions for heat
equation:

u(0, t) + u(1, t) = 0
, t ≥ 0

ux(x, t)|x=0−ux(x, t)|x=1= 0
(1.2)

and with initial condition u(x, 0) = φ(x).
Then the related spectral problem is:

y′′ − λ2y = 0, λ ∈ C,

y(0) + y(1) = 0,

y′(0)− y′(1) = 0

For these cases, we can not use classical methods
such as Fourier method and Fourier- Birkhoff
method and Laplace transformation [10]-[12].
These cases can be considered as unsolved
problems, see the final section of the paper.
We are going to consider the one-dimensional
heat equation with some initial and boundary
conditions. For this problem, at first its spectral
problem is constructed. Then by countour inte-
gral method, an analytic solution will be given
as integral form over a suitable countour. Finaly
in section 3, we show that this analytic solution
satisfies in the given differential equation and
given boundary and initial conditions.

2 Main problem and its spectral
problem

We consider the following problem for heat equa-
tion:

ut = uxx, x ∈ (0, 1), t > 0 (2.3)

with boundary conditions and initial condition:


u(0, t) = u(1, t)

, t ≥ 0
ux(x, t)|x=0= 0

(2.4)

u(x, 0) = φ(x), x ∈ [0, 1] (2.5)

At first we show that the eigenvalues of the spec-
tral problem are repeated. For this, by Fourier
method we will have the following spectral prob-
lem:

X ′′(x)− λX(x) = 0, x ∈ (0, 1) (2.6)

{
X(0) = X(1)
X ′(0) = 0

(2.7)

the general solution of equation (2.6) is:

X(x) = c1e
−
√
λx + c2e

√
λx (2.8)

Imposing boundary conditions (2.7) to this
solution, yields following algebraic system:{

c1 + c2 − c1e
−
√
λ − c2e

√
λ = 0

−c1
√
λ+ c2

√
λ = 0

,∣∣∣∣∣∣
1− e−

√
λ 1− e

√
λ

−
√
λ

√
λ

∣∣∣∣∣∣=-
√
λe−

√
λ(e

√
λ − 1)2 = 0

We consider the eigenvalue λ = 0 is simple and
the eigenvalues λk = −4k2π2, k ∈ N are repeated
two times. The eigenvalues and eigenfunctions
are as follows:

λ0 = 0, X0(x) = 1,

λk = −4k2π2, Xk(x) =
1√
2
cos 2kπx, k ∈ N

Because of eigenvalues are repeated, the eigen-
functions can not establish a complete basis sys-
tem. And we should use the generalized vectors
as extra eigenfunctions. Therefore we can not
continue the Fourier method, and we are going
to apply Countour integral method. For this, we
construct the spectral problem by making use of
Laplace transform:

y′′(x, λ)− λy(x, λ) = φ(x), x ∈ (0, 1) (2.9)

{
y(0, λ) = y(1, λ)
y′(0, λ) = 0

(2.10)

Now, we are going to compute the general so-
lution of non-homogeneous equation (2.9) by La-
grange method (Change variable method), that
is :
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y(x, λ) = c1(x)e
−
√
λx + c2(x)e

√
λx (2.11)

where c1(x) and c2(x) are equal to:

c1(x) = c1 −
∫ x

x1

e
√
λξ

2
√
λ
φ(ξ)dξ,

c2(x) = c2 +

∫ x

x2

e−
√
λξ

2
√
λ

φ(ξ)dξ

where c1, c2 are real arbitrary constants. Now,
by considering the parameter λ in complex plane
we suppose,

argλ ∈ (−π + δ, π − δ), δ > 0, as is shown
in shape 1. Regarding values for arg

√
λ, and

supposing x1 = 0 and x2 = 1 for lower limits of
above integrals, these integrals will be converge
when |λ|→ ∞, therefore we have:

y(x, λ) = c1e
−
√
λx + c2e

√
λx −

∫ 1

0

e−
√
λ|x−ξ|

2
√
λ

φ(ξ)dξ

(2.12)

Now by imposing the boundary conditions (2.10)
we have the following amount for c1, c2:

c1 =
1

B(λ)∫ 1

0

e−
√
λξ − e−

√
λ(1−ξ) − e−

√
λξ + e

√
λ(1−ξ)

2
√
λ

φ(ξ)dξ,

c2 =
1

B(λ)∫ 1

0

e−
√
λξ − e−

√
λ(1+ξ) + e−

√
λξ − e−

√
λ(1−ξ)

2
√
λ

φ(ξ)dξ

where B(λ) = −e−
√
λ(e

√
λ − 1)2.

