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Abstract

As we know, developing mathematical models and numerical procedures that would appropriately
treat and solve systems of linear equations where some of the system’s parameters are proposed as
fuzzy numbers is very important in fuzzy set theory. For this reason, many researchers have used
various numerical methods to solve fuzzy linear systems. In this paper, we define the concepts of
midpoint and radius functions for a fuzzy number, midpoint and radius vectors for a fuzzy number
vector and midpoint and radius systems for a fuzzy linear system. All these new definitions are defined
based on the parametric form of fuzzy numbers. Then, by these new concepts, we propose a simple
method to solve a fuzzy linear system and obtain it’s algebraic solution. Also, we present a sufficient
condition for the obtained solution vector to be always a fuzzy vector. Finally, several numerical
examples are given to show the efficiency and capability of the proposed method.

Keywords : Fuzzy linear system; Midpoint function; Radius function; Midpoint vector; Radius vector;
Midpoint system; Radius system.
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1 Introduction

S
olving systems of linear equations where some
of the system’s parameters are proposed as

fuzzy numbers play a major role in several ap-
plications in various areas of sciences, such as
control problems, information, physics, statistics,
engineering, economics, finance and even social
sciences. Therefore, it is immensely important
to develop mathematical models and numerical
procedures that would appropriately treat fuzzy
linear systems and solve them.

A general model for solving an n × n fuzzy
linear system (FLS) whose coefficient matrix is
crisp and the right-hand side column is an ar-
bitrary fuzzy number vector was first proposed
by Friedman et al. [15]. They transformed an

∗Corresponding author. Mo-
jtaba.Ghanbari@gmail.com

†Department of Mathematics, Aliabad Katoul Branch,
Islamic Azad University, Aliabad Katoul, Iran.

n×n fuzzy linear system into 2n×2n crisp linear
system by using embedding method [13]. After
applying the method, if the obtained solution is
a fuzzy number vector, then the solution is called
strong solution, if it is not, then it is called weak
solution. Based on Friedman et al.’s method,
many authors [1, 2, 3, 4, 7, 11] have used various
numerical methods to solve fuzzy linear systems.
In 2010, Ghanbari and Mahdavi-Amiri [16] have
proposed an approach for computing the general
compromised solution of an L-R FLS by use of
a ranking function when the coefficient matrix is
a crisp m × n matrix. But, this method was re-
vised by Ghanbari and Nuraei [17]. Ezzati [14]
developed a new method for solving fuzzy linear
systems by using embedding method [13] and re-
placed an n×n fuzzy linear system by two n×n
crisp linear system. In 2011, Allahviranloo et al.
[8] have showed by an interesting counterexample
that the so-called weak solution defined by Fried-
man et al. [15], is not always a fuzzy number
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vector. Allahviranloo and Salahshour [10] pro-
posed a simple and practical method to obtain
fuzzy symmetric solutions of fuzzy linear systems
based on a 1-cut expansion. Also, Allahviranloo
et al. [5] have used a new metric to obtain the
nearest symmetric fuzzy solution for a symmet-
ric fuzzy linear system. Recently, Allahviranloo
and Ghanbari [9] have introduced a new concept,
namely “interval inclusion linear system”, to pro-
pose a new approach for solving fuzzy linear sys-
tems. In 2013, Nuraei et al. [21] have used the
interval Gaussian elimination procedure to pro-
duce an inner estimation of the solutions set of a
fuzzy linear system. Allahviranloo et al. [6] have
investigated the solution of a fuzzy linear system
based on a 1-level expansion. To this end, 1-level
of a fuzzy linear system is solved for calculating
the core of fuzzy solution and then its spreads
are obtained by solving an optimization problem
with a special objective function. In 2014, Behera
and Chakraverty [12] presented a new and simple
method for solving general fuzzy complex system
of linear equations.

In this paper, we focus on system of fuzzy
linear equations or shortly fuzzy linear system
whose coefficient matrix is crisp and the right-
hand side column is an arbitrary fuzzy number
vector. We first define several new concepts for
a fuzzy number, namely “midpoint function” and
“radius function”, and for a fuzzy number vector,
namely “midpoint vector” and “radius vector”
and for a fuzzy linear system, namely “midpoint
system” and “radius system”. Then, we propose
a new method to obtain the algebraic solution of
a fuzzy linear system based on these defined new
concepts. The proposed method is very simple
and practical. In fact, we show that for solving
an n×n fuzzy linear system it is sufficient to solve
two n×n crisp linear systems, namely “midpoint
linear system” and “radius linear system”. Also,
we present a sufficient condition on the solution
which it to be a fuzzy number vector.

