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Abstract

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the
relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-de
Vries (KdV), Modified Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using
Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial
expansion coefficients using the initial value and boundary conditions. The physical structures of the
nonlinear dispersive equation have been investigated for different parameters involved. It is shown
how the nature of the waves look like in a simple way by considering the value of a certain single
combination of constant parameters. The proposed scheme is standard, direct and computerized,
which allow us to do complicated and tedious algebraic calculations. The ease of using this method
to determine shock or solitary type of solutions, shows its power.

Keywords : Nonlinear partial differential equations; solitary waves; Homotopy perturbation method
(HPM).
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1 Introduction

I
t is significant to seek solutions of nonlinear
model problems as they interpret a variety of

physical phenomenon. Apart from some partic-
ular cases, most of them do not have a precise
analytical solution. Therefore, some various ap-
proximate methods have recently been developed
to tackle them [1]. It has also been observed
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from the literature that as an important nonlin-
ear topic, nowadays, the solitary waves are be-
ing studied extensively both theoretically and ex-
perimentally. It is so because in various fields
of science and engineering, nonlinear evaluation
equations, as well as their analytic and numer-
ical solutions, are of fundamental importance.
One of the most attractive and surprising wave
phenomenon is the creation of solitary waves or
solitons. Solitons are self-localized wave packets
arising from a robust balance between dispersion
and nonlinearity. In small amplitude approxima-
tion, one ends up deriving some forms of nonlin-
ear differential equations like Korteweg-de Vries
(KdV) or modified Korteweg-de Vries (mKdV)
or nonlinear Schrodinger equation, etc. which
have solitary or solitonic solutions. It was ap-
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proximately two centuries ago that an adequate
theory for solitary waves was developed for the
well-known Korteweg-de Vries (KdV) equation.
Historically, these types of equations first arose
in the study of 2D shallow wave propagation, but
have since appeared as limiting cases of many dis-
persive models. In 1895 Korteweg and deVries
[2] showed that long waves, in water of relatively
shallow depth, could be described approximately
by a nonlinear equation and can be used as a
model describing the lossless propagation of shal-
low water waves, magneto hydrodynamics waves
in warm plasma, ion-acoustic waves in plasma,
acoustic waves in an inharmonic crystal and ion-
acoustic waves [3, 4]. It is well known that the
Korteweg-de Vries equation is the generic out-
come of a weakly nonlinear long-wave asymptotic
analysis of many physical systems. It is catego-
rized by its family of solitary wave solutions, with
the familiar sech2 profile.

Due to its properties, the KdV equation was
the source of many applications and results in
a large area of nonlinear physics [5]. Certain
theoretical physics phenomena in the quantum
mechanics domain are explained by means of a
KdV model. It is used in fluid dynamics, aero-
dynamics, and continuum mechanics as a model
for shock wave formation, solitons, turbulence,
boundary layer behavior, and mass transport.
The alternative equation of the non-linear dis-
persive waves to the more usual KdV-equation,
modelled to govern a large number of physical
phenomena such as shallow waters and plasma
waves, is the Regularised Long Wave (RLW)
equation u˙t+ u˙x+u u˙x- u˙xxt=0, The regular-
ized long wave (RLW) equation belongs to a class
of the nonlinear evolution equations which pro-
vide good models for predicting a variety of phys-
ical phenomena. Solitary waves are wave pack-
ets or pulses which propagate in nonlinear media.
Due to dynamical balance between the non-linear
and dispersive effects these waves retain a sta-
ble waveform. The regularized long wave (RLW)
equation was originally introduced to describe the
behavior of the undular bore [6]. It has also been
derived from the study of water waves and ion
acoustic plasma waves. It was first proposed by

Peregrine [7] for modelling the propagation of uni-
directional weakly nonlinear and weakly disper-
sive water waves. A rather interesting property of
the RLW equation is that the collision of two soli-
tary waves may result in the creation of secondary
solitary waves or sinusoidal solutions. This phe-
nomenon is somewhat analogous to what happens
in subatomic physics where the collisions of par-
ticles create another particles and/or radiation.
Therefore, a study of RLW equation provide the
opportunity of investigating the creation of sec-
ondary solitary waves and/or radiation to get in-
sight into the corresponding processes of particle
physics [8].

