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Abstract

In this paper, we give a new approach based on Taylor wavelets to solve fractional binary systems
of integro-differential equations (FIDEs). To do this, first, we present the function approximation
by using Taylor wavelets as well as the operational matrix of fractional integration of these wavelets.
Then, by approximating the fractional derivatives of the solutions of the main problem in terms of
the Taylor wavelets and using the operational matrix of fractional integration, we approximate the
solutions of the main problem. By substituting these approximations in the FIDEs, we obtain a
system of nonlinear algebraic equations. Finally, by the help of the proposed method, we solve some
numerical examples and show the accuracy and applicability of the method.

Keywords : Taylor wavelets; Fractional integro-differential equations; Binary systems; Nonlinear alge-
braic equations.

—————————————————————————————————–

1 Introduction

F
ractional calculus which includes integro-
differential of any arbitrary order can be con-

sidered an old but very important topic in math-
ematics for its noticeable role in other scientific
disciplines.
Many phenomena in fields of physics, chemistry,
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economics, engineering and other sciences can
be explained in form of mathematical models by
fractional calculus. In recent years, the frequent
appearance of flow mechanism, viscoelastic, biol-
ogy, electrochemical and other engineering tech-
nical issues, have led researchers to do a lot of
tasks in this field. Today, many methods have
been devised to solve such problems. Scientists
have applied these methods to find the exact solu-
tion or an approximate one that has the least pos-
sible absolute error [1, 2, 3, 4]. One of these proce-
dures is the wavelet method. The wavelets opin-
ion is a relatively new topic which for many math-
ematicians and researchers is a powerful tool in
their researches. The wavelets method is widely
used in many engineering and scientific disci-
plines such as signal processing, time frequency,
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analysis and quick algorithms for simple imple-
mentation. Wavelets is a particular type of os-
cillatory functions that can be used to approx-
imate unknown functions [5, 6, 7]. The most
important wavelets ever have been applied to
approximate unknown functions are Haar, Leg-
endre, Chebyshev, Bernoulli and CAS wavelets
[8, 9, 10, 11, 12]. Each series of wavelets are
made based on its polynomials. Orthogonal poly-
nomials are used to solve many fractional order
differential equations. It helps us reduce these
equations to a system of algebraic equations by
using the operational derivative or integral ma-
trix. Althoug Taylor polynomials are not orthog-
onal, the operational matrix can be calculated for
them [13, 14].
Since there has been less task on binary systems
of FIDEs, it has encouraged us to solve them nu-
merically. In this way, we have chosen Taylor
wavelets method because it has the least abso-
lute error, accuracy and simplicity. Even under
certain conditions, approximate solutions of ex-
amples will be the exact solution. The general
form of these examples is a coupled systems of
FIDEs as follows [13]

DαF (x) = f1(x, F (x), G(x))

+
∫ x
0 f2(t, F (t), G(t))dt,

DβG(x) = g1(x, F (x), G(x))

+
∫ x
0 g2(t, F (t), G(t))dt,

(1.1)

where x, t ∈ [0, 1], α, β ∈ (0, 1], and Dα, Dβ dis-
play the Caputo derivative operator.

2 Basic concepts of fractional calculus

We devoted this section to important basic con-
cepts that are needed [15].

Definition 2.1 The Riemann-Liouville frac-
tional integral for order m ≥ 0 is a function that
is defined as

ImR(y) =



1

Γ(m)

∫ y

0
(y − t)m−1F (t)dt,

m > 0,

F (y), m = 0,

(2.2)

where

Γ(m) =

∫ ∞

0

tm−1e−tdt.

Definition 2.2 The Caputo fractional derivative
for m > 0 has the following definition

Dmf(y) =

1

Γ(n−m)

∫ y
0 (y − t)n−m−1f (n)(t)dt,

m > 0, n− 1 < m < n,

d(n)f(y)

dyn
, m = n,

(2.3)

where y ≥ 0, and n = 1, 2, 3, . . ..

The operator Riemann-Liouville integral and
Caputo derivative for y > 0 has the following
relationships

DmImf(y) = f(y),

ImDmf(y) = f(y)−
k−1∑
j=0

f (j)(0+)

j!
yj , k − 1 < m < k.