By substituting these values for c1 and c2
in y(x, λ) we have:

y(x, λ) =

∫ 1

0

e
√
λ(x+ξ) − 2e

√
λ(1+x−ξ) + e

√
λ(x−ξ)

2
√
λ(e

√
λ − 1)2

φ(ξ)dξ

(2.13)

−
∫ 1

0

e
√
λ(2−x−ξ) + e−

√
λ(x−ξ)

2
√
λ(e

√
λ − 1)2

φ(ξ)dξ

−
∫ 1

0

e−
√
λ|x−ξ|

2
√
λ

φ(ξ)dξ

It is easy to see that the exponential expersions
in y(x, λ) tends to zero when |λ|→ ∞. Now, we
consider the following countour in complex plane
such that δ0 > δ > 0. Line with in snatches
shows the asymptotic line of countour Lν [8, 9].
By using of inverse transformation of y(x, λ) we

get an analytic solution for the main problem:

u(x, t) =

− 1

2πi

∫
L
eλty(x, λ)dλ (2.14)

=
1

2πi

∫
L
eλtdλ

∫ 1

0

e−
√
λ|x−ξ|

2
√
λ

φ(ξ)dξ

− 1
2πi

∫
L eλtdλ

∫ 1
0

e
√

λ(x+ξ)−2e
√
λ(1+x−ξ)+e

√
λ(x−ξ)

2
√
λ(e

√
λ−1)2

φ(ξ)dξ

− 1
2πi

∫
L eλtdλ

∫ 1
0

e
√

λ(2−x−ξ)+e−
√

λ(x−ξ)

2
√
λ(e

√
λ−1)2

φ(ξ)dξ
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3 Main Results

Theorem 3.1 Consider the initial-boundary
value problem

ut = uxx, x ∈ (0, 1), t > 0 (3.15)


u(0, t) = u(1, t)

, t ≥ 0
ux(x, t)|x=0= 0

(3.16)

u(x, 0) = φ(x), x ∈ [0, 1] (3.17)

if the function φ(x) satisfies the following condi-
tions:

φ(0) = φ(1) = 0, φ ∈ C2(0, 1) (3.18)

then this problem has a solution in form of (2.14).

The proof is stablished in three steps. In
first step we show that the solution (2.14)
satisfies in the equation (3.15). In the second
step we show that the solution (2.14) satisfies
in boundary conditions(3.16). In third step we
show that the solution (2.14) satisfies in the
initial condition(3.17).
Proof:
Step1:

uxx − ut =

− 1

2πi

∫
L
eλt[y′′(x, λ)− λy(x, λ)]dλ (3.19)

= − 1

2πi

∫
L
eλtφ(x)dλ = −φ(x)

2πi

∫
L
eλtdλ = 0

Since the function eλt is an analytic function,

that is:∫
Lν−Cν

eλtdλ =

∫
Lν

eλtdλ+

∫
−Cν

eλtdλ (3.20)

Note that the Lν−Cν is a closed countour and Cν

is a part of circle with radius γν , then we have:∫
Lν

eλtdλ =

∫
Cν

eλtdλ (3.21)

∫
L
eλtdλ = lim

ν→∞

∫
Lν

eλtdλ = lim
ν→∞

∫
Cν

eλtdλ = 0

(3.22)
Step2: For satisfying boundary conditions, we

have:

u(0, t)−u(1, t) =
1

2πi

∫
L
eλt[y(0, λ)−y(1, λ)]dλ = 0

(3.23)

ux(x, t)|x=0=
−1

2πi

∫
L
eλty′(0, λ)dλ = 0 (3.24)

Step3: For satisfying the initial condition
(3.17) we use the asymptotic expansion of

e−
√
λ|x−ξ|.

u(x, 0) =
−1

2πi
lim
t→0

∫
L
y(x, λ)dλ (3.25)

We can write the second term of solution as the
following asymptotic expansion:

−
∫ 1

0

e−
√
λ|x−ξ|

2
√
λ

φ(ξ)dξ = (3.26)