The homotopy perturbation method of He
[11]-[15] is well addressed and needs less compu-
tations in addition to high accuracy. Recently,
Grover et.al. [16] have used HPM to obtain ap-
proximate analytic solutions of parabolic (heat)
PDE and non-linear equations. Fascinated by
the efficiency of HPM, in this paper we design a
numerical technique i.e. homotopy perturbation
method for new solitary-wave solutions of the
KdV, mKdV and RLW equations. In HPM the
solution is considered as the summation of an
infinite series which converges rapidly to exact
solution. The methods presented here can also
be used to obtain the numerical solution of
some other wider class of PDEs describing wave
propagation. At present, we consider following
two nonlinear models:

Model 1 : The given KdV equation be
u˙t-6uu˙x+u˙xxx=0, 0 ≤ x ≤ l
u(0, t) = 0 = u(l, t), u(x, 0) = a sin πx

l

Model 2 : The given mKdV equation be
u˙t+24uˆ2 u˙x+u˙xxx=0

Model 3 :The given RLW equation be ×
equation u˙t+u˙x+uu˙x-u˙xxt=0,
u(0,t)=0=u(l,t), u(x,0)= a sin πx

l

where the subscripts t and s denote differenti-
ation with respect to time t and space variable x,
respectively.
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2 Homotopy Perturbation
Method (HPM)

In 1992, Liao employed the basic ideas of the ho-
motopy in topology to propose a general analytic
method for nonlinear problems, namely homo-
topy analysis method (HAM), [17]-[20]. Recently,
it has been successfully applied to solve many
types of nonlinear problems [21]-[26]. Moreover,
in [26], the basic idea of the HAM is introduced
and then its application in some heat transfer
equations is studied by making different compar-
isons. More theoretical details about the HAM
can be found in [26].

Next, we outline the general procedure of ho-
motopy perturbation method developed and ad-
vanced by He [11]. We consider the differential
equation

A(u)− f(r) = 0, r ∈ Ω (2.1)

B

(
u,

∂u

∂x

)
, r ∈ Γ (2.2)

where A is a general differential operator, linear
or non-linear, f(r) is a known analytic function,
B is boundary operator and Γ is the boundary of
the domain Ω. The operator A can be generally
divided into two operators, L and N , where L is
linear and N is a non-linear operator. Equation
(2.1) can be written as

L(u) +N(u)− f(r) = 0 (2.3)

Using homotopy technique, we can construct a
homotopy

v(r, p) : Ω× [0, 1] → R (2.4)

which satisfies the relation

H(v, p) = (1−p)[L(v)−L(u0)]+p[A(v)−f(r)] = 0.

Here p ∈ [0, 1] is called homotopy parameter and
u0 is an initial approximation for the solution of
Equation (2.1) which satisfies the boundary con-
ditions. Clearly, from equation (2.5), we have

H(v, 0) = L(v)− L(u0) (2.5)

H(v, 1) = A(v)− f(r) (2.6)

We assume that the solution of Equation (2.5)
can be expressed as a series in p as follows:

v = v0 + pv1 + p2v2 + p3v3 + ... (2.7)

On setting p = 1, we obtain the approximate so-
lution of equation (2.1) as

u = lim
p→1

v = v0 + v1 + v2 + v3 + ... (2.8)

Above series (2.8) is convergent for most of the
cases. The convergent rate depends upon the
nonlinear operator used. Some of the suggested
opinions are [11].

• The second derivative of N(v) w.r.t. V must
be s mall because the parameter may be rel-
atively large.

• The norm of L−1 ∂N
∂v must be smaller than

one so that the series converges.

In the next Section we illustrate the application
of HPM for the model problems considered above.
According to the HPM, we can initially use the
embedding parameter p as a small parameter and
assume that the solutions of can be represented as
a power series in p. To demonstrate the conver-
gence of the scheme, the results of the numerical
example are presented in the next Sections to ob-
tain accurate solutions.

3 HPM for KdV equation

The given RLW equation be

ut − 6uux + uxxx = 0, 0 ≤ x ≤ l (3.9)

The homotopy equation for the model problem
under consideration is

∂v

∂t
− ∂u0

∂t
+p

(
∂u0
∂t

−6v
∂v

∂x
+

∂3v

∂x3

)
= 0. (3.10)

with initial approximation u0 = a sin πx
l which

satisfies the given boundary conditions. Let the
solution of (3.9) be of the form

v = v0 + pv1 + p2v2 + p3v3 + ... (3.11)
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Using (3.11) in (3.10) and comparing the like
powers of p, we have