(2.4)

3 Function approximation and
error analysis

3.1 Taylor wavelets

Taylor wavelets are defined on [0, 1] as [16]

Ψij(y) =


2α−1T̂j(2

α−1y − i+ 1),
i− 1

2α−1
≤ y <

i

2α−1
,

0, otherwise,

(3.5)

where i = 1, 2, · · · , 2α−1, j = 0, 1, 2, · · · , β − 1,
(α, β ∈ N ) and T̂j(y) =

√
2j + 1Tj(y). The coef-

ficient
√
2j + 1 is for normality and Tj(y) are the

well-known Taylor polynomials of order j that are
written as Tj(y) = tj and they form a perfect ba-
sis on [0, 1] [14].

3.2 Function approximation by using
Taylor wavelets

For any function defined on L2[0, 1] we can have

f(y) =

∞∑
i=1

∞∑
j=0

aijψij(y) = ATΨ(y), (3.6)

where

aij = ⟨f(y), ψij(y)⟩ = ATΨ(y)

=

∫ 1

0
w(y)f(y)ψij(y)dy.

(3.7)
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In (3.7), ⟨, ⟩ displays the linner product with
weight function w(y).
The infinite series in Eq. (3.6) can be written as
the finite series

f(y) =

2α−1∑
i=1

β−1∑
j=0

aijψij(y) = ATΨ(y), (3.8)

where A and Ψ(y) are 2α−1β × 1 matrices given
by

A = [a10, a11, · · · , a1(β−1), a20, a21, · · · , a2(β−1),

· · · , a2α−10, a2α−11, · · · , a2α−1(β−1)]
T ,

Ψ(y) =[ψ10(y), ψ11(y), · · · , ψ1(β−1)(y), ψ20(y),

ψ21(y), · · · , ψ2(β−1)(y), · · · , ψ2α−10(y),

ψ2α−11(y), · · · , ψ2α−1(β−1)(y)]
T .

For simplicity we write Eq. (3.8) as follows

fk(y) ≈
k∑

n=1

anψn(y) = AT
kΨk(y) = f̃k(y), (3.9)

where an = aij , ψn = ψij , k = 2α−1β, n = β(i −
1) + j + 1 and f̃k(y) is the best approximation of
f(y).

We choose collocation points as yn =
2n− 1

2k
that

the Taylor wavelet matrix can be written as

ϕk×k = [Ψ(
1

2k
) Ψ(

3

2k
) Ψ(

5

2k
) · · · Ψ(

2n− 1

2k
)].

(3.10)

3.3 Error analysis

Now we find the error bound of the approximate
f(y) by using Taylor wavelets.

Theorem 3.1 Suppose f(y) ∈ Cn[c, d] and
gn(y) be interpolating polynomial of degree n that
agrees with f(y) at the Chebyshev nodes on [c, d].
Then we have [17]

∥f(y)− gn(y)∥≤
2

n!
(
d− c

4
)n max

δ∈[c,d]
|f (n)(δ)|.

(3.11)

Theorem 3.2 Let f(y) ∈ Cn[0, 1] and

f(y) ≈
2α−1∑
i=1

β−1∑
j=0

aijψij(y) = ATΨ(y).

Then, the error bound obtain as

∥f(y)−ATΨ(y)∥

≤ 2

n! 4n2n(α−1)
max
δ∈[0,1]

|f (n)(δ)|. (3.12)

Proof. We divide the interval [0, 1]

to 2α−1 subintervals Iα,i = [
i− 1

2α−1
,

i

2α−1
] ,

i = 1, 2, · · · , 2α−1.

Since ATΨ(y) is the best approximation
then by using Theorem(3.1) we have

∥f(y)−ATΨ(y)∥22=
∫ 1

0

[f(y)−ATΨ(y)]
2
dy

=

2α−1∑
i=1

∫
Iα,i

[f(y)−ATΨ(y)]
2
dy

≤
2α−1∑
i=1

∫
Iα,i

[f(y)− gn(y)]
2
dy

≤
2α−1∑
i=1

∫
Iα,i

[ 2

n!

(1/2α−1

4

)n

max
δ∈Iα,i

|f (n)(δ)|
]2
dy

≤
2α−1∑
i=1

∫
Iα,i

[ 2

n!

(1/2α−1

4

)n

max
δ∈[0,1]

|f (n)(δ)|
]2
dy

=
[ 2

n! 4n2n(α−1)
max
δ∈[0,1]

|f (n)(δ)|
]2

≤
[ 2

n! 4n2n(α−1)
max
δ∈[0,1]

|f (n)(δ)|
]
,

where gn(y) is a polynomial that interpolates
f(y) at the Chebyshev nodes on Iα,i.