−1

2
√
λ

∫ x

0
e−

√
λ(x−ξ)φ(ξ)dξ

− 1

2
√
λ

∫ 1

x
e−

√
λ(ξ−x)φ(ξ)dξ =

− e−
√
λx

2
√
λ

∫ x
0 e

√
λξφ(ξ)dξ − e

√
λx

2
√
λ

∫ 1
x e−

√
λξφ(ξ)dξ

Now by using part rule of integration in
above integrals we have:∫ x

0
e
√
λξφ(ξ)dξ =

e
√
λξ

√
λ
φ(ξ)|x0−

∫ x

0

e
√
λξ

√
λ
φ′(ξ)dξ =

(3.27)

e
√
λx

√
λ

φ(x)− φ(0)√
λ

− 1√
λ

∫ x

0
e
√
λξφ′(ξ)dξ

For second integral we also have:∫ 1
x e−

√
λξφ(ξ)dξ =

e−
√
λξ

−
√
λ
φ(ξ)|1x−

∫ 1

x

e−
√
λξ

−
√
λ
φ′(ξ)dξ = (3.28)

− e−
√
λ

√
λ
φ(1) + e−

√
λx

√
λ

φ(x) + 1√
λ

∫ 1
x e−

√
λξφ′(ξ)dξ

Therefore we get:

−
∫ 1
0

e−
√

λ|x−ξ|

2
√
λ

φ(ξ)dξ =

− φ(x)

λ
+

φ(0)

2λ
e−

√
λx +

φ(1)

2λ
e−

√
λ(1−x)+ (3.29)
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e−
√

λx

2λ

∫ x
0 e

√
λξφ′(ξ)dξ − e

√
λx

2λ

∫ 1
x e−

√
λξφ′(ξ)dξ

Since eigenvalues in negative part of real
axes are distingly and discrete, hence we can
choose the countour Cν such that this countour
dose not contain any eigenvalue, therefore:

lim
ν→∞

∫
Cν

eλty(x, λ)dλ = 0 (3.30)

finaly we have:

u(x, 0) =
−1

2πi
lim
ν→∞

lim
t→0

∫
Lν−Cν

eλty(x, λ)dλ =

(3.31)
−1

2πi
lim
ν→∞

∫
Lν−Cν

[−φ(x)

λ
+

φ(0)

2λ
e−

√
λx +

φ(1)

2λ
e−

√
λ(1−x)

+ e−
√

λx

2λ

∫ x
0 e

√
λξφ′(ξ)dξ− e

√
λx

2λ

∫ 1
x e−

√
λxφ′(ξ)dξ]dλ

According to the conditions (3.18), we have:

u(x, 0) = φ(x)
1

2πi
lim
ν→∞

∫
Lν−Cν

dλ

λ
= φ(x)

(3.32)

4 Unsolved Problems

As mentioned in introduction, when the eigen-
values fill the complex plane or the case that
there is no eigenvalue, we should use the countor
integral method. Apply this method for the
following problems:

Problem1: ut = uxx, x ∈ (0, 1), t > 0

(4.1)


u(0, t)− 2u(1, t) = 0
, t ≥ 0
ux(x, t)|x=0+2ux(x, t)|x=1= 0

Problem2: ut = uxx, x ∈ (0, 1), t > 0

(4.2)


u(0, t) + u(1, t) = 0
, t ≥ 0
ux(x, t)|x=0−ux(x, t)|x=1= 0

With initial condition u(x, 0) = φ(x)

Problem3: utt = uxx, x ∈ (0, 1), t ∈ (0, T )

(4.3)


u(0, t) = u(1, t)
, t ≥ 0
ux(x, t)|x=0= 0

With initial conditions ∂ku(x,t)
∂tk

|t=0=
φk(x), x ∈ [0, 1], k = 0, 1

5 Conclusion

We appliyed the Countour integral method to
solve non-classical cases of these problems. We
shown that the spectral problem had repeated
eigenvalues and consequently the eigenfunctions
can not stablish a complete basis system. We also
shown that the resulted analytic solution satisfied
in given differantial equation and given initial and
boundary condition. We can apply same method
for solving more spectral problems which their
eigenvalues are repeated such as one and two di-
mensional wave equation and Steklov problem for
Laplace and Helemholtz equation.
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