∂v0

∂t
=

∂u0
∂t

,
∂v1

∂t
= 6v0

∂v0

∂x
− ∂3v0

∂x3
− ∂u0

∂t
,

v1 = a sin
πx

l
at t = 0 ∀x,

∂v2

∂t
= 6v1

∂v0

∂x
+ 6v0

∂v1

∂x
− ∂3v1

∂x3
,

v2 = a sin
πx

l
at t = 0 ∀x,

∂v3

∂t
= 6v2

∂v0

∂x
+ 6v1

∂v1

∂x
+ 6v0

∂3v2

∂x3
− ∂3v2

∂x3
,

v3 = a sin
πx

l
at t = 0 ∀x,

∂v4

∂t
= 6v3

∂v0

∂x
+ 6v2

∂v1

∂x
+ 6v1

∂v2

∂x

+ 6v0
∂v3

∂x
− ∂3v3

∂x3
,

v4 = a sin
πx

l
at t = 0 ∀x,

∂v5

∂t
= 6v4

∂v0

∂x
+ 6v3

∂v1

∂x
+ 6v2

∂v2

∂x

+ 6v1
∂v3

∂x
− ∂3v4

∂x3
,

v5 = a sin
πx

l
at t = 0 ∀x.

and so on proceeding in the same way for other
terms. Solving this system of equations (4.13),
we get

v0 = a sin[
πx

l
]

v1 = t

(
aπ3cos[πxl ]

l3
+

6a2πcos[πxl ]sin[
πx
l ]

l

)
v2 =

15a2π4t2cos[2πxl ]

l4
+

9a3π2t2sin[πxl ]

l2

−
aπ6t2sin[πxl ]

2l6

+
27a3π2t2cos[2πxl ]sin[πxl ]

l2

v3 = −
189a3π5t3cos[πxl ]

l5
−

aπ9t3cos[πxl ]

6l9
+

351a3π5t3cos[πxl ]cos[
2πx
l ]

l5

−
216a4π3t3cos[πxl ]sin[

πx
l ]

l3
−
84a2π7t3cos[πxl ]sin[

πx
l ]

l7

+
144a4π3t3cos[πxl ]sin[

3πx
l ]

l3

v4 = −
342a4π6t4cos[2πxl ]

l6
−

85a2π10t4cos[2πxl ]

l10

+
1854a4π6t4cos[4πxl ]

l6

+
621a5π4t4sin[πxl ]

4l4
−

2583a3π8t4sin[πxl ]

2l8

+
aπ12t4sin[πxl ]

24l12

+
297a5π4t4cos[2πxl ]sin[πxl ]

l4

−
5265a3π8t4cos[2πxl ]sin[πxl ]

2l8

+
3375a5π4t4cos[4πxl ]sin[πxl ]

4l4

v5 =
96309a5π7t5cos[πxl ]

4l7
+

73857a3π11t5cos[πxl ]

10l11

+
aπ15t5cos[πxl ]

120l15

−
48141a5π7t5cos[πxl ]cos[

2πx
l ]

l7

−
29403a3π11t5cos[πxl ]cos[

2πx
l ]

2l11

+
148095a5π7t5cos[πxl ]cos[

4πx
l ]

4l7

+
9720a6π5t5cos[πxl ]sin[

πx
l ]

l5

+
298728a4π9t5cos[πxl ]sin[

πx
l ]

5l9

+
1364a2π13t5cos[πxl ]sin[

πx
l ]

5l13

−
9396a6π5t5cos[πxl ]sin[

3πx
l ]

l5

−
55800a4π9t5cos[πxl ]sin[

3πx
l ]

l9

+
26244a6π5t5cos[πxl ]sin[

5πx
l ]

5l5
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v6 =
1701a6π8t6cos[2πxl ]

l8

+
44088a4π12t6cos[2πxl ]

5l12

+
182a2π16t6cos[2πxl ]

l16

−
375192a6π8t6cos[4πxl ]

5l8

−
316884a4π12t6cos[4πxl ]

l12

+
891567a6π8t6cos[6πxl ]

5l8

−
81a7π6t6sin[πxl ]

16l6

+
3429a5π10t6sin[πxl ]

40l10

−
3267a3π14t6sin[πxl ]

80l14

−
aπ18t6sin[πxl ]

720l18
+

177147a7π6t6sin[3πxl ]

80l6

+
5466771a5π10t6sin[3πxl ]

80l10

+
2675673a3π14t6sin[3πxl ]

80l14

−
253125a7π6t6sin[5πxl ]

16l6

−
7648155a5π10t6sin[5πxl ]

16l10

+
1361367a7π6t6sin[7πxl ]

80l6

and proceeding in the same way for other terms,
we obtain v7,v8,v9.... By taking p = 1, in (4.13),
we can obtain the solution of given model prob-
lem (3.9), so that u = limp→1 v = v0 + v1 + v2 +
v3 + ....