4 Operational matrix of frac-
tional order integration

4.1 Block pulse functions

Block pulse functions (BPFs) are defined as [18]

bi(y) =


1,

(i− 1)

k
≤ y <

i

k
,

0, otherwise

(4.13)
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where i = 1, 2, · · · , k and k = 2α−1β.
The BPFs have the following two characteristics

bi(y)bj(y) =


bi(y), i = j,

0, i ̸= j,

(4.14)

∫ y

0
bi(y)bj(y)dy =


1

k
, i = j,

0, i ̸= j.

(4.15)

Definition 4.1 Let P = [p1, p2, · · · , pk]T and
Q = [q1, q2, · · · , qk]T .
We define P ⊙ Q = [p1q1, p2q2, · · · , pkqk]T and
P 2 = [p21, p

2
2, · · · , p2k]T .

Lemma 4.1 Suppose that functions f(y) and
g(y) on L2[0, 1] are defined, so that f(y) ≈
F TBk(y) and g(y) ≈ GTBk(y) where F T =
[f1, f2, · · · , fk], GT = [g1, g2, · · · , gk] and BT

k (y) =
[b1, b2, · · · , bk]T .
Then

f(y)g(y) = F TBk(y)G
TBk(y) ≈ (F T⊙GT )Bk(y),

(4.16)

f(y)2 ≈ (F TBk(y))
2 = (F T )2Bk(y). (4.17)

Proof. By using the properties of BPFs, the
proof is distinct.

4.2 Taylor wavelets operational ma-
trix of fractional order integration

The integration of Taylor wavelets Ψ(y) can be
obtained as [19]

IΨk(y) =

∫ y

0
Ψk(x)dx ≈ Pk×kΨk(y), (4.18)

where Pk×k is named the integral operational ma-
trix of Taylor wavelets and k displays dimension,
also Pm

k×k is named the fractional order integra-
tion operational matrix of Taylor wavelets and
achieved from

ImΨk(y) ≈ Pm
k×kΨk(y). (4.19)

The following relation can be deduced by using
Taylor wavelets matrix ϕk×k in (3.10) and the
definition of BPFs.

Ψk(y) ≈ ϕk×kBk(y). (4.20)

The fractional order integration operational ma-
trix of BPFs can be expressed as [20]

ImBk(y) ≈ FmBk(y), (4.21)

we get from (4.19)-(4.21)

Pm
k×kΨk(y) ≈ ImΨk(y)

≈ Imϕk×kBk(y) = ϕk×kI
mBk(y)

≈ ϕk×kF
mBk(y)

≈ ϕk×kF
mϕ−1

k×kΨk(y). (4.22)

Finally, we obtain from (4.22)

Pm
k×k ≈ ϕk×kF

mϕ−1
k×k. (4.23)

It is necessary to mention that general form ma-
trix Fm and ϕk×k explained as follow [21]

Fm = (
1

k
)m

1

Γ(m+ 2)



1 σ1 σ2 · · · σk−1

0 1 σ1 · · · σk−2

0 0 1 · · · σk−3

0 0 0 · · · σk−4
...

...
...

. . .
...

0 0 0 · · · 1


,

and σi = (i + 1)m+1 − 2pim+1 + (i − 1)m+1, i =
1, 2, . . . , k −m. Also the matrix ϕk×k is as

ϕr×r =


T 0 0 · · · 0
0 T 0 · · · 0
0 0 T · · · 0
...

...
... · · ·

...
0 0 0 · · · T

 ,

where T is matrix β × β as
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T =



ψ10(
1

2k
) ψ10(

3

2k
) ψ10(

5

2k
) · · · ψ10(

2n− 1

2k
)

ψ11(
1

2k
) ψ11(

3

2k
) ψ11(

5

2k
) · · · ψ11(

2n− 1

2k
)

...
...

... · · ·
...

ψ2α−1(β−1)(
1

2k
) ψ2α−1(β−1)(

3

2k
) ψ2α−1(β−1)(

5

2k
) · · · ψ2α−1(β−1)(

2n− 1

2k
)


.