The outline of the paper is as follows. In Sec-
tion 2 we recall some basic definitions. In Section
3, we state the basic definitions, lemmas and the-
orems which will be our main formal tools for
introducing our method. Conclusion is drawn in
Section 5.

2 Preliminaries

Definition 2.1 A fuzzy number is a function ũ :
R −→ [0, 1] satisfying the following properties:

(i) ũ is normal, i.e. ∃x0 ∈ R with ũ(x0) = 1,

(ii) ũ is a convex fuzzy set,

(iii) ũ is upper semi-continuous on R,

(iv) {x ∈ R : ũ(x) > 0} is compact, where A de-
notes the closure of A.

The set of all these fuzzy numbers is denoted by
F. Obviously, R ⊂ F. Here R ⊂ F is under-
stood as R = {χ{x} : x is usual real number}.
For 0 < r ⩽ 1, we define r-cuts of fuzzy num-
ber ũ as [ũ]r = {x ∈ R : ũ(x) ⩾ r} and
[ũ]0 = {x ∈ R : ũ(x) > 0}. Then, from (i)-(iv)
and [13] it follows that [ũ]r is a bounded closed in-
terval for each r ∈ [0, 1]. In this paper, we denote
the r-cuts of fuzzy number ũ as [ũ]r = [u(r), u(r)],
for each r ∈ [0, 1]. Sometimes it is important
to know whether the given intervals [u(r), u(r)],
0 ⩽ r ⩽ 1, are the r-cuts of a fuzzy number in F.
The following answer is presented in [19].

Lemma 2.1 Let {[u(r), u(r)] : 0 ⩽ r ⩽ 1} , be a
given family of non-empty sets in R. If

(i) [u(r), u(r)] is a bounded closed interval, for
each r ∈ [0, 1],

(ii) [u(r1), u(r1)] ⊇ [u(r2), u(r2)] for all 0 ⩽ r1 ⩽
r2 ⩽ 1,

(iii) [limk→∞ u(rk), limk→∞ u(rk)] = [u(r), u(r)]
whenever {rk} is a non-decreasing sequence
in [0, 1] converging to r,

then the family {[u(r), u(r)] : 0 ⩽ r ⩽ 1} repre-
sents the r-cuts of a fuzzy number ũ in F.

Conversely, if [u(r), u(r)], 0 ⩽ r ⩽ 1, are the r-
cuts of a fuzzy number ũ ∈ E, then the conditions
(i)-(iii) are satisfied.

The following theorem is arisen from [18] and
it’s proof is obvious.

Theorem 2.1 We have

1) The condition (i) of Lemma 2.1 holds if and
only if the functions u and u are bounded
over [0, 1] and u(r) ⩽ u(r) for each r ∈ [0, 1].
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2) The condition (ii) of Lemma 2.1 holds if
and only if the functions u and u are non-
decreasing and non-increasing over [0, 1], re-
spectively.

3) The condition (iii) of Lemma 2.1 holds if
and only if the functions u and u are left-
continuous over [0, 1].

For ũ, ṽ ∈ F and λ ∈ R, r-cuts of the sum ũ + ṽ
and the product λ·ũ are defined based on interval
arithmetic as

[ũ+ ṽ]r = [ũ]r + [ṽ]r

= {x+ y : x ∈ [ũ]r, y ∈ [ṽ]r}

= [u(r) + v(r), u(r) + v(r)], (2.1)

[λ · ũ]r = λ · [ũ]r = {λx : x ∈ [ũ]r}

=

{
[λu(r), λu(r)], λ ⩾ 0,
[λu(r), λu(r)], λ < 0.

(2.2)

Definition 2.2 [23] Two fuzzy numbers x̃ and ỹ
are said to be equal, if and only if [x̃]r = [ỹ]r, i.e.,
x(r) = y(r) and x(r) = y(r), for each r ∈ [0, 1].