4 HPM for mKdV equation

We have mKdV equation in hand u˙t+24uˆ2
u˙x+u˙xxx=0 Following the procedure mentioned
above, the homotopy equation for the model
problem under consideration is given by

∂ϑ

∂t
− ∂u0

∂t
+ χ

(
∂u0
∂t

+ 24 ϑ2 ∂ϑ

∂x
+

∂3ϑ

∂x3

)
= 0.

(4.12)
with initial approximation u0 = a sin πx

l which
satisfies the given boundary conditions. Let the
solution of (4) be of the form ϑ = ϑ0 + χϑ1 +
χ2ϑ2 + χ3ϑ3 + .... Using this in (4.12) and com-
paring the like powers of χ, we have relations

∂ϑ0

∂t
− ∂u0

∂t
= 0,

∂ϑ1

∂t
+ 24ϑ2

0

∂ϑ0

∂x
+

∂3ϑ0

∂x3
+

∂u0
∂t

= 0,

∂ϑ2

∂t
+ 24ϑ0ϑ1

∂v0
∂x

+ 24ϑ2
0

∂ϑ1

∂x
+

∂3ϑ1

∂x3
= 0,

∂ϑ3

∂t
+ 24(2ϑ0ϑ2 + ϑ2

1)
∂v0
∂x

+ 48ϑ0ϑ1
∂ϑ1

∂x

+ 24ϑ2
0

∂3ϑ2

∂x3
+

∂3ϑ2

∂x3
= 0,

∂ϑ4

∂t
+ 24(ϑ0ϑ3 + 2ϑ1ϑ2)

∂v0
∂x

+ 24(2ϑ0ϑ2 + ϑ2
1)
∂v1
∂x

+ 48ϑ0ϑ1
∂ϑ2

∂x

+
∂3v2
∂x3

= 0.

and so on. Solving this system of equations
(4.13), we get

ϑ0 = 0.8
√

sech[kx]

ϑ1 = t(−1.4k3sech[kx]3/2sinh[kx]

+ 6.144ksech[kx]5/2sinh[kx]

+ 1.5k3sech[kx]7/2sinh[kx]3)

ϑ2 =
1

2
k2t2

√
sech[kx](334.08k2sech[kx]

(−0.9166 + tanh[kx]2)(−0.200642 + tanh[kx]2)

+ 129.938k4(−0.999486 + tanh[kx]2)(−0.783017
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+ tanh[kx]2)(−0.136689 + tanh[kx]2)

+ sech[kx]2(−94.3718

+ 283.116)tanh[kx]2)

Similarly we obtain ϑ3, ϑ4, ϑ5.... By taking χ =
1, in (4.13), we can obtain the solution of given
model problem (4), so that u = limχ→1 ϑ = ϑ0 +
ϑ1 + ϑ2 + ϑ3 + ....

5 HPM for RLW equation

The given RLW equation be u˙t+u˙x+uu˙x-
u˙xxt=0, subject to the conditions

u(0, t) = 0 = u(l, t), u(x, 0) = a sin
πx

l

The homotopy equation for the model problem
under consideration be

∂v

∂t
− ∂u0

∂t
+ p

(
∂u0
∂t

+
∂v

∂x
+ v

∂v

∂x
+

∂3v

∂x3

)
= 0.

with initial approximation u0 = a sin πx
l which

satisfies the given boundary conditions. Let the
solution of (5) be of the form v=v˙0+pv˙1+ pˆ2
v˙2+pˆ3 v˙3+... . Using (5) in (5.13) and com-
paring the like powers of p, we have

∂v0

∂t
=

∂u0
∂t

,

∂v1

∂t
= −∂u0

∂t
− ∂v0

∂x
− v0

∂v0

∂x
− ∂3v0

∂x3
,

v1 = a sin
πx

l
at t = 0 ∀x,

∂v2

∂t
= −∂v1

∂x
− v1

∂v0

∂x
− v0

∂v1

∂x
− ∂3v1

∂x3
,

v2 = a sin
πx

l
at t = 0 ∀x,

∂v3

∂t
= −∂v2

∂x
− v2

∂v0

∂x
− v1

∂v1

∂x
− v0

∂v2

∂x

− ∂3v2

∂x3
,

v3 = a sin
πx

l
at t = 0 ∀x,

∂v4

∂t
= −∂v3

∂x
− v3

∂v0

∂x
− v2

∂v1

∂x
− v1

∂v2

∂x

− v0
∂v3

∂x
− ∂3v3

∂x3
,

v4 = a sin
πx

l
at t = 0 ∀x,

and so on proceeding in the same way for other
terms. Solving this system of equations (5.13),
we get

v0 = a sin[
πx

l
]

v1 = t(−
aπcos[πxl ]

l
+

aπ3cos[πxl ]

l3

−
a2πcos[πxl ]sin[

πx
l ]

l
)

v2 =
aπ3tcos[πxl ]

l3
+

a2π2t2cos[2πxl ]

l2

−
a2π4t2cos[2πxl ]