Now we compute marices Fm, ϕk×k and Pm
k×k for α = 2 implies i = 1, 2, β = 4 implies β = 0, 1, 2, 3

and m = 0.5, (k = 2α−1β),

F 0.5 =



0.2660 0.2203 0.1434 0.1160 0.1001 0.0894 0.0816 0.0755

0 0.2660 0.2203 0.1434 0.1160 0.1001 0.0894 0.0816

0 0 0.2660 0.2203 0.1434 0.1160 0.1001 0.0894

0 0 0 0.2660 0.2203 0.1434 0.1160 0.1001

0 0 0 0 0.2660 0.2203 0.1434 0.1160

0 0 0 0 0 0.2660 0.2203 0.1434

0 0 0 0 0 0 0.2660 0.2203

0 0 0 0 0 0 0 0.2660



,

ϕ8×8 =



1.4142 1.4142 1.4142 1.4142 0 0 0 0

0.3062 0.9186 1.5309 2.1433 0 0 0 0

0.0494 0.4447 1.2353 2.4211 0 0 0 0

0.0073 0.1973 0.9135 2.5066 0 0 0 0

0 0 0 0 1.4142 1.4142 1.4142 1.4142

0 0 0 0 0.3062 0.9186 1.5309 2.1433

0 0 0 0 0.0494 0.4447 1.2353 2.4211

0 0 0 0 0.0073 0.1973 0.9135 2.5066



,

P 0.5
8×8 =



0.1115 0.7959 −0.5405 0.1994 0.6861 −0.5673 0.5029 −0.1923

0.0127 0.1442 0.4030 −0.0911 0.7206 −0.7244 0.6819 −0.2664

0.0052 −0.0257 0.2523 0.1686 0.6814 −0.7522 0.7275 −0.2871

−0.0121 0.0943 −0.2814 0.5558 0.6363 −0.7408 0.7273 −0.2887

0 0 0 0 0.1115 0.7959 −0.5405 0.1994

0 0 0 0 0.0127 0.1442 0.4030 −0.0911

0 0 0 0 0.0052 −0.0257 0.2523 0.1686

0 0 0 0 −0.0121 0.0943 −0.2814 0.5558



.
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5 Numerical examples

To demonstrate the accuracy and the efficiency
of the proposed method based on the Taylor
wavelets we solve the following two examples cho-
sen the [13] and show their graphs for different
values of y.

Example 5.1 [13]

Diu(t) = −
1

2
u2(t)− v(t)

−
∫ t
0 v(τ)u(τ)dτ +

1

2
, 0 < i ≤ 1,

Djv(t) = v2(t)− u2(t)−
∫ t
0 v(τ)dτ,

0 < j ≤ 1,

(5.24)

where the initial conditions are u(0) = 1 and
v(0) = 0. The exact solutions by u(t) = cos t and
v(t) = sin t are achieved only for i = j = 1 and
for i, j ∈ (0, 1) are unknown.

Let 
Diu(t) ≈ AT

kΨk(t),

Djv(t) ≈ CT
k Ψk(t),

(5.25)

where AT
k = [a1, a2, a3, · · · , ak] and CT

k =
[c1, c2, c3, · · · , ck]. By using Eqs.(2.4), (4.19),
(4.20) and (5.25), we have

u(t) = IiDiu(t) + u(0) ≈ AT
k p

i
k×kΨk(t)

+1 ≈ AT
k p

i
k×kϕk×kBk(t) + 1,

v(t) = IjDjv(t) + v(0) ≈ CT
k p

j
k×kΨk(t)

≈ CT
k p

j
k×kϕk×rBk(t),

(5.26)
from Eqs.(4.16)-(4.18) and (5.26), we have

u2(t) ≈ (AT
k p

i
k×kϕk×k)

2Bk(t)

+ 2AT
k p

i
k×kϕk×kBk(t) + 1, (5.27)

v2(t) ≈ CT
k p

j
k×kϕk×k)

2Bk(t),∫ t

0
v(τ)dτ ≈

∫ t

0
CT
k p

j
k×kΨk(τ)dτ

≈ CT
k p

1+j
k×kϕk×kBk(t). (5.28)

v(t)u(t) ≈ (CT
k p

j
k×kϕk×k

Bk(t))(A
T
k p

i
k×kϕk×kBk(t) + 1)

= (CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)

Bk(t) + CT
k p

j
k×kϕk×kBk(t).

∫ t

0

v(τ)u(τ)dτ ≈
∫ t

0

(CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)Bk(τ)dτ

+

∫ t

0

CT
k p

j
k×kϕk×kBk(τ)dτ

= (CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)

∫ t

0

Bk(τ)dτ

+ (CT
k p

j
k×kϕk×k)

∫ t

0

Bk(τ)dτ,

≈ (CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)

∫ t

0

ϕ−1
k×kΨk(τ)dτ

+ CT
k p

j
k×kϕk×k

∫ t

0

ϕ−1
k×kΨk(τ)dτ

≈ (CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)ϕ

−1
k×kpk×kϕk×kBk(t)

+ CT
k p

1+j
k×kϕk×kBk(t).