Remark 2.1 Let x̃1, x̃2, . . . , x̃n be the fuzzy
numbers and a1, a2, . . . , an be the crisp numbers,
then

∑n
j=1 aj x̃j is a fuzzy number with r-cuts

[
n∑

j=1

aj x̃j ]r =
n∑

j=1

aj [x̃j ]r,

i.e., the family
{∑n

j=1 aj [x̃j ]r : r ∈ [0, 1]
}

sat-

isfies the conditions of Lemma 2.1.

Definition 2.3 A vector X̃ = (x̃1, x̃2, . . . , x̃n)
T ,

where x̃i, 1 ⩽ i ⩽ n are fuzzy numbers, is called
a fuzzy number vector.

Definition 2.4 [15] The n× n linear system
a11 x̃1 + a12 x̃2 + · · ·+ a1n x̃n = ỹ1,
a21 x̃1 + a22 x̃2 + · · ·+ a2n x̃n = ỹ2,

...
an1 x̃1 + an2 x̃2 + · · ·+ ann x̃n = ỹn,

(2.3)

where the coefficient matrix A = (aij)n×n is an
n × n crisp-valued matrix and ỹi, 1 ⩽ i ⩽ n are
fuzzy numbers, is called a Fuzzy Linear System
(FLS).

We denote the FLS (2.3) as

AX̃ = Ỹ ,

where X̃ = (x̃1, x̃2, . . . , x̃n)
T , Ỹ =

(ỹ1, ỹ2, . . . , ỹn)
T are two fuzzy number vec-

tors.

Definition 2.5 A fuzzy number vector

X̃ = (x̃1, x̃2, . . . , x̃n)
T

is called an algebraic solution of the FLS (2.3) if

n∑
j=1

aij x̃j = ỹi, i = 1, 2, . . . , n.

In this paper, we use the following notation for a
crisp-valued matrix.

Definition 2.6 Let the matrix A be crisp-valued.
We define the matrix |A| as following

(|A|)ij = |aij |, i, j = 1, 2, . . . , n.

Definition 2.7 [20, 24] Let A be a crisp-valued
matrix. We say that the matrix A is completely
nonsingular, if both matrices A and |A| are non-
singular.

3 The proposed method

We start this section by several new definitions
and theorems, which will be used in the proposed
method.

Definition 3.1 The r-cut vector of fuzzy number
vector X̃ = (x̃1, x̃2, . . . , x̃n)

T is defined as

[X̃]r = ([x̃1]r, [x̃2]r, . . . , [x̃n]r)
T , r ∈ [0, 1],

which is a parametric interval vector.

Definition 3.2 The r-cut system of fuzzy linear
system (2.3) is defined as

a11 [x̃1]r + · · ·+ a1n [x̃n]r = [ỹ1]r,
a21 [x̃1]r + · · ·+ a2n [x̃n]r = [ỹ2]r,

...
an1 [x̃1]r + · · ·+ ann [x̃n]r = [ỹn]r,

(3.4)

where r ∈ [0, 1].
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Obviously, the system (3.4) is a parametric in-
terval linear system. The matrix form of system
(2.3) is as

A [X̃]r = [Ỹ ]r, r ∈ [0, 1],

where

[X̃]r = ([x̃1]r, [x̃2]r, . . . , [x̃n]r)
T ,

and
[Ỹ ]r = ([ỹ1]r, [ỹ2]r, . . . , [ỹn]r)

T ,

are two parametric interval vectors.
Based on Definition 2.2, Remark 2.1 and Eqs.

(2.1) and (2.2), the proofs of two following theo-
rems are obvious.

Theorem 3.1 Suppose that the fuzzy number
vector X̃ = (x̃1, x̃2, . . . , x̃n)

T be an algebraic so-
lution of FLS (2.3). Then, it’s r-cut vector is an
exact solution of the r-cut system (3.4).

Theorem 3.2 If the parametric interval vector
[X̃]r = ([x̃1]r, [x̃2]r, . . . , [x̃n]r)

T is the unique ex-
act solution of the r-cut system (3.4) such that
the family

{[x̃i]r : r ∈ [0, 1]}

satisfies the conditions of Lemma 2.1, for i =
1, 2, . . . , n, then the associated fuzzy linear sys-
tem (2.3) has an unique algebraic solution with
the r-cuts [x̃i]r, i = 1, 2, . . . , n.

Definition 3.3 The midpoint function of fuzzy
number x̃ with r-cuts [x(r), x(r)], is defined as

Mx̃ (r) =
x(r) + x(r)

2
. r ∈ [0, 1].