2l4
−

aπ2t2sin[πxl ]

2l2

+
a3π2t2sin[πxl ]

4l2
+

aπ4t2sin[πxl ]

2l4

+
3a3π2t2cos[2πxl ]sin[πxl ]

4l2

v3 =
aπ3t3cos[πxl ]

6l3
+

a3π3t3cos[πxl ]

8l3

−
aπ5t3cos[πxl ]

3l5
−

a3π5t3cos[πxl ]

24l5

+
aπ7t3cos[πxl ]

6l7
−

a2π4t2cos[2πxl ]

2l4

−
9a3π3t3cos[3πxl ]

8l3
+

31a3π5t3cos[3πxl ]

8l5

+
aπ4t2sin[πxl ]

2l4
−

aπ6t2sin[πxl ]

2l6

+
a2π3t3sin[2πxl ]

l3
+

a4π3t3sin[2πxl ]

6l3

−
7a2π5t3sin[2πxl ]

2l5
+

3a2π7t3sin[2πxl ]

2l7

−
a4π3t3sin[4πxl ]

3l3

v4 = −
aπ5t3cos[πxl ]

6l5
+

aπ7t3cos[πxl ]

3l7

−
aπ9t3cos[πxl ]

6l9
−

2a2π4t4cos[2πxl ]

3l4
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−
a4π4t4cos[2πxl ]

3l4
+

49a2π6t4cos[2πxl ]

12l6

+
5a4π6t4cos[2πxl ]

4l6
−

95a2π8t4cos[2πxl ]

12l8

+
3a2π10t4cos[2πxl ]

l10
+

a3π5t3cos[3πxl ]

2l5

+
4a4π4t4cos[4πxl ]

3l4
−

91a4π6t4cos[4πxl ]

12l6

+
aπ4t4sin[πxl ]

24l4
+

a3π4t4sin[πxl ]

16l4

+
a5π4t4sin[πxl ]

192l4
−

aπ6t4sin[πxl ]

8l6

−
31a3π6t4sin[πxl ]

96l6
+

aπ8t4sin[πxl ]

8l8

+
13a3π8t4sin[πxl ]

96l8
−

aπ10t4sin[πxl ]

24l10

−
5a2π5t3sin[2πxl ]

6l5
+

11a2π7t3sin[2πxl ]

6l7

−
27a3π4t4sin[3πxl ]

16l4
−

27a5π4t4sin[3πxl ]

128l4

+
399a3π6t4sin[3πxl ]

32l6
−

861a3π8t4sin[3πxl ]

32l8

+
125a5π4t4sin[5πxl ]

384l4

and proceeding in the same way for other terms,
we obtain v5,v6,v7.... By taking p = 1, in (5.13),
we can obtain the solution of given model prob-
lem (5), so that u = limp→1 v = v0 + v1 + v2 +
v3 + ....

6 Numerical Experiments

In this Section, we reveal physical behaviors of so-
lution profiles for the equations discussed above
by solving different cases with different ranges of
all the parameters under consideration. In all
the cases, we observe that for t > 0 the solu-
tion evolves so that all the conservation laws are
satisfied.

Example 6.1 In case I, the KdV equation
u˙t+u˙x+6 u u˙x+ u˙xxx=0, 0 ≤ x ≤ l.

Figure 1: Wave profiles at time 0.1, 1 for ρ = 1, 0.1
respectively.

with the initial condition at t = 0 is given

by u0(x) = ρ
2sech

2

(√
ρx
2 − 7

)
. Solution profiles

achieved in this case are shown in Figs 1. These
results are obtained within the range 0 ≤ x ≤ 70
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Figure 2: Wave profiles at different times t =
0.6, 0.8, 1 and t = 0.01 respectively.