(5.29)

By replacing Eqs. (4.20), and (5.25)-(5.29) into
Eq. (5.24), and by the properties of BPFs, we
obtain

AT
k ϕk×k =

−1

2
(AT

k p
i
k×kϕk×k)

2 −AT
k p

i
k×kϕk×k

−CT
k p

j
k×kϕk×k

−(CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k

+CT
k p

j
k×kϕk×k)ϕ

−1
k×kpk×kϕk×k,

CT
k ϕk×k =

(CT
k p

j
k×kϕk×k)

2 + (AT
k p

i
k×kϕk×k)

2

+2AT
k p

i
k×kϕk×k − CT

k p
1+j
k×kϕk×k

+[1, 1, . . . , 1]1×k.

(5.30)

Now Eq. (5.24) has been converted to Eq.(5.30)
and this is a system of nonlinear algebraic equa-
tions that has 2k unknown coefficients, Ak and
Ck, which by calculating nknown coefficients dis-
solves.
The numerical conclusion of Example (5.1) are
displayed in the Tables 1-3. These tables includ-
ing the approximate and the exact solutions and
for distinct values t, k, i and j absolute errors also
has been shown.
If you pay attention, will find out that by increas-
ing α and β valuse of u and v converge to exact
solutions, particularly when i, j → 1.
Also convergence functions u and v in figures 1-5
is apparent.
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Table 1: Numerical results for Example 5.1 for different valuse of i and j when α = 4 and β = 5, (k = 2α−1β =
40 and n = 2, 6, 10, · · · , 34, 38).

i=0.75, j=0.75 i=0.80, j=0.80 i=0.85, j=0.85 i=1, j=1 Exact solution

tn =
2n− 1

2k
u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

t2 = 0.0375 0.9943 0.0921 0.9962 0.0772 0.9974 0.0646 0.9992 0.0375 0.9993 0.0375

t6 = 0.1375 0.9620 0.2415 0.9709 0.2165 0.9778 0.1941 0.9905 0.1370 0.9906 0.1371

t10 = 0.2375 0.9151 0.3554 0.9311 0.3297 0.9444 0.3046 0.9719 0.2352 0.9719 0.2353

t14 = 0.3375 0.8590 0.4480 0.8809 0.4259 0.9002 0.4025 0.9435 0.3311 0.9436 0.3311

t18 = 0.4375 0.7970 0.5230 0.8231 0.5076 0.8472 0.4891 0.9058 0.4236 0.9058 0.4237

t22 = 0.5375 0.7316 0.5818 0.7597 0.5755 0.7870 0.5645 0.8590 0.5119 0.8590 0.5120

t26 = 0.6375 0.6649 0.6248 0.6926 0.6297 0.7213 0.6283 0.8036 0.5950 0.8036 0.5952

t30 = 0.7375 0.5990 0.6521 0.6238 0.6700 0.6517 0.6802 0.7402 0.6723 0.7402 0.6724

t34 = 0.8375 0.5357 0.6635 0.5549 0.6959 0.5795 0.7195 0.6694 0.7428 0.6693 0.7430

t38 = 0.9375 0.4768 0.6590 0.4877 0.7069 0.5065 0.7455 0.5919 0.8059 0.5918 0.8061

Table 2: Numerical results for Example 5.1 for different valuse of i and j when α = 4 and β = 6, (k = 2α−1β =
48 and n = 4, 8, 12, · · · , 36, 40).

i=0.85, j=0.85 i=0.88, j=0.88 i=0.95, j=0.95 i=1, j=1 Exact solution

tn =
2n− 1

2k
u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

t4 = 0.0729 0.9924 0.1138 0.9938 0.1042 0.9962 0.0847 0.9973 0.0728 0.9973 0.0729

t8 = 0.1563 0.9725 0.2159 0.9765 0.2026 0.9839 0.1740 0.9878 0.1556 0.9878 0.1556

t12 = 0.2396 0.9436 0.3068 0.9506 0.2921 0.9640 0.2592 0.9714 0.2373 0.9714 0.2373

t16 = 0.3229 0.9073 0.3890 0.9171 0.3745 0.9368 0.3408 0.9483 0.3173 0.9483 0.3173