Theorem 3.3 The midpoint function satisfies
the following properties:

1) It is a left-continuous function over [0, 1].

2) M(
∑n

j=1 aj x̃j)(r) =
(∑n

j=1 aj Mx̃j
(r)

)
, where

aj ∈ R and x̃j ∈ F, j = 1, 2, . . . , n.

Proof 1) The proof of the first part is obvious,
Because based on Theorem 2.1 the functions x
and x are left-continuous over [0, 1].

2) We define

Ω+ = {j : aj ⩾ 0, 1 ⩽ j ⩽ n} ,

and
Ω− = {j : aj < 0, 1 ⩽ j ⩽ n} .

Thus, we have n∑
j=1

aj x̃j


r

= [A(r), B(r)] , (3.5)

where

A(r) =
∑
j∈Ω+

ajxj(r) +
∑
j∈Ω−

ajxj(r),

and

B(r) =
∑
j∈Ω+

ajxj(r) +
∑
j∈Ω−

ajxj(r).

Consequently

M(
∑n

j=1 aj x̃j)(r)

=

∑
j∈Ω+ ajxj(r) +

∑
j∈Ω− ajxj(r)

2

+

∑
j∈Ω+ ajxj(r) +

∑
j∈Ω− ajxj(r)

2

=

∑
j∈Ω+ aj

(
xj(r) + xj(r)

)
2

+

∑
j∈Ω− aj

(
xj(r) + xj(r)

)
2

=

∑n
j=1 aj

(
xj(r) + xj(r)

)
2

=

n∑
j=1

aj

(
xj(r) + xj(r)

2

)

=

 n∑
j=1

aj Mx̃j
(r)

 . □

Theorem 3.4 If L : Rn → R is a linear and
continuous function and L̃ : Fn → F is obtained
from L by the extension principle, then

M
L̃(x̃1,...,x̃n)

(r) = L (Mx̃1
(r), . . . ,Mx̃n

(r)) ,

for eachr ∈ [0, 1].

Proof Since L̃ is obtained from L by the extension
principle, then it can be shown that L̃ is linear
and continuous [22]. Due to continuity of L̃, we
conclude that[

L̃(x̃1, . . . , x̃n)
]
r
= L ([x̃1]r, . . . , [x̃n]r) ,

for each r ∈ [0, 1], and due to linearity of L̃, we
can write

M
L̃(x̃1,...,x̃n)

(r) = L (Mx̃1
(r), . . . ,Mx̃n

(r)) ,

for each r ∈ [0, 1]. □
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Definition 3.4 The midpoint vector of fuzzy
number vector X̃ = (x̃1, x̃2, . . . , x̃n)

T is defined
as

M
X̃
(r) = (Mx̃1

(r),Mx̃2
(r), . . . ,Mx̃n

(r))T , (3.6)

for each r ∈ [0, 1].

Definition 3.5 The midpoint system of fuzzy
linear system (2.3) is defined as

a11Mx̃1
(r) + · · ·+ a1nMx̃n

(r) = Mỹ1(r),
a21Mx̃1

(r) + · · ·+ a2nMx̃n
(r) = Mỹ2(r),

...
an1Mx̃1

(r) + · · ·+ annMx̃n
(r) = Mỹn(r),

(3.7)
where r ∈ [0, 1].

Obviously, the above system (3.7) is a parametric
linear system which can be easily solved. The
matrix form of the parametric system (3.7) is

AM
X̃
(r) = M

Ỹ
(r),

where

M
X̃
(r) = (Mx̃1

(r),Mx̃2
(r), . . . ,Mx̃n

(r))T ,

and

M
Ỹ
(r) = (Mỹ1(r),Mỹ2(r), . . . ,Mỹn(r))

T ,

are two parametric vectors.

In the following theorem, we prove that the
midpoint function of the algebraic solution of FLS
(2.3) satisfies the midpoint system (3.7).

Theorem 3.5 Suppose that the fuzzy number
vector X̃ = (x̃1, x̃2, . . . , x̃n)

T be an algebraic solu-
tion of FLS (2.3). Then it’s midpoint vector is an
exact solution of the parametric midpoint system
(3.7).

Proof Based on the presented properties of the
midpoint function in Theorem 3.3, the proof is
obvious. □

The following corollaries are clearly obtained
from Theorem 3.6.