at time 0.1, 1 for ρ = 1, 0.1 respectively. Here we
have monitored sharp peaks achieving maximum
height 0.005089, 0.0002188 at x = 14, 43. Surface
plots for this case study can be seen in Fig. 2 for
ρ = 1, 0.5 in the time interval −1 ≤ t ≤ 1. If we

look at these plots, it is observed that the con-
tinuous solution profile that comes into picture is
associated with dispersive wave component of the
solution. next wave solution is depicted in Fig. 3
within the range −10 ≤ x ≤ 10 at times t = 0.5, 1
and corresponding surface plot is plotted in Fig.
4 within the spatial range −10 ≤ x ≤ 10 and time
range −0.5 ≤ t ≤ 0.5, −1 ≤ t ≤ 1 respectively. In
case II, we have KdV equation (6.1), for the initial
state u0(x) = −n(n+ 1)sec2x, which results in n
solitons that propagate with different velocities.
Particularly for n = 2, we have u0(x) = −6sec2x
for which results are shown through figs. 5 achiev-
ing different depth levels. At negative times, the
deeper soliton, which moves faster, approaches
the shallower one. At t = 0 they combine to
give u0(x) = −6sec2x, which is a single trough
of depth 6 and, after the encounter, the deeper
soliton has overtaken the shallower one and both
resume their original shape and speed. However,
as a result of the interaction, the shallower soli-
ton experiences a delay and the deeper soliton is
speeded up. The wave profile plotted at different
times t = 0.6, 0.8, 1 and t = 0.01 is shown in Fig.
5. In Fig. 6, the solution profile depicts two waves
where the taller one catches the shorter coalesces
to form a single wave. The interaction seems vis-
ible at the very first sight. A careful examination
of the wave profiles shows that the taller one has
moved forward and the shorter goes backward.

Example 6.2 In the second example, we con-
sider numerical experiments made for the prob-
lem (4).

In the first case we have the given initial condi-
tion u0 = 0.8

√
sech[kx]. In Fig. 7, simulation is

carried out at different times t = 0, 0.5, 1, 1.5, 2
by taking a = 2, b = 1, k = 1, c = 4 in the range
−15 ≤ x ≤ 20 which produces each soliton of
amplitude 1.215 moving to the left.

In the next case, for the initial condition

u(x, 0) =

(
12c

A′ +B′

)1/2

,

where

A′ = a(1 +
√

1 + α2 cosh[2
√

c/bx],



S. Dhawan /IJIM Vol. 5, No. 4 (2013) 325-339 333

Figure 3: Wave profiles plotted at different times
t = 0.6, 0.8, 1 and t = 0.01.

B′ = α sinh[2
√

c/bx]

corresponding analytical solution is

u(x, t) =

(
12c

A+B

)1/2

Figure 4: Surface plots within the time range −0.5 ≤
t ≤ 0.5, −1 ≤ t ≤ 1 respectively.

where

A = a(1 +
√

1 + α2 cosh[2
√

c/b(x− ct)],

B = α sinh[2
√

c/b(x− ct)]
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Figure 5: Wave profiles plotted at different times
t = 0.6, 0.8, 1 and t = 0.01.

In 2D case, results are produced by taking a =
24, b = 1, α = 0.1 within the range −15 ≤ x ≤ 20
with c = 2, at times 0.1, 0.5, 1 and 0, 0.8, 1.5 re-
spectively. Here, we observe soliton amplitude to
be 0.7137 and 0.4986 for 2D plots (x ranging from

Figure 6: Wave profiles plotted at t = 0.05 and t =
0.1 .

−5 to 6). Surface plots for this case can be seen
with the assumption a = 24, b = 1, α = 0.1, c = 1
with space and time ranges ([−6, 6], [0, 1]) and
([−6, 6], [−2, 2]) respectively. For bc < 0, periodic
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Figure 7: Solution u(x, t) at different times t =
0, 0.5, 1, 1.5, 2 with c = 4, 3 respectively.

solution is obtained for this case is

u(x, t) =

(
12c

A1 +B1

)1/2

.

Figure 8: Solution u(x, t) at different times t =
0.1, 0.5, 1 and t = 0, 0.8, 1.5 with c = 2, 1 respectively
for 2D plots and surface plot within the time range
t ∈ [0, 1].

where

A1 = a(1 +
√

1 + α2 cosh[2
√

−c/b(x− ct)],
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Figure 9: Solution u(x, t) at different times t =
0, 0.5, 1 with c = 2, 1 respectively for 2D plots and sur-
face plot within the time range t ∈ [0, 1] and t ∈ [−7, 7]
respectively.