t20 = 0.4063 0.8646 0.4633 0.8771 0.4503 0.9029 0.4184 0.9186 0.3951 0.9186 0.3952

t24 = 0.4896 0.8167 0.5298 0.8314 0.5194 0.8628 0.4918 0.8825 0.4702 0.8825 0.4703

t28 = 0.5729 0.7643 0.5885 0.7807 0.5816 0.8168 0.5604 0.8403 0.5420 0.8403 0.5421

t32 = 0.6563 0.7085 0.6390 0.7259 0.6366 0.7655 0.6239 0.7923 0.6100 0.7923 0.6102

t36 = 0.7396 0.6501 0.6812 0.6677 0.6840 0.7095 0.6818 0.7388 0.6739 0.7387 0.6740

t40 = 0.8229 0.5901 0.7146 0.6070 0.7235 0.6491 0.7337 0.6801 0.7330 0.6801 0.7331
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Table 3: Absolute error for Tables 1 and 2 when i = j = 1.

tn eu ev tn eu ev

t2 7.7905e− 05 8.7865e− 06 t4 5.3709e− 05 1.1862e− 05

t6 7.5336e− 05 3.2182e− 05 t8 5.1753e− 05 2.5389e− 05

t10 6.9722e− 05 5.5448e− 05 t12 4.8318e− 05 3.8843e− 05

t14 6.0970e− 05 7.8484e− 05 t16 4.3368e− 05 5.2186e− 05

t18 4.9026e− 05 1.0121e− 04 t20 3.6880e− 05 6.5382e− 05

t22 3.3868e− 05 1.2358e− 04 t24 2.8844e− 05 7.8411e− 05

t26 1.5508e− 05 1.4562e− 04 t28 1.9259e− 05 9.1270e− 05

t30 6.0239e− 06 1.6747e− 04 t32 8.1339e− 06 1.0399e− 04

t34 3.0691e− 05 1.8939e− 04 t36 4.5181e− 06 1.1663e− 04

t38 5.8465e− 05 2.1755e− 04 t40 1.8681e− 05 1.2930e− 04

Table 4: Numerical for Example 5.2 for different valuse of i and j when α = 5 and β = 4, (k = 2α−1β = 64
and n = 1, 8, 15, · · · , 56, 63).

i=0.65, j=0.65 i=0.75, j=0.75 i=0.85, j=0.85 i=1, j=1 Exact solution

tn =
2n− 1

2k
u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

t1 = 0.0078 0.0449 0.0041 0.0274 0.0015 0.0167 0.0006 0.0078 0.0001 0.0078 0.0000

t8 = 0.1172 0.2653 0.1062 0.2144 0.0610 0.1700 0.0341 0.1172 0.0138 0.1172 0.0137

t15 = 0.2266 0.3913 0.2441 0.3445 0.1623 0.2952 0.1043 0.2266 0.0514 0.2266 0.0513

t22 = 0.3359 0.4858 0.3936 0.4527 0.2884 0.4085 0.2025 0.3359 0.1129 0.3359 0.1129

t29 = 0.4453 0.5617 0.5447 0.5466 0.4310 0.5134 0.3242 0.4453 0.1983 0.4453 0.1983

t36 = 0.5547 0.6251 0.6910 0.6298 0.5842 0.6117 0.4658 0.5547 0.3077 0.5547 0.3077

t43 = 0.6641 0.6799 0.8283 0.7044 0.7428 0.7042 0.6242 0.6640 0.4410 0.6641 0.4410

t49 = 0.7578 0.7223 0.9365 0.7629 0.8800 0.7796 0.7711 0.7578 0.5743 0.7578 0.5743

t56 = 0.8672 0.7687 1.0503 0.8258 1.0378 0.8633 0.9262 0.8671 0.7520 0.8672 0.7520

t63 = 0.9766 0.8140 1.1500 0.8844 1.1903 0.9428 1.1427 0.9765 0.9536 0.9766 0.9537
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Table 5: Numerical results for Example 5.2 for different valuse i and j when α = 4 and β = 7, (k = 2α−1β = 56
and n = 5, 10, 15, · · · , 45, 50).