Corollary 3.1 If the midpoint system (3.7) does
not have an exact solution, then the associated
fuzzy linear system (2.3) does not have one either.

Corollary 3.2 If the midpoint system (3.7) has
infinite exact solutions such that satisfy the con-
ditions of Lemma 2.1, then the associated fuzzy
linear system (2.3) has one too.

Definition 3.6 The radius function of fuzzy
number x̃ with r-cuts [x(r), x(r)], is defined as

Rx̃ (r) =
x(r)− x(r)

2
, r ∈ [0, 1]. (3.8)

Theorem 3.6 The radius function satisfies the
following properties:

1) It is a left-continuous function over [0, 1].

2) It is a non-increasing function over [0, 1].

3) It is a non-negative function over [0, 1].

4) R(
∑n

j=1 aj x̃j)(r) =
(∑n

j=1|aj |Rx̃j
(r)

)
, where

aj ∈ R and x̃j ∈ F, j = 1, 2, . . . , n.

Proof According to Theorem 2.1, the functions
x and x are left-continuous and x(r) ⩽ x(r), for
each r ∈ [0, 1]. Also x and x are non-decreasing
and non-increasing functions over [0, 1], respec-
tively. These prove the first to third properties.
To prove the fourth property, from Eq. (3.5) we
have

R(
∑n

j=1 aj x̃j)(r)

=

∑
j∈Ω+ ajxj(r) +

∑
j∈Ω− ajxj(r)

2

−
∑

j∈Ω+ ajxj(r) +
∑

j∈Ω− ajxj(r)

2

=

∑
j∈Ω+ aj

(
xj(r)− xj(r)

)
2

−
∑

j∈Ω− aj
(
xj(r)− xj(r)

)
2

=

∑n
j=1|aj |

(
xj(r)− xj(r)

)
2

=

n∑
j=1

|aj |
(
xj(r)− xj(r)

2

)

=

 n∑
j=1

|aj |Rx̃j
(r)

 . □
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Theorem 3.7 If L : Rn → R is a linear and
continuous function and L̃ : Fn → F is obtained
from L by the extension principle, then

R
L̃(x̃1,...,x̃n)

(r) = L (Rx̃1
(r), . . . , Rx̃n

(r)) ,

for eachr ∈ [0, 1].

Proof The proof is exactly the same as that of
Theorem 3.5. □

Definition 3.7 The radius vector of fuzzy num-
ber vector X̃ = (x̃1, x̃2, . . . , x̃n)

T is defined as

R
X̃
(r) = (Rx̃1

(r), Rx̃2
(r), . . . , Rx̃n

(r))T , (3.9)

for eachr ∈ [0, 1].

Definition 3.8 The radius system of fuzzy linear
system (2.3) is defined as

|a11|Rx̃1
(r) + · · ·+ |a1n|Rx̃n

(r) = Rỹ1(r),
|a21|Rx̃1

(r) + · · ·+ |a2n|Rx̃n
(r) = Rỹ2(r),

...
|an1|Rx̃1

(r) + · · ·+ |ann|Rx̃n
(r) = Rỹn(r),

(3.10)
where r ∈ [0, 1].

Obviously, the system (3.10) the same as sys-
tem (3.7) is a parametric linear system which can
be easily solved. The matrix form of the para-
metric system (3.10) is

|A|R
X̃
(r) = R

Ỹ
(r),

where

R
X̃
(r) = (Rx̃1

(r), Rx̃2
(r), . . . , Rx̃n

(r))T ,

and

R
Ỹ
(r) = (Rỹ1(r), Rỹ2(r), . . . , Rỹn(r))

T ,

are two parametric vectors.
In the following theorem, we show that the

radius function of the algebraic solution of FLS
(2.3) satisfies the radius system (3.10).

Theorem 3.8 Let the fuzzy number vector

X̃ = (x̃1, x̃2, . . . , x̃n)
T

be an algebraic solution of FLS (2.3). Then it’s
radius vector is an exact solution of the paramet-
ric radius system (3.10).

Proof The proof is obtained by the fourth prop-
erty presented in Theorem 3.6. □

The same as Corollaries 3.1 and 3.2, we have the
following corollaries.

Corollary 3.3 If the radius system (3.10) does
not have an exact solution, then the associated
fuzzy linear system (2.3) does not have one either.