B1=ıα sinh[2
√

−c/b(x−ct)]A perspective view of
the solution for this case is given in Fig. 9 we ob-
serve the periodic solution profiles and emerge on

Figure 10: Wave profiles at t = 0, 15, 30 and surface
plot for the time range 0 ≤ t ≤ 50.

the left-hand side inverted but with unchanged
amplitude and velocity and having undergone
a phase shift. In these simulations, we have
a = 24, b = 1, α = 0.1, c = 1, 2 with x ∈ [−6, 6]
and time range t ∈ [0, 1] and t ∈ [−7, 7] respec-
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Figure 11: Wave profiles at t = 2 and surface plot
for the time range 0 ≤ t ≤ 2.

tively. It leads to wave amplitudes 0.5035 and
0.7062. Snapshots of the function profile in the
form of surface can also be seen with c = 2, with
x ∈ [−6, 6], t ∈ [0, 1] and x ∈ [−4, 4], t ∈ [−7, 7]
respectively.

Example 6.3 This time we deal with RLW equa-
tion. With the boundary conditions u → 0
as x → ±∞, and initial condition u(x, 0) =
3csech2(k(x − x0)), this solution corresponds to
the motion of a single solitary wave with ampli-
tude 3c and width k, initially centered at x0 is
presented trough figs.

In the first simulation, a wave profile is ob-
served at different times t = 0, 15, 30. At
the very beginning, near x = 0, sharp edge
at t = 0 is observed and later as the wave
front moves on, its position is changed with the
passage of time from x = 20, 40 and corre-
sponding surface plot is shown in Fig. 10. In
the next case, we study the interaction of two
solitary waves. As initial condition, we have
u(x, 0) = 3c1sech

2(k1(x− x1)) + 3c2sech
2(k2(x−

x2)) where k1 = 1/2
√

εc1/µ(1 + εc1), and k2 =
1/2

√
εc2/µ(1 + εc2). Here, the one of the ampli-

tude is 3c1 sited at x = x1 and amplitude 3c2 sited
at x = x2. An interaction occurs when the larger
is placed to the left of the smaller. We study such
an interaction with k1 = k2 = 0.5, x1 = 15, x2 =
35, c1 = 1.0, c2 = 0.5 running the simulation us-
ing the range 0 ≤ x ≤ 40 which can be seen in
Fig. 11.

7 Conclusion

In this work, we have used the homotopy per-
turbation method (HPM) for standard KDV and
RLW equations. The HPM has the capabilities
to bereave the complicated differential equation
models to number of simple iterative models
once the effective initial guess satisfying the
boundary conditions is made and leads to generic
solutions in addition to their rapid convergence.
The algorithm developed facilitates for less
time consuming. Also even for smaller values
desirable solutions are obtained. The results are
comparable to analytic ones. The HPM has been
observed to be powerful tool with its addition
advantages and suitability for computer simula-
tions over the existing tools having potential to
be used in more complicated partial differential
equation systems.

References

[1] S. Dhawan, S. Kapoor, S. Kumar, S. Rawat,
Contemporary review of techniques for the so-
lution of nonlinear Burgers equation, Journal
of Computational Science, J. Comput. Science
3 (2012) 405-419.

[2] D.J. Korteweg , G. de Vries, On the change of
form of long waves advancing in a rectangular
canal and on a new type of long stationary
waves, Phil. Mag. J. Science 39 (1895) 422-
443.

[3] A. C. Scott, Y. F. Chu and D. W. McLaugh-
lin, The Soliton: A New Concept In Applied
Science, IEEE Proc. 61 (1973) 1443-1452.



338 S. Dhawan /IJIM Vol. 5, No. 4 (2013) 325-339

[4] A. C. Vliegenthart, On finite difference
method for Korteweg-de Vries equation, J.
Eng. Math. 5 (1971) 137-155.

[5] S. V. Vladimirov, M. Y. Yu, V. N. Tsytovich,
Recent advances in the theory of nonlinear
surface waves, Physics Reports 241 (1994) 1-
63.

[6] D. H. Peregrine, Calculations of the develop-
ment of an undular bore, J. Fluid Mech 25
(1966) 321-330.

[7] D. H. Peregrine, Long waves on a beach, J.
Fluid Mech 27 (1967) 815-827.

[8] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H.
C. Morris, Solitons and nonlinear wave equa-
tions, New York: Academic Press (1982).

[9] Siraj-ul-Islam, A. J. Khattak, Ikram A. Tir-
mizi, A meshfree method for numerical solu-
tion of KdV equation, Engineering Analysis
with Boundary Elements 32 (2008) 849-855.

[10] A. A. Soliman, M. H. Hussien, Collocation
solution for RLW equation with septic spline,
Applied Mathematics and Computation 161
(2005) 623-636.