i=0.79, j=0.79 i=0.85, j=0.85 i=0.92, j=0.92 i=1, j=1 Exact solution

tn =
2n− 1

2k
u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t) u(t) v(t)

t5 = 0.0804 0.1459 0.0268 0.1236 0.0180 0.1013 0.0113 0.0804 0.0065 0.0804 0.0065

t10 = 0.1695 0.2605 0.0867 0.2319 0.0639 0.2011 0.0443 0.1696 0.0289 0.1696 0.0288

t15 = 0.2589 0.3591 0.1680 0.3297 0.1306 0.2958 0.0963 0.2589 0.0671 0.2589 0.0670

t20 = 0.3482 0.4476 0.2657 0.4206 0.2150 0.3871 0.1657 0.3482 0.1213 0.3482 0.1213

t25 = 0.4375 0.5284 0.3764 0.5061 0.3148 0.4756 0.2515 0.4375 0.1915 0.4375 0.1914

t30 = 0.5268 0.6029 0.4973 0.5872 0.4280 0.5619 0.3527 0.5268 0.2776 0.5268 0.2775

t35 = 0.6696 0.6721 0.6260 0.6643 0.5528 0.6460 0.4685 0.6160 0.3796 0.6161 0.3795

t40 = 0.7054 0.7367 0.7603 0.7379 0.6878 0.7282 0.5980 0.7053 0.4976 0.7054 0.4975

t45 = 0.7946 0.7973 0.8981 0.8082 0.8311 0.8086 0.7403 0.7946 0.6315 0.7946 0.6315

t50 = 0.8839 0.8544 1.0374 0.8757 0.9813 0.8873 0.8946 0.8839 0.7813 0.8839 0.7813

Table 6: Absolute error for Tables 4 and 5 when i = j = 1.

tn eu ev tn eu ev

t1 3.1972e− 07 6.0948e− 05 t5 4.3955e− 06 7.8119e− 05

t8 4.9669e− 06 5.8974e− 05 t10 9.5450e− 06 7.5057e− 05

t15 9.9215e− 06 5.5396e− 05 t15 1.4941e− 05 7.0541e− 05

t22 1.5136e− 05 5.0071e− 05 t20 2.0552e− 05 6.4466e− 05

t29 2.0567e− 05 4.2846e− 05 t25 2.6348e− 05 5.6721e− 05

t36 2.6179e− 05 3.3552e− 05 t30 3.2303e− 05 4.7188e− 05

t43 3.1940e− 05 2.2010e− 05 t35 3.8394e− 05 3.5738e− 05

t49 3.6972e− 05 1.0178e− 05 t40 4.4599e− 05 2.2238e− 05

t56 4.2930e− 05 6.0733e− 06 t45 5.7271e− 05 6.5424e− 06

t63 4.8959e− 05 2.5177e− 05 t50 6.3700e− 05 1.1503e− 05



366 R. Kavehsarchogha et al., /IJIM Vol. 12, No. 4 (2020) 357-370

Figure 1: Numerical results for different values
of i and j, when α = 3, β = 5 and k = 20.

Figure 2: Numerical results for different values
of i and j, when α = 4, β = 4 and k = 32.

Example 5.2 [13]



Diu(t) =
1

3
v(t)u(t)− v(t) + 1−

∫ t
0 [v(τ)

−2u(τ)]dτ, 0 < i ≤ 1,

Djv(t) =
1

3
v(t)u(t) +

1

2
u2(t) + 2u(t)

∫ t
0 [v(τ)

+u(τ)]dτ, 0 < j ≤ 1,

(5.31)

which the initial conditions are u(0) = 0 and
v(0) = 0. The exact solutions by u(t) = t and
v(t) = t2 are obtained only for i = j = 1 and for
i, j ∈ (0, 1) are unknown.
Let 

Diu(t) ≈ AT
kΨk(t),

Djv(t) ≈ CT
k Ψk(t),

(5.32)

Figure 3: [Related to Table (1)]. Numerical re-
sults for different values of i and j, when α = 4,
β = 5 and k = 40.

where AT
k = [a1, a2, a3, . . . , ak] and CT

k =
[c1, c2, c3, . . . , ck].
By using Eqs.(2.4), (4.19), (4.20) and (5.32) we
have

u(t) = IiDiu(t) + u(0) ≈ AT
k p

i
k×kψk(t)

≈ AT
k p

i
k×kϕk×kBk(t),

v(t) = IjDjv(t) + v(0) ≈ CT
k p

j
k×kψk(t)

≈ CT
k q

s
n′×n′ϕk×kBk(t).