Corollary 3.4 If the radius system (3.10) has
infinite exact solutions such that satisfy the con-
ditions of Lemma 2.1, then the associated fuzzy
linear system (2.3) has one too.

From Theorems 3.5 and 3.8 we obtain the fol-
lowing theorem.

Theorem 3.9 If the fuzzy linear system (2.3)
has unique algebraic solution, then the matrix A
is completely nonsingular.

Remark 3.1 In Theorem 3.9, the assumption
“uniqueness of solution” is necessary. It means if
the algebraic solution of FLS (2.3) is not unique
then the matrix A may not be completely nonsin-
gular. Also, in general, the converse of Theorem
3.9 is not true. For more information see [9].

Now, we are going to present a new method for
obtaining the unique algebraic solution of FLS
(2.3) based on solving it’s midpoint and radius
systems. To obtain the unique algebraic solution
of FLS (2.3), we suppose that the matrix A is
completely nonsingular. Because, from Theorem
3.9 we conclude that if the matrix A is not com-
pletely nonsingular then FLS (2.3) does not have
unique algebraic solution. Regarding to the above
definitions and theorems, we first solve the mid-
point system

AM
X̃
(r) = M

Ỹ
(r), (3.11)

and according to Theorem 3.5 obtain the mid-
point vector of the algebraic solution as

M
X̃
(r) = A−1M

Ỹ
(r), (3.12)

then, solve the radius system

|A|R
X̃
(r) = R

Ỹ
(r). (3.13)

and according to Theorem 3.8 we obtain the ra-
dius vector of the algebraic solution as

R
X̃
(r) = |A|−1R

Ỹ
(r), (3.14)
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Finally, we define the algebraic solution in r-cuts
form as follows:

[X̃]r = [M
X̃
(r)−R

X̃
(r), M

X̃
(r)+R

X̃
(r)], (3.15)

for eachr ∈ [0, 1]. In other words, we define the
vector X̃ = (x̃1, x̃2, . . . , x̃n)

T where

[x̃i]r = [Mx̃i
(r)−Rx̃i

(r), Mx̃i
(r) +Rx̃i

(r)],
(3.16)

for each r ∈ [0, 1] and i = 1, 2, . . . , n. In the fol-
lowing theorem, we show that the above defined
vector satisfies the r-cut system (3.4).

Theorem 3.10 Suppose that A be completely
nonsingular matrix, then the parametric interval
vector defined by Eq. (3.15) or (3.16), is unique
exact solution of the r-cut system (3.4).

Proof We must show

n∑
j=1

aij [x̃j ]r = [ỹj ]r, r ∈ [0, 1].

To this end, it is sufficient to show

n∑
j=1

aij [x̃j ]r = y
i
(r),

and

n∑
j=1

aij [x̃j ]r = yi(r),

for each r ∈ [0, 1]. We define

Γ+
i = {j : aij ⩾ 0, 1 ⩽ j ⩽ n} ,

and

Γ−
i = {j : aij < 0, 1 ⩽ j ⩽ n} ,

for each i = 1, 2, . . . , n. Thus, based on Theorems
3.3 and 3.6, we have

n∑
j=1

aij [x̃j ]r =
∑
j∈Γ+

i

aij (Mx̃i
(r)−Rx̃i

(r))

+
∑
j∈Γ−

i

aij (Mx̃i
(r) +Rx̃i

(r))

=
n∑

j=1

aijMx̃i
(r)

−
n∑

j=1

|aij |Rx̃i
(r)

= Mỹi(r)−Rỹi(r)

=
y
i
(r) + yi(r)

2

−
yi(r)− y

i
(r)

2
= y

i
(r).

And also we have

n∑
j=1

aij [x̃j ]r =
∑
j∈Γ+

i

aij (Mx̃i
(r) +Rx̃i

(r))

+
∑
j∈Γ−

i

aij (Mx̃i
(r)−Rx̃i

(r))

=

n∑
j=1

aijMx̃i
(r)

+

n∑
j=1

|aij |Rx̃i
(r)

= Mỹi(r) +Rỹi(r)

=
y
i
(r) + yi(r)

2

+
yi(r)− y

i
(r)

2
= yi(r).