[11] J. H. He, Homotopy perturbation technique,
Comp. Meth. Appl. Mech. Engng 178 (1999)
257-262.

[12] J. H. He, The homotopy perturbation method
for nonlinear oscillators with discontinuities,
Appl. Math. Comput 151 (2004) 287-292.

[13] Sh. S. Behzadia, A.Yildirim, A method to es-
timate the solution of a weakly singular non-
linear integro-differential equations by ap-
plying the Homotopy methods, International
Journal of Industrial Mathematics 4 (2012)
41-51.

[14] E. Babolian, A. R. Vahidi, Z. Azimzadeh,
An improvement to the homotopy perturba-
tion method for solving integro-differential
equations, International Journal of Industrial
Mathematics 4 (2012) 353-363.

[15] J. H. He, A note on the homotopy perturba-
tion method, Thermal Science 14 (2010) 565-
568.

[16] D. Grover, Virendra Kumar and Dinkar
Sharma, A Comparitive Study Of Numeri-
cal Techniques And Homotopy Perturbation
Method For Solving Parabolic Equation And
Non-Linear Equations, International Journal
for Computational Methods in Engineering
Science & Mechanics (Accepted).

[17] S. J. Liao, The proposed homotopy analysis
technique for the solution of nonlinear prob-
lems, PhD thesis, Shanghai Jiao Tong Uni-
versity, 1992.

[18] S. J. Liao, Beyond Perturbation: Intro-
duction to the Homotopy Analysis Method,
Chapman and Hall/CRC Press, Boca Raton,
(2003).

[19] S. J. Liao, Notes on the homotopy analysis
method, some definitions and theorems, Com-
mun. in Nonlinear Sci. and Numer. Simulat
14 (2009) 983-997.

[20] S. J. Liao, Topology and geometry for physi-
cists, Academic Press, Florida Press (1983).

[21] S. Abbasbandy, Homotopy analysis method
for heat radiation equations, International
Communications in Heat and Mass Transfer
34 (2007) 380-387.

[22] S. Abbasbandy, Y. Tan, S. J. Liao, Newton-
homotopy analysis method for nonlinear equa-
tions, Applied Mathematics and Computa-
tion 188 (2007) 1794-1800.

[23] M. Sajid, T. Hayat, S. Asghar, On the an-
alytic solution of the steady flow of a fourth
grade fluid, Phy. Lett. A 355 (2006).

[24] E. Babolian, N. Dastani, Numerical solu-
tions of two-dimensional linear and nonlin-
ear Volterra integral equation: Homotopy per-
turbation method and differential transform
method, International Journal of Industrial
Mathematics 3 (2011) 157-167.



S. Dhawan /IJIM Vol. 5, No. 4 (2013) 325-339 339

[25] Sushila Rathore, Devendra Kumar, Jagdev
Singh, Sumit Gupta, Homotopy Analysis
Sumudu Transform Method for Nonlinear
Equations, International Journal of Industrial
Mathematics 4 (2012) 301-314.

[26] S. Abbasbandy, The application of homotopy
analysis method to nonlinear equations aris-
ing in heat transfer, Physics Letters A 360
(2006) 109-113.

S. Dhawan received Ph.D in Math-
ematics from National Institute
of Technology Jalandhar India, in
2012, Post-doctoral fellow, Na-
tional Board for Higher Mathemat-
ics, Department of Atomic Energy,
Govt. of India. She is currently

working as Assistant Professor in Mathematics
at D.A.V. University Jalandhar, India. Her re-
search interests are heat transfer, fluid dynamics,
FEM, Wavelets and related areas.

D. Grover is working as Assitant
Professor at Graphic Era Univer-
sity Dehradun, India. He has been
working in several research fields
on computational , numerical anal-
ysis techniques. He is member of
various National/International sci-

entific bodies. He has (co)authored many re-
search papers in the Journals of high interna-
tional repute.

S. Kumar is Professor, Department
of Mathematics, Dr. B. R. Ambed-
kar National Institute of Technol-
ogy, Jalandhar, India. He re-
ceived M.Sc. degree in Mathemat-
ics in 1973, from Indian Institute
of Technology, Kanpur, India and

Ph.D. degree in 1981, from Indian Institute of
Technology, Delhi, India. His research interests
are Numerical Analysis: Finite element methods,

Wavelet methods for Partial differential equa-
tions.


	Introduction
	Homotopy Perturbation Method (HPM)
	HPM for KdV equation
	HPM for mKdV equation
	HPM for RLW equation
	Numerical Experiments
	Conclusion