(5.33)

From Eqs.(4.16)-(4.18) and (5.33), we obtain

v(t)u(t) ≈ (CT
k p

j
k×kϕk×kBk(t))(A

T
k p

i
k×kϕk×n′Bk(t))

= (CT
k p

j
k×kϕk×k ⊙AT

k p
i
k×kϕk×k)Bk(t). (5.34)

u2(t) ≈ (AT
k p

i
k×kϕk×kBk(t))

2

= (AT
k p

i
k×kϕk×k)

2Bk(t). (5.35)

∫ t

0
u(τ)dτ ≈

∫ t

0
AT

k p
i
k×kψk(τ)dτ

= AT
k p

i
k×k

∫ t

0
ψk(τ)dτ

≈ AT
k p

i
k×kp

1
k×kψk(t)

≈ AT
k p

1+i
k×kϕk×kBk(t). (5.36)

∫ t

0
v(τ)dτ ≈

∫ t

0
CT
k p

j
k×kψk(τ)dτ

≈ CT
k p

1+j
k×kϕk×kBk(t). (5.37)
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Figure 4: [Related to Table (2)]. Numerical re-
sults for different values of i and j, when α = 4,
β = 6 and k = 48.

Figure 5: Numerical results for different values
of i and j, when α = 5, β = 6 and k = 96.

By replacing the Eqs.(4.20), (5.32), and
(5.34)-(5.37) into Eq.(5.31), we get



AT
k ϕk×kBk(t) =

1

3
(Bkp

j
k×kϕk×k ⊙AT

k pik×kϕk×k)Bk(t)

−CT
k pjk×kϕk×kBk(t) + [1, 1, . . . , 1]1×rBk(t)

−CT
k q1+j

k×kϕk×kBk(t)

+2AT
k p1+i

k×kϕk×kBk(t),

CT
k ϕk×k =

1

3
(CT

k pjk×kϕk×k ⊙AT
k pik×kϕk×k)Bk(t)

+
1

2
(AT

k pik×kϕk×k)
2Bk(t)

+2AT
k pik×kϕk×kBk(t)

−CT
k p1+j

k×kϕk×kBk(t)−AT
k p1+i

k×kϕk×kBk(t).

(5.38)

Figure 6: Numerical results for different values
of i and j, when α = 3, β = 7 and k = 28.

Figure 7: Numerical results for different values
of i and j, when α = 4, β = 6 and k = 48.

By using the properties of BPFs, we obtain



AT
k ϕk×k =

1

3
(CT

k pjk×kϕk×k ⊙AT
k pik×kϕk×k)

−CT
k pjk×kϕk×k + [1, 1, . . . , 1]1×k

−CT
k p1+j

k×kϕk×k + 2AT
k p1+i

k×kϕk×k,

AT
k ϕk×k =

1

3
(CT

k pjk×kϕk×k ⊙AT
k pik×kϕk×k)

+
1

2
(AT

k pik×kϕk×k)
2 + 2AT

k pik×kϕk×k

−CT
k p1+j

k×kϕk×k −AT
k p1+i

k×kϕk×k.

(5.39)

Now Eq.(5.31) has been converted to Eq.(5.39)
and this is a system of nonlinear algebraic equa-
tions that has 2k unknown coefficients, Ak and
Ck, which by calculating nknown coefficients dis-
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Figure 8: [Related to Table (4)]. Numerical re-
sults for different values of i and j, when α = 5,
β = 4 and k = 64.

solves.
The numerical conclusion of Example (5.2) are
displayed in the Tables 4-6. In these tables in-
cluding the approximate and the exact solutions
and also absolute errors for different values of
t, k, i and j.
If you look at the tables you will notice that by
increasing α and β valuse of u and v converge to
exact solutions, particularly when i, j → 1.
Convergence functions u and v in figures 6-10 is
apparent.

6 Conclusion

What caused to solve binary systems of FDIEs
were two reasons; first, the numerical solution of
FDIEs is often impossible or very difficult; sec-
ond, solving binary systems of this equations are
less considered. In this article, we have cho-
sen Taylor wavelets method since this method
is less used to solve such systems. Our nu-
merical findings have been compared with the
solutions obtained by other numerical methods
such as Bernoulli, Legendre, Chebyshev and Haar
wavelets. As can be seen, this technique has very
high accuracy and efficiency; and its absolute er-
ror values are ignorable that this fact is proved
by looking at the tables and figures.

Figure 9: [Related to Table (5)]. Numerical re-
sults for different values of i and j, when α = 4,
β = 7 and k = 56.

Figure 10: Numerical results for different values
of i and j, when α = 5, β = 5 and k = 80.
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