Also, since the matrix A is completely non-
singular, then the parametric vectors M

X̃
and

R
X̃

are uniquely obtained. This completes the
proof. □

Supposing that A is completely nonsingular
we obtain the parametric interval solution (3.16)
that is thus unique but may still does not con-
struct the r-cuts of a suitable fuzzy solution. The
following theorem provides a sufficient condition
for the unique parametric interval solution (3.16)
to be the r-cuts of a fuzzy solution.
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Theorem 3.11 Suppose that the matrix A be
completely nonsingular such that |A−1|⩽ |A|−1,
then the family {[x̃i]r : 0 ⩽ r ⩽ 0} where [x̃i]r
is defined by Eq. (3.16), represents the r-cuts of
a fuzzy number x̃i in F.

Proof To prove of this theorem, we must show
that the assumptions of Lemma 2.1 hold for Eq.
(3.15) or Eq. (3.16). It is obvious that the func-
tions M

X̃
and R

X̃
are bounded over [0, 1]. On the

other hand, |A−1|⩽ |A|−1 implies that 0 ⩽ |A|−1

and consequently from Eq. (3.14) we conclude
R

X̃
⩾ 0. This follows thatM

X̃
−R

X̃
⩽ M

X̃
+R

X̃
.

In other words, Eq. (3.16) is a bounded closed in-
terval for each r ∈ [0, 1]. Thus, the first condition
of Lemma 2.1 holds. Also, from Eqs. (3.12) and
(3.14) we have

M
X̃
(r)−R

X̃
(r)

= A−1M
Ỹ
(r)− |A|−1R

Ỹ
(r)

= A−1

(
Y (r) + Y (r)

2

)
− |A|−1

(
Y (r)− Y (r)

2

)
=

(
A−1 − |A|−1

2

)
Y (r)

+

(
A−1 + |A|−1

2

)
Y (r).

On the other hand, |A−1|⩽ |A|−1 implies
A−1 − |A|−1⩽ 0 and A−1 + |A|−1⩾ 0. There-
fore, it can be easily seen that the function
M

X̃
−R

X̃
is non-decreasing over [0, 1]. Similarly,

we can show that the function M
X̃

+ R
X̃

is
non-increasing over [0, 1]. Hence, according to
Theorem 2.1, the second condition of Lemma
2.1 holds. Finally, from Theorems 3.3 and 3.6,
left-continuity of M

X̃
− R

X̃
and M

X̃
+ R

X̃
is

obvious. This completes the proof of theorem.
□

The next theorem is a straightforward result of
Theorems 3.2, 3.10 and 3.11.

Theorem 3.12 Suppose that the matrix A be
completely nonsingular such that |A−1|⩽ |A|−1,
then FLS (2.3) has unique algebraic solution.

It must be noted that if Eq. (3.15) or (3.16)
does not satisfy the conditions of Lemma 2.1,
then we conclude that the FLS (2.3) does not
have any algebraic solution.

4 Numerical examples

In this section, we consider two numerical
examples to show ability and efficiency of our
method.

Example 4.1 Consider the 3× 3 FLS
x̃1 + 2x̃2 + 3x̃3 = ỹ1,
−x̃1 + 2x̃2 − x̃3 = ỹ2,
3x̃1 − x̃2 + 2x̃3 = ỹ3,

(4.17)

where the fuzzy numbers ỹ1, ỹ2 and ỹ3 are speci-
fied by their r-cuts as follows:

[ỹ1]r = [4 + 13r, 32− 8r],

[ỹ2]r = [−6 + 4r, 10− 9r],

and
[ỹ3]r = [−12 + 14r, 15− 6r].

It is easy to verify that the matrix A is completely
nonsingular. Therefore, according to our method,
we first solve the midpoint system

Mx̃1
+ 2Mx̃2

+ 3Mx̃3
= Mỹ1 ,

−Mx̃1
+ 2Mx̃2

−Mx̃3
= Mỹ2 ,

3Mx̃1
−Mx̃2

+ 2Mx̃3
= Mỹ3 .

(4.18)

Solving the above parametric midpoint system
(4.18), we obtain the midpoint vector of the alge-
braic solution as follows:

M
X̃
(r) = A−1M

Ỹ
(r)

=

 Mx̃1
(r)

Mx̃2
(r)

Mx̃3
(r)


=

 r−4
2

5−r
2

2r+10
2

 .

Then, we solve the radius system
Rx̃1

+ 2Rx̃2
+ 3Rx̃3

= Rỹ1 ,
Rx̃1

+ 2Rx̃2
+Rx̃3

= Rỹ2 ,
3Rx̃1

+Rx̃2
+ 2Rx̃3

= Rỹ3 .
(4.19)

Solving the above parametric radius system
(4.19), we obtain the radius vector of the alge-
braic solution as follows:

R
X̃
(r) = |A|−1R

Ỹ
(r)

=

 Rx̃1
(r)

Rx̃2
(r)

Rx̃3
(r)


=

 4−3r
2

3−3r
2

6−4r
2

 .
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Now according to Eq. (3.15) or (3.16), we present
the r-cuts of algebraic solution as

[X̃]r = [M
X̃
(r)−R

X̃
(r), M

X̃
(r) +R

X̃
(r)]

=

 [2r − 4,−r]
[r + 1, 4− 2r]
[3r + 2, 8− r]

 .

Regarding to Theorem 2.1, we can easily show
that this solution satisfies the assumptions of
Lemma 2.1. Thus, the obtained solution is a fuzzy
number vector and can be considered as unique al-
gebraic solution of FLS (4.17).

Example 4.2 Consider the 5× 5 FLS
−x̃1 + 2x̃2 + x̃3 + 3x̃4 − x̃5 = ỹ1,
2x̃1 − x̃2 + x̃3 + x̃4 + 2x̃5 = ỹ2,
2x̃1 + 3x̃2 + x̃3 − 2x̃4 + x̃5 = ỹ3,
3x̃1 − x̃2 + x̃3 + 2x̃4 + 2x̃5 = ỹ4,
x̃1 + x̃2 − 2x̃3 + 2x̃4 + 3x̃5 = ỹ5,

(4.20)

where the fuzzy numbers ỹ1 to ỹ5 are specified by
their r-cuts as follows:

[ỹ1]r = [14r2 + 4r − 5,−2r2 − 6r + 27],

[ỹ2]r = [7r2 + 3r + 4,−7r2 − 3r + 30],

[ỹ3]r = [4r2 + 9r − 22,−11r2 − 3r + 11],

[ỹ4]r = [11r2 + 3r + 5,−8r2 − 4r + 39],

and

[ỹ5]r = [9r2 + 5r − 9,−11r2 − 3r + 27].

It can be shown that the matrix A is completely
nonsingular. According to our method, we first
solve the midpoint system of FLS (4.20) and ob-
tain the midpoint vector of the algebraic solution
as follows:

M
X̃
(r) = A−1M

Ỹ
(r)

=


Mx̃1

(r)
Mx̃2

(r)
Mx̃3

(r)
Mx̃4

(r)
Mx̃5

(r)



=


1
2
r−3
2

8+r2

2
3r2−r+9

2
−2r2+r+6

2

 .

Then, we solve the radius system of FLS (4.20)
and obtain the radius vector of the algebraic so-
lution as follows:

R
X̃
(r) = |A|−1R

Ỹ
(r)

=


Rx̃1

(r)
Rx̃2

(r)
Rx̃3

(r)
Rx̃4

(r)
Rx̃5

(r)



=


3−2r2

2
3−3r
2

4−3r2

2
−3r2−r+5

2
−2r2−r+4

2

 .

Now according to Eq. (3.15) or (3.16), we present
the r-cuts of algebraic solution as

[X̃]r = [M
X̃
(r)−R

X̃
(r), M

X̃
(r) +R

X̃
(r)]

=


[r2 − 1, 2− r2]
[2r − 3,−r]
[2r2 + 2, 6− r2]
[3r2 + 2, 7− r]
[r + 1, 5− 2r2]

 .

Regarding to Theorem 2.1 and Lemma 2.1, we
can easily show that this solution is a fuzzy num-
ber vector and thus can be considered as unique
algebraic solution of FLS (4.20).

5 Conclusion

In this paper, we defined several new concepts for
fuzzy numbers, fuzzy number vectors and fuzzy
linear systems, such as: midpoint function, mid-
point vector, midpoint system, radius function,
radius vector and radius system. We studied an
application of these new concepts for obtaining
the algebraic solution of a fuzzy linear system.
For future work, we try to extend our method
to solve fuzzy linear differential equations, fuzzy
linear integral equations and fuzzy linear integro-
differential equations.
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